# Passive eDNA collection enhances aquatic biodiversity analysis

Jeanne Harabedian

## Motivation

#### **Environmental DNA (eDNA) Metabarcoding**

- Novel method for assessing biodiversity wherein samples are taken from the environment via water, sediment or air from which DNA is extracted, and then amplified using general or universal primers in polymerase chain reaction and sequenced using next-generation sequencing to generate thousands to millions of reads.
- Metabarcoding removes the need for multiple taxonomic experts by automatically matching the DNA samples to a taxonomic identity from an existing database
- Because the identity matching is automated, the limitations come purely from how many samples can be metabarcoding

## Motivation

#### **Room for Improvement?**

- Main objective  $\rightarrow$  more samples
- Increase the amount of samples that one can collect by switching from active filtering to passive filtering

#### **Active Filtering**

- Collect water samples (1 L 20 L, depends on the environment) and actively pump the water through membranes to collect eDNA samples
- Extremely time and energy intensive, requiring specialized equipment

# **Design and Implementation**

Their Approach

- They present the alternative of switching from the active pump system to a passive membrane collection system
- Using two membranes:
  - **positively charged nylon** to catch eDNA particles by charge attraction
  - non-charged cellulose ester to catch eDNA particles by entrapment
- They attached these membranes to an oyster aquaculture frame with mesh pockets and submerged underwater



# Evaluation

#### Varying Climate

- They tested their system in two different climates
  - Tropical Waters in the Ashmore Reef
  - Temperate Waters around Daw Island

#### Varying Collection Time

 They tested how varying the particle collection time affected the overall taxa identification

#### **Compared Against Active Filtering in all Cases**

 In all tests at both locations they compared against active filtering (using 9 L of water) as their ground truth



## Sample Post Processing

#### Standard Methods Used for all eDNA Sequencing

- One-step quantitative polymerase chain reaction (qPCR) were performed with each sample and a universal primer
  - Primer is picked based on the fact that they're targeting fish taxa
- PCR outputs also include controls
  - **Positive Control:** DNA sample of a fish that should not be in the environment that they collected, but should be identified with 100% accuracy
    - All identified the known fish with 100% accuracy
    - Minimum reads in the positive control was 36, therefore a conservative cutoff for their application was 40 reads
  - **Negative Control:** use deionized water instead of DNA sample
    - No sample produced more than 5 reads for any species
- They compare these outputs against a database of known fish (different for each region)
  - < 80% match: sample discarded
  - 80 % < match < 90 % : family
  - 90 % < match < 97 % : genus
  - > 97 % : species

## Supplementary Data and Results - Ashmore

| Table 1 Taxa dete                            | cted at Ashmore Reef.                                                                          |                     |     |        |       |        |        |             |             |                    | Table 1 (continue               | d)                                                                                  |       |           |        |      |        |             |        |             |                   |                                                              |                                                                                                             |                  |
|----------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|-----|--------|-------|--------|--------|-------------|-------------|--------------------|---------------------------------|-------------------------------------------------------------------------------------|-------|-----------|--------|------|--------|-------------|--------|-------------|-------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------|
| Family name                                  | T                                                                                              | Deer                |     |        |       |        |        |             |             | A stive filtration | Family name                     | Taxon name                                                                          | Passi | ve filtra | ation  |      |        |             |        |             | Active filtration |                                                              |                                                                                                             |                  |
| ranny name                                   | Taxon name                                                                                     | Charged Non-charged |     |        |       |        |        |             |             | - Active hitration |                                 |                                                                                     | Charg | Charged   |        |      |        | Non-charged |        |             | _                 |                                                              |                                                                                                             |                  |
|                                              |                                                                                                | 4 h                 | 9 L | 12.6   | 24 h  | - 46   | 0 h    | 12 h        | 24 h        | -                  |                                 |                                                                                     | 4 h   | 8 h       | 12 h   | 24 h | 4 h    | 8 h         | 12 h   | 24 h        |                   |                                                              |                                                                                                             | Pa<br>Ch<br>4 I  |
| Acanthuridae                                 | Acanthurus blochii<br>Acanthurus lineatus                                                      | 4 1                 | 01  | 12 11  | 24 11 | 41     | on     | B           | B           | B                  | Labridae                        | Anampses sp.<br>Chlorurus sp.<br>Chaeradan schoenleinii                             |       |           |        |      |        |             |        |             | A<br>A            |                                                              |                                                                                                             |                  |
|                                              | Acanthurus triostegus<br>Acanthurus xanthopterus                                               |                     | B   | B<br>B | B     | B<br>B | B      | В           | B           | B<br>B             |                                 | Cirrhilabrus exquisitus<br>Cymolutes praetextatus                                   | в     | В         |        |      | В      | В           | В      | В           | A<br>B            |                                                              |                                                                                                             |                  |
|                                              | Ctenochaetus binotatus<br>Ctenochaetus striatus<br>Naso annulatus<br>Naso brachycentron        |                     | В   |        | В     |        | В      | В<br>Р      |             | B<br>A             |                                 | Epibulus sp.<br>Gomphosus varius<br>Halichoeres hortulanus<br>Halichoeres melanurus |       | Р         |        |      |        | Ρ           |        |             | A                 |                                                              |                                                                                                             |                  |
|                                              | Naso unicornis<br>Zebrasoma sp.<br>Zebrasoma scopas                                            |                     |     |        |       |        |        |             |             | A<br>A<br>A        |                                 | Halichoeres nebulosus<br>Halichoeres trimaculatus<br>Hipposcarus longiceps          |       | B<br>B    | В      |      | В      | B<br>B      | B<br>B | В           | A<br>B<br>B       |                                                              |                                                                                                             |                  |
| Albulidae<br>Apogonidae                      | Albula glossodonta<br>Apogon sp.<br>Jaydia sp.                                                 |                     |     |        |       | В      | В      | B<br>B<br>B | В           | B<br>B<br>B        |                                 | Labrichthys unilineatus<br>Novaculichthys taeniourus<br>Pseudocheilinus evanidus    |       | В         | B<br>B |      | В      |             |        | B<br>P      | B                 | Table 1 (continued                                           | )                                                                                                           |                  |
| Atherinidae                                  | Arripis georgianus<br>Hypoatherina temminckii                                                  |                     |     |        | В     | B      | В      |             | В           | В                  |                                 | Pseudocheilinus hexataenia<br>Scarus dimidiatus                                     |       |           |        |      |        |             |        | В           | A                 | Family name                                                  | Taxon name                                                                                                  | Pa               |
| Balistidae                                   | Balistapus undulatus<br>Balistidae—unknown 1<br>Melichthys niger                               |                     |     |        |       | P<br>B | B<br>B | P<br>B      | P<br>B      | B<br>B             |                                 | Scarus niger<br>Scarus psittacus<br>Scarus sp.                                      |       |           |        |      |        |             |        |             | A<br>A<br>A       |                                                              |                                                                                                             | Ch<br>41         |
|                                              | Rhinecanthus aculeatus<br>Rhinecanthus rectangulus<br>Rhinecanthus verrucosus                  |                     | В   |        | В     | В      | В      | В           | B<br>P      | B                  |                                 | Stethojulis bandanensis<br>Stethojulis strigiventer<br>Stethojulis sp.              |       |           |        |      |        |             | B<br>B | B<br>B<br>B | B<br>B            | Pomacentridae                                                | Abudefduf sexfasciatus/vaigiensis<br>Acanthochromis sp.<br>Amblyglyphidodon curacao<br>Chamia atsiaastanlis |                  |
| Belonidae                                    | Platybelone argalus<br>Strongylura incisa<br>Tylosurus crocodilus                              |                     | В   | В      |       | В      | B<br>B | B<br>B      | В           | A<br>B<br>B        |                                 | Stethojulis trilineata<br>Thalassoma amblycephalum<br>Thalassoma lunare             |       |           |        |      | P<br>B | В           |        | в           | B<br>B            |                                                              | Chromis atripectorais<br>Chromis lepidolepis<br>Chromis ternatensis                                         |                  |
| Blenniidae                                   | Aspidontus taeniatus<br>Atrosalarias holomelas<br>Blenniella periophthalmus<br>Cirripectes sp. |                     |     |        | В     | В      |        | Р           | В           | A<br>A<br>B        | Lethrinidae                     | Thalassoma sp.<br>Lethrinus nebulosus<br>Lethrinus obsoletus<br>Lethrinus sp.1      |       |           |        |      | в      | B           |        | В           | B<br>A<br>A<br>B  |                                                              | Chromis sp.<br>Chromis viridis<br>Chrysiptera glauca<br>Chrysiptera rex                                     |                  |
| Carangidae                                   | Salarias fasciatus<br>Caranx ignobilis<br>Carangidae—unknown 1                                 |                     | в   | В      | В     | В      |        | B           | B           | B<br>B<br>B        |                                 | Lethrinus sp.2<br>Lethrinus variegatus<br>Monotaxis arandoculis                     |       |           |        |      | 0      | 5           |        | U           | A<br>A<br>A       |                                                              | Chrysiptera sp.<br>Dascyllus aruanus<br>Dascyllus reticulatus                                               |                  |
| Chaetodontidae                               | Chaetodon auriga<br>Chaetodon vagabundus<br>Chaetodon sp.                                      |                     |     |        |       |        | В      | Р           |             | B<br>A             | Lutjanidae                      | Aprion virescens<br>Caesio caerulaurea<br>Caesio xanthonotus                        | В     |           |        |      | В      | В           | B<br>P |             | B                 |                                                              | Dascyllus trimaculatus<br>Dischistodus prosopotaenia<br>Hemiglyphidodon plagiometopon<br>Neopomacentrus sp. |                  |
| Cirrhitidae<br>Clupeidae                     | Paracirrhites forsteri<br>Amblygaster sirm<br>Spratelloides delicatulus                        | В                   | В   | В      | В     | В      | B<br>B | в           | В           | A<br>B<br>B        |                                 | Lutjanus bohar<br>Lutjanus decussatus<br>Lutjanus fulvus                            |       | В         | В      |      | В      | В           | B<br>P | В           | B<br>A            |                                                              | Plectroglyphidodon lacrymatus<br>Plectroglyphidodon leucozonus<br>Pomacentrus bankanensis                   |                  |
| Congridae                                    | Gnathophis sp.                                                                                 | -                   |     |        |       |        |        |             | r           | A                  |                                 | Lutjanus kasmira<br>Lutjanus sp. 1                                                  |       | В         | В      |      | в      | В           | В      | B           | B                 |                                                              | Pomacentrus replaogenys<br>Pomacentrus pavo                                                                 |                  |
| Fistulariidae                                | Platax orbicularis<br>Platax teira<br>Fistularia commersonii                                   | P                   | В   | В      | В     | Р      | В      | В           | В           | B<br>A             |                                 | Lutjanus sp. 2<br>Pterocaesio sp.<br>Pterocaesio tile                               | B     | В         |        |      | B      | В           | В      | В           | B<br>B<br>A       |                                                              | Pomacentrus sp. 2<br>Stegastes fasciolatus<br>Stegastes naricans                                            |                  |
| Gadidae<br>Gobiidae                          | Micromesistius sp.<br>Bryaninops sp.<br>Eviota sp. 1                                           |                     |     | Р      |       |        |        |             |             | A<br>A             | Monacanthidae<br>Mugilidae      | Cantherhines dumerilii<br>Monacanthus chinensis<br>Crenimuqil crenilabis            | Ρ     |           |        |      | Ρ      | P<br>P      |        |             |                   | Pseudochromidae<br>Rhynchobatidae<br>Schindleriidae          | Pseudochromis sp.<br>Rhynchobatus sp.<br>Schindleria sp.                                                    |                  |
|                                              | Eviota sp. 2<br>Exyrias sp.<br>Gobiodon sp.                                                    |                     |     |        |       | В      | В      | В           |             | B<br>A<br>A        |                                 | Ellochelon vaigiensis<br>Mulloidichthys vanicolensis<br>Parupeneus barberinus       |       | Ρ         |        |      | В      | В           | Ρ      | В           | B                 | Scombridae                                                   | Auxis sp.<br>Euthynnus sp.<br>Scomberomorus commerson                                                       |                  |
|                                              | Gobiidae—unknown 1<br>Gobiidae—unknown 2<br>Gobiidae—unknown 3                                 |                     |     |        |       |        | Ρ      |             |             | A<br>A             |                                 | Parupeneus chrysopleuron<br>Parupeneus multifasciatus<br>Parupeneus sp.             | В     | в         |        |      | Ρ      | в           |        | в           | AB                | Scorpaenidae<br>Serranidae                                   | Scorpaenodes guamensis<br>Aethaloperca rogaa<br>Cephalopholis argus<br>Caphalopholis Japardur               |                  |
|                                              | Gobiidae—unknown 4<br>Paragobiodon sp.<br>Vanderhorstia ornatissima                            |                     |     |        |       |        |        |             |             | A<br>A<br>A        | Muraenidae                      | Upeneus tragula<br>Echidna nebulosa<br>Gymnothorax buroensis                        | Ρ     |           |        |      |        | В           | в      |             | B<br>A            |                                                              | Epinephelus sp.<br>Plectropomus laevis<br>Pseudogramma polyacanthus                                         | В                |
| Haemulidae<br>Hemiramphidae<br>Holocentridae | Plectorhinchus chaetodonoides<br>Hyporhamphus sp.<br>Myripristis botche                        | в                   |     |        |       | B      | В      | В           | B<br>B<br>B | B<br>B<br>B        | Myctophidae                     | Gymnothorax flavimarginatus<br>Gymnothorax sp.<br>Diaphus watasei                   |       |           |        |      | В      | В           | В      |             | A<br>B<br>A       | Soleidae<br>Synodontidae                                     | Variola louti<br>Pardachirus pavoninus<br>Trachinocephalus myops                                            |                  |
| Kuhliidae                                    | Myripristis murdjan<br>Sargocentron rubrum<br>Kuhlia sp.                                       |                     |     |        |       |        |        |             |             | A<br>A<br>A        | Myliobatidae<br>Platycephalidae | Myctophidae—unknown 1<br>Aetobatus ocellatus<br>Sungaocia otaitensis                | В     | В         | В      | В    | В      | B           | в      | В           | A<br>B            | Tetraodontidae<br>Xiphiidae                                  | Arothron mappa<br>Arothron stellatus<br>Xiphias gladius                                                     |                  |
| Kyphosidae                                   | Kyphosus sp.                                                                                   |                     |     |        |       | В      | В      | В           | В           | В                  |                                 | Plesiops sp.                                                                        |       |           |        |      |        | В           | В      |             | В                 | Taxa at Ashmore Reef detection those detected by passive fit | ted by passive filtration treatment and submersion<br>Itration only and B indicates taxa detected by bot    | n time<br>th met |

sive filtration

8h 12h 24h

Non-charged

4h 8h

## Supplementary Data and Results - Daw

| Table 2 Taxa detect         | ed at Daw Island.                                                    |           |                               |             |        |        |             |             |             |              |        |             | Table 2 (continued)      | (                                                          |         |        |             |        |      |        |             |        |        |        |            |
|-----------------------------|----------------------------------------------------------------------|-----------|-------------------------------|-------------|--------|--------|-------------|-------------|-------------|--------------|--------|-------------|--------------------------|------------------------------------------------------------|---------|--------|-------------|--------|------|--------|-------------|--------|--------|--------|------------|
| Family name                 | Taxon name                                                           | Passive f | filtration                    |             |        |        |             |             |             |              |        | Active      | Family name              | Taxon name Passive filtration                              |         |        |             |        |      |        |             |        |        |        | Active     |
|                             |                                                                      | Charged   | Charged Non-charged filtratio |             |        |        |             |             |             |              |        |             |                          |                                                            | Charged | l      |             |        |      |        | Non-charged |        |        |        | filtration |
|                             |                                                                      | 4 h       | 8 h                           | 12 h        | 24 h   | 34 h   | 4 h         | 8 h         | 12 h        | 24 h         | 34 h   |             |                          |                                                            | 4 h     | 8 h    | 12 h        | 24 h   | 34 h | 4 h    | 8 h         | 12 h   | 24 h   | 34 h   |            |
| Aplodactylidae<br>Arripidae | Aplodactylus sp.<br>Arripis georgianus<br>Arripis sp.                | B<br>B    | B                             | B<br>B<br>B | B<br>B | B<br>B | B<br>B<br>B | B<br>B<br>B | B<br>B<br>B | B<br>B<br>B  | B<br>B | B<br>B<br>B | Kyphosidae               | Girella sp.<br>Kyphosus gladius/<br>sydneyanus             | В       | B      | B<br>B      | BB     |      | B<br>B | B<br>B      | B      | B<br>B | B<br>B | BB         |
| Berycidae<br>Bothidae       | Latropiscis<br>purpurissatus<br>Centroberyx sp.<br>Lophonectes sp.   | Ρ         | в                             |             | в      |        | в           |             | Р           |              |        | в           | Labridae                 | Scorpis sp.<br>Achoerodus sp.<br>Austrolabrus<br>maculatus | B<br>B  | B<br>B | В           | В      | в    | B<br>B | B<br>B      | B<br>B | в      | В      | B<br>B     |
| Callionymidae               | Repomucenus<br>calcaratus<br>Pseudocaranx sp                         | P         | в                             | в           | в      |        | P           | в           | P           | P            |        | в           |                          | Bodianus sp.<br>Eupetrichthys<br>anaustipes                | В       | В      | В           | P<br>B |      | P<br>B | В           | В      | В      |        | В          |
| contingitute                | Pseudocaranx<br>wrighti<br>Seriola Ialandi                           |           | B                             | B           | 5      | в      | B           | 5           | R           | <sup>b</sup> | в      | B           |                          | Halichoeres<br>brownfieldi<br>Labridae—                    | В       | В      | В           | B      |      | В      | В           | B      | В      | В      | B          |
| Cheilodactylidae            | Trachurus sp.<br>Cheilodactylus sp.                                  |           | в                             | Б           | В      | Б      | P           |             | Б           |              | Б      | В           |                          | unknown 1<br>Notolabrus fucicola                           |         | В      | P           | 5      |      | В      |             | 5      |        | P      | В          |
|                             | Cheilodactylidae—<br>unknown 1<br>Nemadactylus                       | Р         | Р                             |             |        |        | Р           | р           |             | P            |        |             |                          | Notolabrus parilus<br>Ophthalmolepis<br>lineolata          |         | в      | В           | В      |      | B      | 2           | в      | В      | B      | В          |
| Chironemidae                | valenciennesi<br>Chironemus<br>georgianus                            | Ρ         |                               | Ρ           |        |        | Р           | Р           |             |              | Р      |             | Lamnidae                 | Pictilabrus<br>laticlavius<br>Carcharodon                  | В       | B<br>P | В           | В      |      | В      | В           | В      | В      | В      | В          |
| Clinidae                    | Chironemus<br>maculosus<br>Heteroclinus                              | в         | В                             | В           | B      |        |             |             | B           | в            |        | B           | Monacanthidae            | carcharias<br>Acanthaluteres sp.<br>Monacanthidae—         | В       | В      | в           |        |      | В      | в           | B<br>B | В      | B      | B          |
|                             | adelaidae<br>Heteroclinus<br>eckloniae                               |           |                               |             |        |        | В           |             |             |              |        | В           |                          | unknown 1<br>Nelusetta ayraudi<br>Scobinichthys            | Ρ       |        | Ρ           |        |      |        |             | P<br>B |        |        | в          |
| Clupeidae                   | Clupeidae—<br>unknown 1<br>Sardinops saaax                           | B         | B                             | в           | в      | в      | в           | B           | в           | в            | в      | B           | Moridae                  | granulatus<br>Lotella rhacina<br>Pseudophycis              | В       |        |             |        |      |        |             |        |        |        | B<br>A     |
| Congridae                   | Gnathophis<br>longicauda                                             |           |                               | P           |        |        |             |             |             |              |        | -           | Mullidae                 | barbata<br>Upeneichthys sp.<br>Upeneichthys stotti         | B       | R      | в           | B      | В    | в      | R           | B      | B      | В      | B          |
| Dinolestidae                | Bathytoshia<br>brevicaudata<br>Dinolestes lewini                     |           |                               | в           | В      |        |             |             |             |              |        | A           | Myliobatidae<br>Odacidae | Myliobatis australis<br>Heteroscarus                       | в       | Б      | BB          | B      |      | BB     | В           | BB     | в      |        | B<br>B     |
| Dussumieriidae              | Etrumeus<br>jacksoniensis<br>Enoroulio oustrolio                     | В         |                               | В           | B      |        | В           | B           | P           | В            |        | В           |                          | acroptilus<br>Olisthops<br>cvanomelas                      | В       | В      | В           |        |      | В      | В           | В      | В      | В      | В          |
| Enoplosidae<br>Gerreidae    | Engrauns austrans<br>Enoplosus armatus<br>Parequula<br>melbournensis | Б         | В                             | В           | Б      |        |             | В           | Б           | B<br>B       |        | B<br>B      | Pempheridae              | Siphonognathus sp.<br>Parapriacanthus<br>elongatus         | B<br>B  | B<br>B | В           | B<br>B |      | B<br>B | B<br>B      | B<br>B | B<br>B |        | B<br>B     |
| Hemiramphidae<br>Isonidae   | Hyporhamphus<br>melanochir<br>Iso rhothophilus                       | В         |                               | В           |        | В      | В           | В           | В           | В            | В      | B<br>A      | Pinguipedidae            | Pempheris sp.<br>Parapercis haackei<br>Parapercis ramsayi  | B<br>B  | B<br>P | B<br>B<br>P | В      |      | В      | B<br>B      |        |        | В      | B<br>B     |

| Table 2 (continued) |                               |         |                    |      |      |      |         |            |      |      |      |   |  |  |  |  |
|---------------------|-------------------------------|---------|--------------------|------|------|------|---------|------------|------|------|------|---|--|--|--|--|
| Family name         | Taxon name                    | Passive | Passive filtration |      |      |      |         |            |      |      |      |   |  |  |  |  |
|                     |                               | Charged | 1                  |      |      |      | Non-cha | filtration |      |      |      |   |  |  |  |  |
|                     |                               | 4 h     | 8 h                | 12 h | 24 h | 34 h | 4 h     | 8 h        | 12 h | 24 h | 34 h |   |  |  |  |  |
| Platycephalidae     | Leviprora inops               | P       |                    |      |      |      |         |            |      |      |      |   |  |  |  |  |
|                     | Platycephalus<br>grandispinis | В       |                    |      | В    |      |         | В          | В    |      |      | В |  |  |  |  |
| Pomacentridae       | Chromis sp.                   | P       |                    |      | Р    |      | Р       |            |      |      | P    |   |  |  |  |  |
|                     | Parma microlepis              | В       | В                  |      |      |      | В       | В          | В    | В    |      | В |  |  |  |  |
| Scombridae          | Scombridae-<br>unknown 1      |         |                    |      |      |      | В       |            |      |      |      | В |  |  |  |  |
|                     | Scomber sp.                   | В       | В                  |      | В    |      | В       | В          |      | В    |      | В |  |  |  |  |
| Scorpaenidae        | Scorpaenidae-                 |         |                    |      |      |      | Р       |            |      |      |      |   |  |  |  |  |

## **Results - Analyzing Mean Values**

#### Mean Taxa Detected Ashmore -

- Charged: 3
- Non-charged: 10
- Active: 42

Daw -

- Charged: 8
- Non-charged: 11
- Active: 17

Mean Taxa Detection Based on Submersion Time Ashmore -

- After 4 Hours: 2
- After 8 Hours: 5

Daw -

• No significant differences between any of the filters, including active

## **Results - Analyzing Taxa Community**



## Conclusion

Their results show **promising evidence** that it could be used to properly collect eDNA and **significantly expand the amount of environmental metabarcoding** that can be done and biodiversity that can be analyzed.

The passive solution is

- Inexpensive and scalable
  - Eliminates any need for active / manual collection and filtration
- More appropriate for temperate, but still acceptable for tropical environments
- Easily replicable for more analysis on viability as well as implementation
  - Different membrane materials, understanding physical limitations of membranes, understanding implications of varying environments