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- Experiments run on United
Kingdom’s Disaster
Monitoring Constellation
(UK-DMC)

- Satellites implement a
downward facing antenna
and two upward facing
antennas for traditional GPS
operations



Im:.oming Coherent
Signal Corier | Correlation
arniel C/A Code
Local Tral Signal

Gold code waveform



B(1) & g I di

Im:.oming Coherent

Signal i Correlation
_arrel C/A Code

Local Tral Signal

C/A code = Coarse acquisition code

Data rate is 50 bps

Each data bit is modulated by 1023 “chips” per 1 ms
Gold code repeats 20 times per data bit

Gold code is unique to each satellite - 4  Repeat
Gold code is highly orthogonal, meaning its [
autocorrelation is designed to be nearly zero
everywhere except at delay =0
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Multiple trial values of 71 are used for
the unique satellite C/A code
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Each of the 71 values used are then
averaged, or integrated and divided by
# of trial values
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(Left to right) Signal found in March 12 dataset, for GPS satellite PRN 28, using noncoherent integration times of (a) 1 ms, (b) 10 ms, (c¢) 100 ms, and



Correlation Power

-
[=1]
f—

—
I
T
-
o
T

-
(K]
T
-
B

—_
L
T

|

o,
Cormelation Power

-
ta
T

"

-
s

-

=%

—

W ratt Wwﬂfu | ﬂw\%\ b A

| ﬂ V_ Ml

1 1 1 1 1
180 180 200 210 220 230 240
GPS C/A Code Phase (chips)

VY W

fn%
i ﬁl \m vﬁmwiﬂ Mﬁ w\&ﬂ VL(Q \

1 1 1 1 1 1
TS0 TEO 7T 780 790 200
GPS C/A Code Phase (chips)

Averaged correlations fit to a model for ocean scattering, known as the
Zavorotny/Voronovich ocean scattering model
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Averaged correlations fit to a model for ocean scattering, known as the
Zavorotny/Voronovich ocean scattering model
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Averaged correlations fit to a model for ocean scattering, known as the
Zavorotny/Voronovich ocean scattering model

Elfouhaily ocean wave spectrum used to generate sea condition inputs to
ocean scattering model



Date PRN Wind Wind Model
Estimate Estimate Estimated Wind

ECMWF QuikSCAT Speed

11“ May 2004 29 6.3 m/s 7.7 - 8.0 m/s 7.1 m/'s
26 5.3 m's 5.9 - 6.8 m/s 5.9 m/'s
24th May 2004 29 6.2 m/s 10,8 - 11.8 m/s 13.2 m/s
26 5.3 m/s 7.3 - 8.0 m/s 14.0 m/s
3" d June 2004 29 6.7 m/s 6.7 - 6.9 m/'s 14.1 m/s
26 6.5 m/s 6.4 - 6.6 m/s 9.7 m/s

Two GPS signals detected PRN 29 and PRN 26
“Ground truth” wind speed estimates generated using an existing ocean
monitoring satellite scatterometer, QuikSCAT
Secondary “ground truth” wind estimates generated using outputs from
the European Centre for Medium Range Weather Forecasting (ECMWF)



Date PREN Wind Wind Model
Estimate Estimate Estimated Wind

ECMWF QuikSCAT Speed

215t May 2004 29 6.3 m/s 7.7 - 8.0 m/s 7.1 m/s
26 5.3 m/s 59 - 6.8 m/s 8.9 m/s
24th May 2004 29 6.2 m/s 10,8 - 11.8 m/s 13.2 m/s
26 5.3 m/s 7.3 - B0 m/s 14.0 m/s
3" d June 2004 29 6.7 m/s 6.7 - 6.9 m/s 14.1 m/s
26 6.5 m/s 6.4 - 6.6 m/s 9.7 m/s

Two GPS signals detected PRN 29 and PRN 26
“Ground truth” wind speed estimates generated using an existing ocean
monitoring satellite scatterometer, QuikSCAT
Secondary “ground truth” wind estimates generated using outputs from
the European Centre for Medium Range Weather Forecasting (ECMWF)

7 Some agreement?

Inaccurate and
inconsistent



Conclusion

* GPS signals can be detected from reflections off the ocean surface
* Wind speed estimates can be made from these measurements

* Existing ocean monitoring satellite networks are probably best suited
for this application
* Why use GPS? There don’t seem to be many benefits

* Wind speed estimates are both inaccurate, inconsistent, and
compared against inexact times and locations
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