Passive Inverted Ultra-Short Baseline (piUSBL) Localization: An Experimental Evaluation of Accuracy

Presented by: Laura Dodds

N. R. Rypkema and H. Schmidt, "Passive Inverted Ultra-Short Baseline (piUSBL) Localization: An Experimental Evaluation of Accuracy," 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 7197-7204, doi: 10.1109/IROS40897.2019.8967800.

GPS

GPS signals will not work underwater

Doppler Velocity Log(DVL) & Inertial Navigation System (INS)

DVL & INS are too expensive and drift over time

Long Baseline (LBL)

Long Baseline (LBL)

LBL is difficult to deploy and not scalable

Passive Long Baseline (pLBL)

Passive LBL is difficult to deploy

Ultra-Short Baseline (USBL)

Ultra-Short Baseline (USBL)

Ultra-Short Baseline (USBL)

USBL is not scalable

Can we create a scalable, low-cost underwater localization system?

Passive Inverted Ultra-Short Baseline(piUSBL)

Passive

Low Cost

One beacon

Pre-Filter

Measuring Range

Range - Speed of Sound

 $d = \Delta cos(\theta)$

Angle - Azimuth Bias

Combining Angle and Range

Combining Angle and Range

Outlier Rejection

Can we do better?

Yes! With a cheap IMU

Source: https://www.slideshare.net/kohta/particle-filter-tracking-in-python

Passive Inverted Ultra-Short Baseline(piUSBL)

Scalable to multiple robots Low cost Easier to deploy

Outstanding Questions

- 1. How well will the system perform with various
 - a. Depth
 - b. Pitch
 - c. Roll

2. How well will the system perform when not using GPS for synchronization?

3. Will the performance match when using a real IMU?

Thanks for listening!

