MAS.S62:

Ocean IoT

Technologies, Industries, Sustainability

<u>Lecturer</u>

Fadel Adib fadel@mit.edu

<u>TA</u>

Sayed Saad Afzal <u>afzals@mit.edu</u>

<u>Website</u>

http://www.mit.edu/~fadel/courses/MAS.S62/index.html

Main Components of (Ocean) IoT Systems This Lecture

Axis #2: Connectivity

Axis #3: High-level-Task (Sensing, Actuation)

Objectives of Today's Lecture

Learn **fundamentals** of energy harvesting, backscatter, end-to-end system design

- 1. Why is it not feasible to use batteries with underwater IoT sensors?
- 2. What are underwater backscatter systems, why do they consume netzero power?
- 3. What are the different components that make an end-to end underwater backscatter system?
 - The physical, mathematical, engineering, and design fundamentals
 - Why are these systems designed the way they are

Traditional Approach

Sensor generates its own acoustic signal

Underwater Drone

Why is it not feasible to use batteries with underwater IoT sensors?

Using batteries with underwater IoT sensors

Pollution via battery leakage

Cost of replacing batteries

Insulation of Batteries/Electrical Shortage

Problem: Battery life of underwater sensors is extremely limited

Low-power underwater transmitters consume 100s of Watts

(e.g., WHOI low-power micro-modem 2019)

State-of-the-art sensors for tracking marine animals only last for few hours or days

[Animal Biotelemetry'15, Scientific Reports'17]

Underwater Backscatter : Basic Principle of Operation

How can we control the reflections of acoustic signals?

Underwater Backscatter : Backscatter Node

Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy

Piezoelectric Material

Electric signal

Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy Switch

Electric signal

Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy

Switch closed

Piezo-Acoustic Backscatter

Switch open

PAB needs 1 million times less power (~100s microWatt) than standard underwater communication

And it harvests energy in non-reflective (absorptive) state \rightarrow battery-free

incoming signal Can't vibrate

Switch closed

Piezoelectric Transducers (Physics)

Stress, Strain, Resonance frequency, Impedance matching

Electric Field

Piezoelectric Transducers (Physics)

Stress, Strain, Resonance frequency, Impedance matching

$D = dT + \epsilon^T E$

Piezoelectric Transducers (Physics)

Stress, Strain, Resonance frequency, Impedance matching

$$D = dT + \epsilon^T E$$

T = 0 - Net Stress

 $T = P_{ref} + P_{in}$

 $P_{ref} = -P_o \sin(2\pi ft)$ The same signal gets

$P_{in} = P_o \sin(2\pi f t)$

reflected back

Strain = 0, the material cannot deform

Compliance coefficient

Piezoelectric Transducers (Physics) -- Continued

Stress, Strain, Resonance frequency, Impedance matching

tinued matching

Anti-Resonance

Piezoelectric Transducers (Physics) -- Continued Stress, Strain, Resonance frequency, Impedance matching

Resonance is a function of frequency, to get maximum power transfer, we need to match igodolimpedance of our circuit to the impedance of the piezo transducer (at resonance)

$$Z_L = Z_s^*$$

Impedance matching can also improve SNR, reflected power: ightarrow

$$P_{\gamma} = \left| \frac{Z_L - Z_s^{*}}{Z_L + Z_s} \right|^2$$

Piezoelectric Transducers (Physics) -- Continued Stress, Strain, Resonance frequency, Impedance matching

Resonance is a function of frequency, to get maximum power transfer, we need to match igodolimpedance of our circuit to the impedance of the piezo transducer (at resonance)

$$Z_L = Z_s^*$$

Impedance matching can also improve SNR, reflected power: ightarrow

$$P_{\gamma} = \left| \frac{Z_L - Z_s^{*}}{Z_L + Z_s} \right|^2$$

Piezo Acoustic Backscatter -- Circuit Design

Underwater Backscatter : Hydrophone

Channel Estimation (Math)

$$y = h_2 \sin(2\pi ft) + h_1 h_3 p \sin(2\pi ft)$$
$$y = h_2 \sin(2\pi ft) + h.p.\sin(2\pi ft)$$
$$yd = LPF(y * \sin(2\pi ft))$$

 n_2 π.

If preamble is zero mean then:

$$h = \frac{\sum (h_2 + h. p)p}{\|p\|^2}$$

Extending to Multiple Nodes

Extending to Multiple Nodes Option 1: Time Division Multiplexing

Batteryless hardware

Extending to Multiple Nodes Option 1: Time Division Multiplexing

Batteryless hardware

Extending to Multiple Nodes Option 2: Frequency Division Multiplexing

Batteryless hardware

Extending to Multiple Nodes <u>Problem:</u> Resonance of piezoelectrics limits their bandwidth

Extending to Multiple Nodes <u>Problem:</u> Resonance of piezoelectrics limits their bandwidth

Operating at resonance maximizes energy harvesting but limits concurrent transmissions (and FDMA)

Minimum threshold to power up arvesting but limits DMA)

→Tune the circuit to a different frequency

resonance frequency determined by
interaction between piezo & the
batteryless circuit

 $Z_{circuit}(f) = Z^*_{piezo}(f)$

frequency dependent

→Tune the circuit to a different frequency

resonance frequency determined by
interaction between piezo & the
batteryless circuit

 $Z_{circuit}(f) = Z^*_{piezo}(f)$

frequency dependent

Frequency dependent
 →Tune the circuit to a different frequency

resonance frequency determined by interaction between piezo & the batteryless circuit

 $Z_{circuit}(f) = Z_{piezo}^*(f)$

Extend the idea to uplink communication using a MIMO-style decoder adapted to backscatter resonance modes Frequency (KHz)

Extending to Multiple Nodes Option 2: Frequency Division Multiplexing

Batteryless hardware

Implementation

Hydrophone

Uplink (FM0)

Batteryless PAB sensor

Projector

Downlink (PWM)

Objectives of Today's Lecture

Learn fundamentals of energy harvesting, backscatter, end-to-end system design

Why is it not feasible to use batteries with underwater IoT sensors?

What are underwater backscatter systems, why do they consume netzero power?

- The physical, mathematical, engineering, and design fundamentals
- Why are these systems designed the way they are

Next Class (Underwater Localization)

- 1) Required (Reviews)
 - Inverted Ultra-short baseline Localization

- 2) Optional Readings
 - Underwater backscatter localization

Following week pitch projects in the class (slack)

Feedback on Reviews