# Ecosystem biomonitoring with eDNA:

Metabarcoding across the tree of life in a tropical marine environment

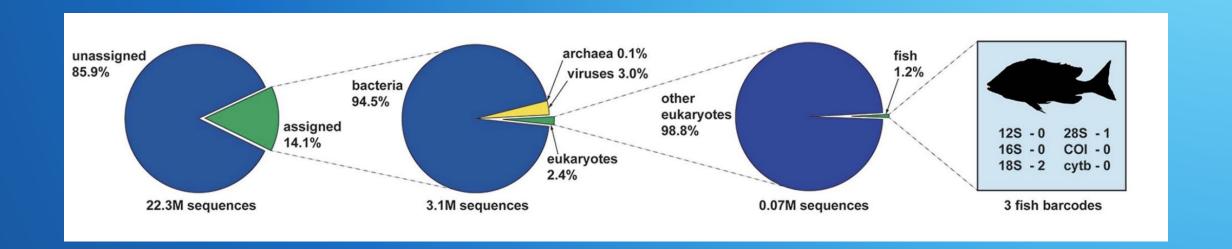
Maaya Prasad







## eDNA Analysis Methods

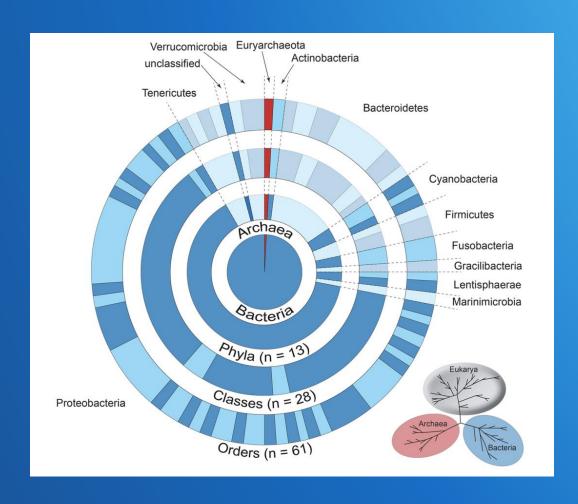

- Environmental Shotgun Sequencing (ESS)
  - Randomly sequences fragmented DNA directly from environmental sample
  - Cost prohibitive
  - Hasn't been widely used for eukaryotes
- DNA Metabarcoding
  - PCR Amplification of target genes on bulk DNA extracts + next-generation sequencing (NGS)
  - Potential PCR bias

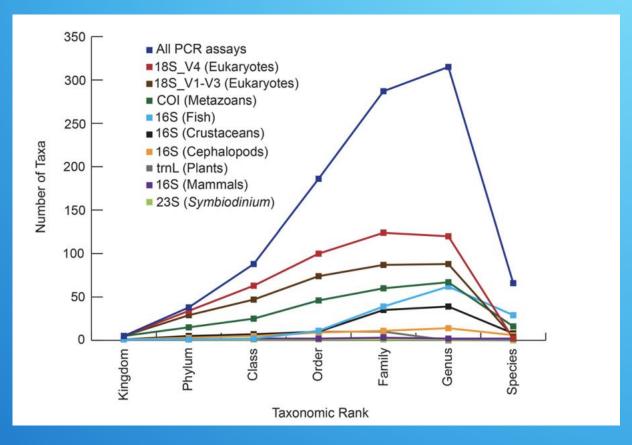
# eDNA Method Survey

- Focused on single tropical reef site (Coral Bay in west Australia)
  - Renowned for marine biodiversity
- Explored utility of eDNA methodologies to assess eukaryotic diversity on ecosystem level
- Validated extent to which metabarcoding can inform on marine biodiversity
- Determined capacity for eDNA analysis from seawater

### ESS from seawater

Analyzed over 23 million sequences from 9L of filtered seawater





# Tree of Life (ToL) Metabarcoding



| Kingdom   | Phylum              | Class | Order | Family | Genus | Species |
|-----------|---------------------|-------|-------|--------|-------|---------|
| Animalia  | Annelida            | 2     | 7     | 17     | 16    |         |
|           | Arthropoda          | 3     | 12    | 35     | 38    | 8       |
|           | Brachiopoda         | 1     |       |        |       |         |
|           | Bryozoa             | 1     | 1     | 3      |       |         |
|           | Chaetognatha        |       | 1     | 1      | 1     |         |
|           | Chordata            | 5     | 17    | 45     | 73    | 36      |
|           | Cnidaria            | 2     | 5     | 9      | 7     |         |
|           | Ctenophore          | 1     | 1     | 1      | 1     |         |
|           | Echinodermata       | 3     | 2     | 3      | 4     | 2       |
|           | Gastrotricha        |       | 1     | 1      |       |         |
|           | Mollusca            | 4     | 15    | 22     | 19    | 5       |
|           | Nematoda            | 1     | 1     | 1      |       |         |
|           | Nemertea            | 2     | 1     | 2      | 2     |         |
|           | Platyhelminthes     | 4     | 3     | 2      |       |         |
|           | Porifera            | 3     | 6     | 6      | 6     |         |
|           | Xenacoelomorpha     | 1     |       | 1      |       |         |
| Chromista | Bigyra              | 1     | 2     | 2      | 3     |         |
|           | Cercozoa            | 4     | 4     | 3      | 4     |         |
|           | Ciliophora          | 7     | 15    | 24     |       |         |
|           | Cryptophyta         | 3     | 3     | 6      | 6     |         |
|           | Haptophyta          | 4     | 5     | 5      | 4     | 1       |
|           | Heliozoa            | 1     | 1     | 1      | 1     |         |
|           | Myzozoa             | 3     | 10    | 25     | 36    | 2       |
|           | Ochrophyta          | 9     | 31    | 27     |       |         |
|           | Oomycota            | 1     | 3     | 2      |       |         |
|           | Radiozoa            | 2     | 2     | 1      | 1     |         |
| Fungi     | Ascomycota          | 3     | 4     | 3      |       |         |
|           | Basidiomycota       | 2     | 2     | 1      | 1     |         |
|           | Chytridiomycota     | 1     | 1     | 1      | 1     |         |
|           | Entomophthoromycota | 1     | 1     | 1      | 1     |         |
| Plantae   | Chlorophyta         | 7     | 10    | 11     | 17    |         |
|           | Glaucophyta         | 1     |       | 1      | 1     |         |
|           | Rhodophyta          | 1     | 5     | 7      | 3     |         |
|           | Streptophyta        | 1     | 11    | 11     | 2     |         |
| Protozoa  | Amoebozoa           |       | 1     | 1      | 1     |         |
|           | Apusozoa            |       |       | 2      | 3     |         |
|           | Choanozoa           | 2     | 1     | 2      | 3     |         |
|           | Picozoa             | 1     | 1     | 1      |       |         |
| Total     | 38                  | 88    | 186   | 287    | 255   | 54      |

# ToL metabarcoding cont'd





## ESS vs ToL metabarcoding

- ToL metabarcoding required less sequencing effort
- Greater percentage of metabarcoding sequences passed quality filtering (79% vs 14%)
- Metabarcoding gave a broader eDNA snapshot (prokaryotes + eukaryotes)

#### Conclusion

- For methodologies explored:
  - Required minimal equipment
  - Rapid procedure
  - Non-invasive
  - Can be conducted autonomously
- Metabarcoding
  - Proved to be superior to ESS
  - Viably assessed eukaryotic diversity from eDNA seawater samples
- eDNA analyses have great potential for future marine biomonitoring programs