MAS.S61: Emerging Wireless & Mobile Technologies aka The "Extreme IoT" Class

Lecture 3: Fundamentals of Wireless Sensing & Localization (Con't) Fundamentals of Communications & Connectivity

<u>Lecturers</u>

Fadel Adib (<u>fadel@mit.edu</u>)

Reza Ghaffarivardavagh (<u>rezagh@mit.edu</u>)

Website: http://www.mit.edu/~fadel/courses/MAS.S61/index.html

Logistics & Norm Settings

- What to do now?
 - 1. Turn on your video (if your connection allows it)
 - 2. Mute your mic (unless you are the active speaker)
 - 3. Open the "Participant" List
 - Make sure your full name is shown
- If you have a question:
 - Use the chat feature to either write the question or to indicate your interest in asking the question
 - We will be monitoring the chat
 - Unmute -> ask question -> mute again
 - Once done asking/answering, please state "Done" to clearly mark it (helps translation/moderation)
 - Same procedure for answering questions
- This lecture will be recorded. It will only be accessible to people in the class

gs On Mute

Chat

Objectives of Today's Lecture

- 1. Learning the fundamentals of wireless (aka WiFi) sensing and its current industry trends
- 2. Learning the fundamentals of end-to-end wireless communications:
 - The physical, mathematical, engineering, and design fundamentals
 - "Why are these systems designed the way they are"
 - Case study of a new wireless communication system (underwater-toair comms)

Recap: Localization Approaches

- 1. Identify-based
- 2. RSSI-based (including fingerprinting)
- 3. Phase-based
- 4. AoA+Triangulation
- 5. ToF+Trilateration
- 6. DToA

Measuring Distances

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Capturing the pulse needs sub-nanosecond sampling

Why?

Would it also be a problem for acoustic or ultrasound-based methods?

Signal Samples

How do we measure ΔF ?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

let's talk about FFTs a bit — freq

Basics of Fourier Transform

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

$\Delta F \rightarrow Reflection Time \rightarrow Distance$

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

By adding another antenna and intersecting the ellipses, we can localize the person

Implementation

- Built FMCW front-end
 Connected to USRP
- Band: 5.5-7.2 GHz

- Transmit 70 μ W
 - 1000x lower power than WiFi Access Point

Ground Truth via VICON

- VICON uses an array of infrared cameras on the ceiling and operates in line-of sight
 - It achieves sub-cm-scale accuracy
- Our device is placed outside the room

Through-Wall Localization Accuracy 100 experiments: $\frac{1}{2}$ million location measurements

Centimeter-scale localization without requiring the user to carry a wireless device

.....

What are some problems with WiTrack?

How would you improve it?

Societal implications

Who is behind the wall?

How is the person standing?

Writing in the air Our Tracking Result

Device

Al Senses People Through Walls

Remotely Measuring Breathing and HR [CHI'15]

breath monitor

Problem: Localization accuracy is only 12cm and cannot capture vital signs

Why? How did we compute the resolution?

Solution: Use the phase of the wireless reflection

Why does phase allow us to get the distance at higher granularity?

Breath Monitoring using Wireless (Vital-Radio, 2015)

Let's zoom in on these signals

1.6 1.8	2

Baby Monitoring

Accuracy vs. Orientation

User is 4m from device, with different orientations

Breathing Rate

Recent Advances

- Emotion Recognition
- Sleeping Monitoring - Positions, staging, timing
- Daily activities & action recognition
- Patient Movement Monitoring: Alzheimer's, Parkinson's, Multiple Sclerosis
- Cardiovascular Monitoring (Micro-cardiac events)

Wi-Fi Becomes Sound **Backbone for Motion Sensing** and Smart-Home Monitoring

November/December 2019 • 📩

BroadbandCommunities

By Oleksiy Kravets | Cognitive Systems

Service providers should look to thei emerging motion-sensing and smart Network World

Cisco moves WiFi roaming technology to wireless broadband consortium

X Synced

Samsung AI Uses WiFi Signals to Generate Consistent In-Home User Localization Data

Gizmodo

Motion Sensing Wifi Is a Limited But Fascinating Peek at the Future of the Smart Home

Main Components of IoT Systems

So Far Lecture

Axis #3: High-level Task (Sensing, Actuation)

Underwater-to-Air Comm Applications

Submarine-Airplane Communication

Finding Missing Airplanes

Ocean Scientific Exploration

Underwater-to-Air Comm Applications

Why is it difficult?

Submarines Cannot Communicate with Airplanes

Airplane

Submarine

Direct Underwater-Air Communication is Infeasible

Direct Underwater-Air Communication is Infeasible

Wireless signals work well only in a single medium

Wireless Signals Work Well Only in a Single Medium

Acoustic -----------or SONAR

Wireless Signals Work Well Only in a Single Medium

Acoustic or SONAR

Use Acoustic signals? Reflects off the Surface Acoustic

Use Acoustic signals?

Reflects off
the Surface

Acoustic

Use Radio Signals?

Radio Signals Die in Water

What are today's approaches for solving this problem?

Approach #1: Relay Nodes [OCEANS'07, ICC'11, ICC'14, Sensors'14]

Approach #1: Relay Nodes [OCEANS'07, ICC'11, ICC'14, Sensors'14]

Antenna

Acoustic Transceiver

Approach #2: Surfacing [ICRA'06, MOBICOM'07, OCEANS'10, ICRA'12]

First Technology that Enables Wireless Communication Across the Water-Air Boundary

How does it work?

Translational Acoustic RF Communication (TARF)

Surface

Acoustic Underwater

RADAR

Translational Acoustic RF Communication

First technology that enables wireless communication across water-air interface

Theoretically achieves the best of both RF and acoustic signals in their respective media

Deals with practical challenges of communicating across water-air interface including natural surface waves

Implemented and tested in practical environments

Can We Sense the Surface Vibration Caused by the Transmitted Underwater Acoustic Signal?

Recording the Surface Vibration Experiment: Transmit Acoustic Signals at 100Hz

Water Surface Water Tank

Underwater Speaker

Recording the Surface Vibration Experiment: Transmit Acoustic Signals at 100Hz

How Can We Sense Microscale Vibration?

Idea: Use RADAR to measure the surface vibration

Underwater Speaker

How Can We Sense Microscale Vibration?

Idea: Use RADAR to measure the surface vibration

Problem: Measuring micrometer vibrations requires 100s of THz of bandwidth \rightarrow Impractical & Costly

Solution: Measure Changes in Displacement Using the Phase of Millimeter-Wave RADAR

Radio Wave

Solution: Measure Changes in Displacement Using the Phase of Millimeter-Wave RADAR **IOµm**

The phase of the milimeter-wave RADAR encodes transmitted information from underwater

wavelength

5mm

Natural Surface Waves Mask the Signal

On Calm Days, Ocean Surface Ripples (Capillary Waves) Have 2cm Peak-to-Peak Amplitude

> 1,000 Times Larger than Surface Vibration Caused by the Acoustic Signal

Natural Surface Waves Can Be Treated as Structured Interference and Filtered Out

Naturally occurring waves (e.g., ocean waves) are relatively slow

Acoustic signals are transmitted at higher frequencies

Frequency

→ 1 – 2Hz

► 100 - 200Hz

Natural Surface Waves Can Be Treated as Structured Interference and Filtered Out

Natural Surface Waves Can Be Treated as Structured Interference and Filtered Out

 $\widehat{}$

Dealing with Waves

$A_{ngle} = 360 \times \frac{displacement}{wavelength}$

Dealing with Waves

$_{Angle} = 360 \times \frac{displacement}{wavelength} \mod 360$

Dealing with Waves

$$A_{ngle} = 360 \times \frac{displacement}{wavelength}$$

mod 360

Wraps Around

By treating natural surface waves as structured interference, we are able to track and eliminate their impact on our signal

3.5

How Can We Decode?

Simple Modulation schemes

ON-OFF keying, FM0/Manchester, FSK

Decoding Information

100Hz Rx 100Hz

200Hz Rx 200Hz

Tx: 200Hz

Standard Modulation Schemes?

The wireless channel

Mathematics & Physical Interpretation Upconversion & Downconversion

Modulation & Demodulation

