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Underwater Robot

How to enable 
communication?

Aerial Drone
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Underwater Robot

Aerial Drone

✗Interrupts current task  
to transmit data

#1: Periodic 
Resurfacing
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Aerial Drone

Underwater Robot

✗Logistical and deployment
overhead

#2: Network 
of Buoys
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Need a direct air-water communication link!

Aerial Drone

Underwater Robot
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Aerial Drone

Underwater Robot

✗Severe attenuation  
(3.5—5 dB/m)
underwater

#1: RF
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Underwater Robot

✗Waves reflect off
air-water 
boundary

Aerial Drone
#2: Acoustic
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Aerial Drone

✗Unidirectional and  
low throughput

Underwater Robot

Acoustic

mmWave Radar

#3: RF + Acoustic
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Francesco Tonolini and Fadel Adib. 2018. Networking 
across boundaries: enabling wireless communication 

through the water-air interface. (SIGCOMM ’18).



Underwater Robot

Aerial Drone
What about 
Light?

✔

✔

<10% power loss through 
interface

Bidirectional
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Underwater Robot

Aerial Drone
What about 
Laser Light?

✔

✔

✔

✔

<10% power loss through 
interface

Bidirectional

<0.5 db/m attenuation in 
water (at 420 nm – 550 nm)

GHz modulation
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Aerial Drone

Underwater Robot

✗Link unavailable up to  
70% of the time

Key Challenges
#1: Wave dynamics
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Aerial Drone

Underwater Robot

✗Existing methods are  
bulky and expensive

Key Challenges
#2: Beam steering



Sun

Aerial Drone

Underwater Robot

≈ 100,000 LX

✗Sensor saturation

Key Challenges
#3: Ambient light
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AmphiLight
TX RX Laser Link

TX RX Laser Link

Ultrasonic Sensing

Ultrasonic Sensing
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Transmitter Design

Beam Steering

☐Full-hemisphere

☐Fine-grained

☐Portable
LD



Transmitter Design

LD

☐✗Full-hemisphere

☐✔Fine-grained

☐✔Portable
MEMS Mirror

Beam Steering

Our solution:
Combine course- and fine-grained steering methods



TX Design: Full-Hemisphere Beam Steering

Image Plane

Focal Length

Small output 
angle range

Exploit fisheye lens to expand MEMS mirror steering range

180° incident 
angle range

Fisheye Lens



TX Design: Full-Hemisphere Beam Steering

Image Plane

Focal Length

Small incident 
angle range

20

Exploit fisheye lens to expand MEMS mirror steering range

180° output 
angle range

Fisheye Lens



TX Design: Full-Hemisphere Beam Steering

Laser Diode

MEMS Mirror Fisheye LensTriplet Lens
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Exploit fisheye lens to expand MEMS mirror steering range



TX Design: Full-Hemisphere Beam Steering

Laser Diode

MEMS Mirror Fisheye LensTriplet Lens
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Exploit fisheye lens to expand MEMS mirror steering range



TX Design: Full-Hemisphere Beam Steering

Laser Diode

MEMS Mirror Fisheye LensTriplet Lens
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Exploit fisheye lens to expand MEMS mirror steering range



TX Design: Full-Hemisphere Beam Steering

Laser Diode

MEMS Mirror Fisheye Lens

±14° ±90°

Exploit fisheye lens to expand MEMS mirror steering range

Triplet Lens
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520nm Laser 
Sunlight

Receiver Design

4 nm
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518 nm 522 nm

SNR = -12.86 dB

SNR = 4.36 dB

Image Courtesy of Thorlabs

• Need to extract laser light in strong ambient light condiMons
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Laser Link

TX
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AmphiLight
RX Laser Link

TX RX

Ultrasonic Sensing

Ultrasonic Sensing



Air

Water

RX

TX
Wave dynamics cause 

misalignment
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Design: Dealing with Wave Dynamics



Air

Water

RX

TX

Expanding beam 
wastes power
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Design: Dealing with Wave Dynamics



Design: Dealing with Wave Dynamics

Air

Water

TX + Sensing

RX

Step #1: Proactively 
sense wave condition

Step #2: Compute optimal 
laser beam direction



Design: Dealing with Wave Dynamics

Air

Water

Ultrasonic Sensing

Ultrasonic waves 
reflect off surface

Ultrasonic Sensing

Bidirectional solution
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Design: Dealing with Wave Dynamics

Discrete 
Samples

M x M Ultrasonic Array

h1 h2 h3 h4

Wave 
Model

Interpolated  
Surface
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Bicubic Surface Model



Design: Dealing with Wave Dynamics

M x M Ultrasonic Array

h1 h2 h3 h4
Wave 
Model

✗Sequential sampling leads to large sensing delay



Design: Dealing with Wave Dynamics
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• Not wait for all sensor readings to reconstruct waves
• Forecast upcoming sensor readings with FFT

✔ With forecasting, continuously reconstruct wave

M x M Ultrasonic Array

h1 h2 h3 h4
Wave 
Model



Design: Dealing with Wave Dynamics

Air

Water

TX + Ultrasonic Sensing

RX

Step #1: Proactively 
sense wave condition

Step #2: Compute optimal 
laser beam direction



Design: Dealing with Wave Dynamics

Air

Water

RX

TX + Ultrasonic Sensors

m

r

β  
θ

⃗ t

n⃗

α

37

Goal: minimize θ 
between refracted 

ray and receiver



Design: Dealing with Wave Dynamics

Air

Water

RX

TX + Ultrasonic Sensors

m

r

β  
θ

⃗ t

n⃗

α
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Goal: minimize θ 
between refracted 

ray and receiver



Design: Dealing with Wave Dynamics

Air

Water

RX

TX + Ultrasonic Sensors

m

r

β ⃗n

α

Maximize: (i.e., minimize θ)

Subject to:
⃗

(refracted light’s
direcMon)

(Snell’s Law)

r · t
cos θ =

|r ||t |

r = pm + n

p =
|n|

=
p|m| sinβ

sin(α − β)
θ

⃗ t⃗
n =

∂h ∂h
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∂x ∂y
, ,−1 (surface normal)

Solved with gradient ascent, <1ms



Prototype Implementation
41



Prototype: Transmitter

Laser Diode

• 140 mW, 520 nm

DarkLight Modulation

• 13.7% duty cycle OPPM

MEMS Mirror

• 130 Hz, 0.003° resolution, ±6.6° range

Transmitter

11 cm

37 cm
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Prototype: Receiver

27 cm

9 cm

Receiver
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SiPM

• 3mm x 3mm active area

• 180° sensitivity

Oscilloscope

• Keysight 2.5 GHz, 20 GSa/s

Image Courtesy of Ketek



Prototype: Ultrasonic Array

26 cm
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36 cm

Top

Ultrasonic Array

• $4/sensor

• 15° beam angle

• Accuracy up to 3 mm



System Evaluation
•
•

Link performance 
Link robustness
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Water Tank

Water Tank

Swimming Pool
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Evaluation: Throughput
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Evaluation: Range
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Evaluation: Ambient Light Robustness
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Indoors



Evaluation: Wave Robustness
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Discussion & Conclusion

• Mobility

• Dispersion

• Occlusion

• Sampling Method
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