WISP

Wireless Identification and Sensing Platform

Presenter: Ian Clester

Motivation

"This core technology enables a new class of wireless battery-free devices with communication, sensing, computation, and data storage capabilities. Unconstrained by batteries, these devices have the potential to operate for years if not decades."

- Applications: anywhere you would want to use a sensor and preferably NOT have to deal with power!
- Ex: any kind of long-term monitoring structural, medical, product.
- Also, anywhere you'd like a little bit of computational power without dealing with power.

Motivation <u>https://www.youtube.com/watch?v=SKQ3wkAqA_8</u>

Background: RFID & Backscatter

Background: RFID & Backscatter

Background: EPC Class 1 Gen 1

- Intended as RF-enabled alternative to bar codes.
- Protocol for communication between RFID readers and RFID tags.

16-bit CRC	64-bit EPC Gen 1 ID
------------	---------------------

Initial approaches: α -WISP and π -WISP

1-bit of freedom

From "ID Modulation: Embedding Sensor Data in an RFID Timeseries", J. Smith et al

Initial approaches: α -WISP and π -WISP

https://www.youtube.com/watch?v=mRc3peXsR8o

Main idea: ID as data transfer

Typical 64-bit EPC tag

Implementation Overview

Hardware

Hardware: Power Harvester

Aside: Voltage Rectification

Diodes

Schmitt Trigger

ASK: Amplitude-Shift Keying

ASK Modulated output wave

ASK: Amplitude-Shift Keying

Hardware: Modulation

Hardware: Modulation

Software: Operational Cycle

$$P_R = P_T - 20\log\left(\frac{4\pi d}{\lambda}\right) + G_T + G_R - L_P$$

- $P_T = 1 W = 30 dBm$
- $G_T = 6 dBi$ (regulatory limit)
- $G_R = 2 dBi$ (dipole antenna)

- $\lambda = 0.33 \text{ m} (915 \text{ MHz})$
- $L_P = 3 dB$

- MSP430: Family of low-power microcontrollers from Texas Instruments
- MSP430F1232: 16-bit Ultra-Low-Power Microcontroller
 - 8kB Flash, 256B RAM
 - 10 bit ADC (200 ksps), 1 USART
- Power consumption per TI:
 - \circ 0.1 µA in off-mode (RAM retention)
 - $\circ~~$ 0.7 μA in standby mode
 - \circ 200 μA in active mode (1 MHz, 2.2 V)
- Per WISP authors, 470 μ A at 3 MHz, 1.8 V, or 600 μ A at 4 MHz.

 $1.8 \text{ V} * 600 \text{ } \mu\text{A} = 1.08 \text{ } \text{mW}$

Output power available at 0 dBm input is 310 µW (from previous figure).

310 μ W / 1.08 mW = about 28% (apparent typo in paper; 1.12 mW \rightarrow 27%)

Energy Consumption

$$\frac{P_{\text{out}}}{P_{\text{active}}} = \frac{T_{\text{on}}}{T_{\text{on}} + T_{\text{sleep}}} = \text{Duty cycle}$$

1.8 V * 600 μA = 1.08 mW

Query time is 2ms. 2 ms * 1.08 mW = 2.16 μ J.

Energy in capacitor is C V²/ 2. For C = 10 μ F, baseline energy is 10 μ F * (1.8 V)² / 2 = 16.2 μ J

C V² / 2 = 16.2 μ J + 2.16 μ J \Rightarrow V = 1.916, in order to complete the query.

$V_{dd}(I_S + I_W)T \le \frac{1}{2}C(V_{\rm rec}^2 - V_{dd}^2)$

Evaluation

Epilogue

- Moo (UMass)
- EPC Generation 2
- WISP 5 FM0 encoding
- Further developments in low-power MCUs
- NFC-WISP
- "WISP Challenge"

RFID Internals

- "Black box": RFID state machine
 - Lots of development time goes into this
 - Most WISP users should not need to touch this
 - Protocol hackers will want to understand this

Learning from the WISP 4.1

- Non-modular
- 1500-line mixed C and ASM file...
- Unclear how to extend/add functionality
- Seemingly simple tasks took lots of development time
- WISP 5 addresses these issues!

A very incomplete listing...

Of projects done by WISP Challenge recipients:

- Elliptic Curve Cryptography on the WISP UHF RFID Tag, Christian Pendl, Markus Pelnar, and Michael Hutter; 7th Workshop on RFID Security (RFIDsec 2011); Amherst, Massachusetts, USA, June 26-28, 2011
- Wireless Strain Measurement for Structural Testing and Health Monitoring of Carbon Fiber Composite, Federico Gasco, Paolo Feraboli, Jeff

Braun, Joshua Smith, Patrick Stickler, and Luciano DeOto; Journal of Composites: Part A, May 14, 2011

Concealable, Low-Cost Paper-Printed Antennas for WISP-based RFIDs, Mauro Marroncelli, Daniele Trinchero, Vasileios Lakafosis, and

Manos M. Tentzeris. 2011 IEEE International Conference on RFID. April 12-24

<u>A Software Radio-based UHF RFID Reader for PHY/MAC Experimentation</u>, Michael Buettner and David Wetherall. 2011 IEEE International Conference on RFID. April 12-24

Photovoltaic Enhanced UHF RFID Tag Antennas for Dual Purpose Energy Harvesting, Alanson Sample, Jeff Braun, Aaron Parks, and

Joshua Smith. 2011 IEEE International Conference on RFID. April 12-24

Dewdrop: An Energy-Aware Runtime for Computational RFID, Michael Buettner, Ben Greenstein and David Wetherall. NSDI, March 2011.

<u>Mementos: System support for long-running computation on RFID-scale devices</u>, Benjamin Ransford, Jacob Sorber, and Kevin Fu. In Proceedings of the 16th Architectural Support for Programming Languages and Operating Systems (ASPLOS 2011), Newport Beach,

CA, March 2011

Exploiting Half-Wits: Smarter Storage for Low-Power Devices, Mastooreh Salajegheh, Yue Wang, Kevin Fu, Anxiao (Andrew) Jiang, Erik Learned-Miller. In Proceedings of the 9th USENIX Conference on File and Storage Technologies (FAST 2011), San Jose, CA, February 2011.

See wisp.wikispaces.com/Publications for more

Bonus Video

https://www.youtube.com/watch?v=IaTsFCMM7kA

Моо

ASK

SIGNAL	WAVEFORM	DESCRIPTION
Data	1 0 1 1 0 0 0 1 1 0 1 0	Digital Data
Bit Rate CLK		Clock Signal
NRZ L (Direct)		Non-Return to Zero - Level '1' is represented by logic high level. '0' is represented by logic low level.
Biphase L (Manchester)		 Biphase - Level (Split Phase) A level change occurs at middle of every bit clock period. '1' is represented by a high to low level change at midclock. '0' is represented by a low to high level change at midclock.
Differential Biphase S		 Differential Biphase - Space A level change occurs at middle of every bit clock period. '1' is represented by a change in level at start of clock. '0' is represented by no change in level at start of clock.

FSK on ASK

NFC-WISP 1

https://www.youtube.com/watch?v=YVdQx6ZjGuo

NFC-WISP 2

https://www.youtube.com/watch?v=xl2xMxhkhQ0

Transformer-based rectifier

$P_{\rm in} = P_{\rm loss} \equiv V_{\rm rectified} \times I_{\rm loss}$

Image Sources

- WISP paper
- RFind paper
- Wikipedia
- <u>https://www.tutorialspoint.com/digital_communication/digital_communication_amplitude_shift_keying.htm</u>
- <u>https://www.open.edu/openlearn/science-maths-technology/exploring-</u> <u>communications-technology/content-section-1.4</u>
- Passive RFID Basics Peter Sorrells
- <u>http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/schmitt.html</u>
- https://hackaday.com/2017/03/22/how-does-a-voltage-multiplier-work/
- <u>https://learn.sparkfun.com/tutorials/diodes/real-diode-characteristics</u>