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Ships of Opportunity (SOO)

• Large container and oil tanker 
merchant ships produce 
broadband noise

• The noise is due to the highly 
nonlinear interaction between 
turbulence from the ship hull and 
propeller

• This noise propagates the ocean 
waveguides and thus have 
information about the seabed

• The received SOO noise can be 
used to infer the seabed 
properties, closest point of 
approach (CPA) range and the 
ship speed



Available Dataset
• The data was recorded during SBCEX (SeaBed Characterization EXperiment) 2017 in the New England Mud-

Patch

• The Kalamata container ship had a CPA to the VLA of 3.29km and was travelling at 19.9kn
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FIG. 1. (Color online) Example SOO spectrograms. (a) Absolute and (b) normalized spectrograms of the Kalamata measured on channel 8 of the Marine Physical Laboratory of the Scripps 

Institution of Oceanography (MPL) VLA 2 during SBCEX 2017. (c) Absolute and (d) normalized synthetic spectrograms for a ship traveling 20.0 kn with a CPA of 3.3 km—similar to the 

Kalamata—using the mud-over-sand seabed type. The “normalized” spectrograms use the maximum pressure of the spectrogram as the reference instead of 1 μPa.



FIG. 2. Normalized histograms (shaded gray areas) and kernel density estimates (solid lines) of the random parameters selected for the training dataset. 

(a) Ocean depths over the 50 SSPs, (b) CPA ranges, (c) ship speeds, and (d) source depths over the 200 environments. The large peaks correspond to 

values that were selected for each environment. The dashed and dotted lines represent the kernel density estimates of the various parameters for the two 

validation sets.

Training Dataset

• 4 Seabed types (deep mud, 
mud-over-sand, sandy-silt and 
sand) were used

• 50 different sound speeds were 
used in combination with all 
seabed types making 200 ocean 
environments

• 9 ship speeds, 9 CPA ranges and 
two source depths were 
selected for each 200 
environments.

• 32400 samples for training 
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Results

FIG. 5. (Color online) Results from ten training instances of each network on validation dataset 1 containing 5400 samples and 

designed to test the ability of the networks to interpolate 

FIG. 6. (Color online) Results from ten training instances of each network on validation dataset 2 containing 8640 samples and 

designed to test the ability of the networks to extrapolate 



FIG. 7. (Color online) Results from ten instances of each network on the measured Kalamata spectrogram. Violin plots (a normalized probability distribution kernel with the median and quartile 

ranges over the ten training instances) of (a) the CPA range and (b) the speed predictions. (c) Stacked barchart showing the percentage of predictions for each seabed type. The input data 

type is listed on the horizontal axis. The three networks are distinguished by color in (a) and (b), similar to Figs. 5 and 6, and by numbers on top of the bars in (c) with 1 = Selkie3, 2 = Selkie5, 

and 3 = HalfAlexNet.
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• The learned weights of the linear layers of the network as the number of neurons increase, 
become smaller and overfit on the training dataset distribution

• The use of ship spectrogram in neural networks is a promising tool for ocean acoustics

• This preliminary study can be expanded by introducing more variables and random noise 
representative of the ambient or wind noise in the synthetic data


