38 The Frobenius Endomorphism

We keep our setup: p lies above p in \mathcal{O}_K. Picture:

Assume now that p is unramified, so we have our isomorphism

\[D_p \stackrel{\theta}{\to} \text{Gal}((\mathcal{O}_K/p)/\mathbb{F}_p). \]

Recall that θ sends $\sigma \in D_p$ to the map

\[\theta(\sigma): \alpha \pmod{p} \mapsto \sigma(\alpha) \pmod{p}. \]

Since σ is supposed to fix p, this is well-defined.

Again, we already know $\text{Gal}((\mathcal{O}_K/p)/\mathbb{F}_p)$, according to the string of isomorphisms

\[\text{Gal}((\mathcal{O}_K/p)/\mathbb{F}_p) \cong \text{Gal}(\mathbb{F}_p^f/\mathbb{F}_p) \cong \langle x \mapsto x^p \rangle \cong \mathbb{Z}_f. \]

If we take the generator of \mathbb{Z}_f, we get the so-called Frobenius element, which will turn out to be absurdly powerful.

Throughout this chapter K/\mathbb{Q} is a Galois extension with Galois group G, p is an unramified rational prime in K, and p is a prime above it.

38.1 Frobenius Endomorphisms

Let me draw the picture before I say what I’m going to do:

\[G = \text{Gal}(K/\mathbb{Q}) \quad \mathbb{Z}_f = \langle T \mid T^f = 1 \rangle \]

The point is to take the generator in \mathbb{Z}_f and see who it goes to in G. By the definition of θ, we distinguish this element as Frob_p. The following theorem makes this all precise:

342
Chapter 38. The Frobenius Endomorphism

Theorem 38.1.1 (The Frobenius Element)

Assume K/Q is Galois with Galois group G. Let p be a rational prime unramified in K, and \mathfrak{p} a prime above it. There is a unique element $\text{Frob}_p \in G$ with the property that

$$\text{Frob}_p(\alpha) \equiv \alpha^p \pmod{\mathfrak{p}}.$$

It is called the Frobenius endomorphism at p, and has order f.

Proof. First, observe:

Question 38.1.2. Show that such an element must be in D_p.

Now $\theta(\sigma)$ has the property if and only if it equals T, so everything is clear from the isomorphism θ. \(\square\)

The uniqueness part is pretty important: it allows us to show that a given σ is actually equal to the generator of $\text{Gal}(K/Q)$ by just observing that it satisfies the above functional equation. We'll use this more than once in the proof of quadratic reciprocity.

Example 38.1.3 (Frobenius Elements of the Gaussian Integers)

Let’s actually compute some Frobenius elements for $K = \mathbb{Q}(i)$, which has $\mathcal{O}_K = \mathbb{Z}[i]$. This is a Galois extension, with $G = \mathbb{Z}_2^\times$, corresponding to the identity and complex conjugation.

(a) Let $p \equiv 1 \pmod{4}$. Then $(p) = (a + bi)(a - bi)$ in $\mathbb{Z}[i]$; set $\mathfrak{p} = a + bi$. so $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{F}_p$. So in this case the Galois group $\text{Gal}((\mathcal{O}_K/\mathfrak{p})/\mathbb{F}_p)$ is trivial, and as predicted we have D_p trivial as well. Thus $\text{Frob}_p = \text{id}$.

(b) Now let $p \equiv 3 \pmod{4}$, and let $\mathfrak{p} = (p)$. Then $\mathcal{O}_K/\mathfrak{p} \cong \mathbb{F}_p[i] \cong \mathbb{F}_{p^2}$, and the Galois group has order 2; accordingly, D_p has order 2, and its generator is Frob_p.

So $\sigma = \text{Frob}_p$ has order 2, and it must be complex conjugation. We can see this directly as well: σ is the unique element such that

$$(a + bi)^p \equiv \sigma(a + bi) \pmod{\mathfrak{p}}$$

in $\mathbb{Z}[i]$. For $a = 0$ and $b = 1$, we get $\sigma(i) \equiv i^p \equiv -i \pmod{\mathfrak{p}}$, and so σ must be complex conjugation.

38.2 Conjugacy Classes

Now suppose \mathfrak{p}_1 and \mathfrak{p}_2 are two primes above an unramified rational prime p. Then we can define $\text{Frob}_{\mathfrak{p}_1}$ and $\text{Frob}_{\mathfrak{p}_2}$. Let $\sigma \in \text{Gal}(K/Q)$ be such that

$$\sigma(\mathfrak{p}_1) = \mathfrak{p}_2$$

possible since the Galois group acts transitively. We claim that

$$\text{Frob}_{\mathfrak{p}_2} = \sigma \circ \text{Frob}_{\mathfrak{p}_1} \circ \sigma^{-1}.$$

Note that this is an equation in G.

Question 38.2.1. Prove this.
More generally, for a given unramified rational prime \(p \), we obtain the following:

Theorem 38.2.2 (Conjugacy Classes in Galois Groups)

The set

\[
\{ \text{Frob}_p \mid p \text{ above } p \}
\]

is one of the conjugacy classes of \(G \).

Proof. We’ve used the fact that \(G = \text{Gal}(K/\mathbb{Q}) \) is transitive to show that \(\text{Frob}_{p_1} \) and \(\text{Frob}_{p_2} \) are conjugate if they both lie above \(p \); hence it’s contained in some conjugacy class. So it remains to check that for any \(p, \sigma \), we have \(\sigma \circ \text{Frob}_p \circ \sigma^{-1} = \text{Frob}_{p'} \) for some \(p' \). For this, just take \(p' = \sigma p \). Hence the set is indeed a conjugacy class. \(\square \)

In summary,

\(\text{Frob}_p \) is determined up to conjugation by the prime \(p \) from which \(p \) arises.

So even the Gothic letters look scary, the content of \(\text{Frob}_p \) really just comes from the more friendly-looking rational prime \(p \).

Example 38.2.3 (Frobenius Elements in \(\mathbb{Q}(\sqrt[3]{2}, \omega) \))

With those remarks, here is a more involved example of a Frobenius map. Let \(K = \mathbb{Q}(\sqrt[3]{2}, \omega) \) be the splitting field of

\[
t^3 - 2 = (t - \sqrt[3]{2})(t - \omega \sqrt[3]{2})(t - \omega^2 \sqrt[3]{2}).
\]

We’ve seen in an earlier example that

\[
\mathcal{O}_K \cong \mathbb{Z}[\varepsilon] \quad \text{where} \quad \varepsilon \text{ is a root of } t^6 + 3t^5 - 5t^3 + 3t + 1.
\]

We factor 5 as the prime

\[
(5) = (5, \varepsilon^2 + \varepsilon + 2)(5, \varepsilon^2 + 3\varepsilon + 3)(5, \varepsilon^2 + 4\varepsilon + 1).
\]

Take the first one, \(\mathfrak{P} = (5, \varepsilon^2 + \varepsilon + 2) \). It follows that

\[
\mathcal{O}_K/\mathfrak{P} \cong \mathbb{F}_5[\varepsilon]/(\varepsilon^2 + \varepsilon + 2).
\]

As this field has \(5^2 = 25 \) elements, the Galois group of this guy over \(\mathbb{F}_5 \) is order 2. Thus \(D_p \cong \mathbb{Z}_2^k \) as well and \(\sigma = \text{Frob}_\mathfrak{P} \) will have order 2.

Note that \(\text{Gal}(K/\mathbb{Q}) \cong S_3 \) is just the 6! = 6 permutations of the three roots \(\{ \sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^2 \sqrt[3]{2} \} \). Exactly three of these have order 2, and they correspond to the three prime ideals of 5; each of the three Frobenius elements from 5 correspond to fixing one of the roots and swapping the other two. In still other words, the conjugacy class associated to 5 is the cycle type \((\bullet)(\bullet)\) in \(S_3 \).

38.3 Cheboratev Density Theorem

This naturally begs the question: can we represent every conjugacy class in this way? In other words, is every element of \(G \) equal to \(\text{Frob}_p \) for some \(p \)?
Miraculously, not only is the answer “yes”, but in fact it does so in the nicest way possible: the Frob\(_p\)’s are “equally distributed” when we pick a random \(p\).

Theorem 38.3.1 (Cheboratev Density Theorem over \(\mathbb{Q}\))

Let \(C\) be a conjugacy class of \(G = \text{Gal}(K/\mathbb{Q})\). The density of (unramified) primes \(p\) such that \(\{\text{Frob}_p \mid p \text{ above } p\} = C\) is exactly \(|C| / |G|\). In particular, for any \(\sigma \in G\) there are infinitely many rational primes \(p\) with \(p \text{ above } p\) so that \(\text{Frob}_p = \sigma\).

![Figure 38.1: From a pretty excellent movie...](image)

By density, I mean that the proportion of primes \(p \leq x\) that work approaches \(|C| / |G|\) as \(x \to \infty\). Note that I’m throwing out the primes that ramify in \(K\). This is no issue, since the only primes that ramify are those dividing \(\Delta_K\), and we can throw those out. In other words, if I pick a random prime \(p\) and look at the resulting conjugacy class, it’s a lot like throwing a dart at \(G\): the probability of hitting any conjugacy class depends just on the size of the class.

![Diagram](image)

Remark 38.3.2. Happily, this theorem also works if we replace \(K/\mathbb{Q}\) with any Galois extension \(K/F\); in that case we replace “\(p\) over \(p\)” with “\(\mathfrak{p}\) over \(p\)”.

In that case, we use \(N(p) \leq x\) rather than \(p \leq x\) as the way to define density.

38.4 Example: Frobenius Elements of Cyclotomic Fields

Let \(q\) be a prime, and consider \(L = \mathbb{Q}(\zeta_q)\), with \(q\) a primitive \(q\)th root of unity. You should recall from various starred problems that
• $\Delta_L = \pm q^{n-2}$,
• $\mathcal{O}_L = \mathbb{Z}[\zeta_q]$, and
• The map $\sigma_n : \zeta_q \mapsto \zeta_q^n$ is an automorphism of L whenever $\gcd(n, q) = 1$, and depends only on $n \pmod{q}$. In other words, the automorphisms of L/\mathbb{Q} just shuffle around the qth roots of unity. In fact the Galois group consists exactly of the elements $\{\sigma_n\}$, namely

$$\text{Gal}(L/\mathbb{Q}) = \{\sigma_n \mid n \not\equiv 0 \pmod{q}\}.$$

As a group,

$$\text{Gal}(L/\mathbb{Q}) = \mathbb{Z}_q^\times \cong \mathbb{Z}_{q-1}.$$

This is surprisingly nice, because **elements of Gal(L/\mathbb{Q}) look a lot like Frobenius endomorphism already**. So we shouldn’t be surprised if the Frobenius endomorphisms of Gal(L/\mathbb{Q}) have a concrete description.

Let p be a rational prime other than q, so p doesn’t ramify (since $p \nmid \Delta_L$). Then p is above it, and there is a Frobenius element Frob_p uniquely determined by the property

$$\text{Frob}_p(\alpha) = \alpha^p \pmod{p}.$$

Lemma 38.4.1 (Cyclotomic Frobenius Elements)

In the cyclotomic setting,

$$\text{Frob}_p = \sigma_p.$$

Proof. We know $\text{Frob}_p(\alpha) \equiv \alpha^p \pmod{p}$ by definition, but also that $\text{Frob}_p = \sigma_n$ for some n. We want $n = p$, since $\sigma_n(\zeta_q)^n = \zeta_q^n$ by definition it would be very weird if this wasn’t true!

Given $\zeta_q^n \equiv \zeta_q^p \pmod{p}$, it suffices to prove that the qth roots of unity are distinct mod p. Look at the polynomial $F(x) = x^q - 1$ in $\mathbb{Z}[\zeta_p]/p \cong F_p$. Its derivative is

$$F'(x) = qx^{q-1} \not\equiv 0 \pmod{p}$$

(since F_p has characteristic $p \nmid q$). The only root of F' is zero, hence F has no double roots mod p.

\[\square\]

38.5 Frobenius Elements Behave Well With Restriction

Consider the following setup, where L/\mathbb{Q} and K/\mathbb{Q} are both Galois extensions:

$$\begin{align*}
L & \supset \mathfrak{p} \quad \text{--------} \quad \text{Frob}_p \in \text{Gal}(L/\mathbb{Q}) \\
K & \supset \mathfrak{p} \quad \text{--------} \quad \text{Frob}_p \in \text{Gal}(K/\mathbb{Q}) \\
\mathbb{Q} & \supset (p)
\end{align*}$$
Here \(p \) is above \((p) \) and \(\mathfrak{p} \) is above \(p \). We may define
\[
\text{Frob}_p : K \to K \quad \text{and} \quad \text{Frob}_{\mathfrak{p}} : L \to L
\]
and want to know how these are related.

Theorem 38.5.1 (Restrictions of Frobenius Elements)
Assume \(L/\mathbb{Q} \) and \(K/\mathbb{Q} \) are both Galois. The restriction of \(\text{Frob}_{\mathfrak{p}} \) to \(K \) is \(\text{Frob}_p \), id est for every \(\alpha \in K \),
\[
\text{Frob}_p(\alpha) = \text{Frob}_{\mathfrak{p}}(\alpha).
\]

Proof. We know
\[
\text{Frob}_{\mathfrak{p}}(\alpha) \equiv \alpha^p \pmod{\mathfrak{p}} \quad \forall \alpha \in \mathcal{O}_L
\]
from the definition.

Question 38.5.2. Deduce that
\[
\text{Frob}_{\mathfrak{p}}(\alpha) \equiv \alpha^p \pmod{p} \quad \forall \alpha \in \mathcal{O}_K.
\]
(This is weaker than the previous statement in two ways!)
Thus \(\text{Frob}_{\mathfrak{p}} \) restricted to \(\mathcal{O}_K \) satisfies the characterizing property of \(\text{Frob}_p \).

In short, the point of this section is that

Frobenius elements upstairs restrict to Frobenius elements downstairs.

38.6 Application: Quadratic Reciprocity

We now aim to prove the following result from elementary number theory.

Theorem 38.6.1 (Quadratic Reciprocity)
Let \(p \) and \(q \) be distinct odd primes. Then
\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^\frac{p-1}{2} \cdot \frac{q-1}{2}.
\]

Step 1: Setup
For this proof, we first define
\[
L = \mathbb{Q}(\zeta_q)
\]
where \(\zeta_q \) is a primitive \(q \)th root of unity. Then \(L/\mathbb{Q} \) is Galois, with Galois group \(G \).

Question 38.6.2. Show that \(G \) has a unique subgroup \(H \) of order two.

In fact, we can describe it exactly: viewing \(G \cong \mathbb{Z}_q^* \), we have
\[
H = \{ \sigma_n \mid n \text{ quadratic residue mod } q \}.
\]
By the Fundamental Theorem of Galois Theory, there ought to be a degree 2 extension of \(\mathbb{Q} \) inside \(\mathbb{Q}(\zeta_q) \) (that is, a quadratic field). Call it \(\mathbb{Q}(\sqrt{q^*}) \), for \(q^* \) squarefree:

\[
L = \mathbb{Q}(\zeta_q) \xrightarrow{\varphi} \{1\} \\
\xrightarrow{\varphi^{-1}} \\
K = \mathbb{Q}(\sqrt{q^*}) \xrightarrow{\psi} H \\
\xrightarrow{\psi^{-2}} \\
\mathbb{Q} \xrightarrow{G}
\]

Exercise 38.6.3. Note that if a rational prime \(\ell \) ramifies in \(K \), then it ramifies in \(L \).

Use this to show that

\[
q^* = \pm q \text{ and } q^* \equiv 1 \pmod{4}.
\]

Together these determine the value of \(q^* \).

Step 2: Reformulation

Now we are going to prove:

Theorem 38.6.4 (Quadratic Reciprocity, Equivalent Formulation)

For distinct odd primes \(p, q \) we have

\[
\left(\frac{p}{q} \right) = \left(\frac{q^*}{p} \right).
\]

Exercise 38.6.5. Using the fact that \(\left(\frac{1}{p} \right) = (-1)^{\frac{p-1}{2}} \), show that this is equivalent to quadratic reciprocity as we know it.

We look at the rational prime \(p \) in \(\mathbb{Z} \). Either it splits into two in \(K \) or is inert; either way let \(\mathfrak{p} \) be a prime factor in the resulting decomposition (so \(\mathfrak{p} \) is either \(p \cdot \mathcal{O}_K \) in the inert case, or one of the primes in the split case). Then let \(\mathfrak{P} \) be above \(\mathfrak{p} \). It could possibly also split in \(K \): the picture looks like

\[
\mathcal{O}_L = \mathbb{Z}[\zeta_q] \supset \mathfrak{P} \quad \cdots \quad \mathbb{Z}[\zeta_{p^2}] / \mathfrak{P} \cong \mathbb{F}_{p^2} \\
\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{q^*}}{2}] \supset \mathfrak{p} \quad \cdots \quad \mathbb{F}_p \text{ or } \mathbb{F}_{p^2} \\
\mathbb{Z} \supset (p) \quad \cdots \quad \mathbb{F}_p
\]

Question 38.6.6. Why is \(p \) not ramified in either \(K \) or \(L \)?

\(^1\) Actually, it is true in general that given a tower \(L/K/\mathbb{Q} \), we have \(\Delta_K \) divides \(\Delta_L \).
Step 3: Introducing the Frobenius

Now, we take the Frobenius $\sigma_p = \text{Frob}_p \in \text{Gal}(L/\mathbb{Q})$.

We claim that $\text{Frob}_p \in H \iff p$ splits in K.

To see this, note that Frob_p is in H if and only if it acts as the identity on K. But Frob_p restricted to K is Frob_p! So

$$\text{Frob}_p \in H \iff \text{Frob}_p = \text{id}_K.$$

So we simply note that Frob_p has order 1 if p splits (and p has inertial degree 1) and order 2 if p is inert (hence $p = p \cdot O_K$ has inertial degree 2). After all, Frob_p corresponds to the generator of

$$\text{Gal}((O_K/p)/\mathbb{F}_p) \cong \text{Gal}(\mathbb{F}_p/p) \text{ or } \text{Gal}(\mathbb{F}_p^2/p)$$

according to whether p splits or is inert, respectively.

Finishing Up

We already know by Lemma 38.4.1 that $\text{Frob}_p = \sigma_p \in H$ if and only if p is a quadratic residue. On the other hand,

Exercise 38.6.7. Show that p splits in $O_K = \mathbb{Z}[\frac{1}{2}(1 + \sqrt{q^*})]$ if and only if $\left(\frac{q^*}{p}\right) = 1$.
(Use the factoring algorithm. You need the fact that $p \neq 2$ here.)

In other words

$$\left(\frac{p}{q}\right) = 1 \iff \sigma_p \in H \iff p \text{ splits in } \mathbb{Z}\left[\frac{1}{2}(1 + \sqrt{q^*})\right] \iff \left(\frac{q^*}{p}\right) = 1.$$

This completes the proof.

38.7 Frobenius Elements Control Factorization

Prototypical example for this section: Frob_p controlled the splitting of p in the proof of quadratic reciprocity; the same holds in general.

In the proof of quadratic reciprocity, we used the fact that Frobenius elements behaved well with restriction in order to relate the splitting of p with properties of Frob_p.

In fact, there is a much stronger statement for any intermediate field $\mathbb{Q} \subseteq E \subseteq K$ which works even if E/\mathbb{Q} is not Galois. It relies on the notion of a *factorization pattern*. Here is how it goes.

Set $n = [E : \mathbb{Q}]$, and let p be a rational prime unramified in K. Then p can be broken in E as

$$p \cdot O_E = p_1 p_2 \cdots p_g$$

with inertial degrees f_1, \ldots, f_g; (these inertial degrees might be different since E/\mathbb{Q} isn’t Galois). The numbers $f_1 + \cdots + f_g = n$ form a partition of the number n. For example, in the quadratic reciprocity proof we had $n = 2$, with possible partitions $1 + 1$ (if p split) and 2 (if p was inert). We call this the *factorization pattern* of p in E.

349
Next, we introduce a Frobenius Frob_P above (p), all the way in K; this is an element of $G = \text{Gal}(K/\mathbb{Q})$. Then let H be the group corresponding to the field E. Diagram:

\[
\begin{array}{cccc}
K & \xrightarrow{\text{Frob}_P} & \{1\} & \\
E & \xleftarrow{\text{Frob}_P} & H & \\
\cap & & \cap & \\
\cap & & \cap & \\
\mathbb{Q} & \xleftarrow{\text{Frob}_P} & G & (p)
\end{array}
\]

Then Frob_P induces a permutation of the n left cosets gH by left multiplication (after all, Frob_P is an element of G too!). Just as with any permutation, we may look at the resulting cycle decomposition, which has a natural “cycle structure”: a partition of n.

\[
\begin{array}{cccc}
g &=& \text{Frob}_P \\
g_1 H & \times g & & g_4 H \\
g_2 H & \times g & & g_5 H \\
g_3 H & \times g & & g_6 H \\
3 & & & 1
\end{array}
\]

\[
n = 7 = 3 + 4
\]

The theorem is that these coincide:

Theorem 38.7.1 (Frobenius Elements Control Decomposition)

Let $\mathbb{Q} \subseteq E \subseteq K$ an extension of number fields and assume K/\mathbb{Q} is Galois (though E/\mathbb{Q} need not be). Pick an unramified rational prime p; let $G = \text{Gal}(K/\mathbb{Q})$ and H the corresponding intermediate subgroup. Finally, let \mathfrak{P} be a prime above p in K.

Then the factorization pattern of p in E is given by the cycle structure of $\text{Frob}_\mathfrak{P}$ acting on the left cosets of H.

Often, we take $E = K$, in which case this is just asserting that the decomposition of the prime p is controlled by a Frobenius element over it.

An important special case is when $E = \mathbb{Q}(\alpha)$, because as we will see it is let us determine how the minimal polynomial of α factors modulo p. To motivate this, let’s go back a few chapters and think about the Factoring Algorithm.

Let α be an algebraic integer and f its minimal polynomial (of degree n). Set $E = \mathbb{Q}(\alpha)$ (which has degree n over \mathbb{Q}). Suppose we’re lucky enough that $\mathcal{O}_E = \mathbb{Z}[\alpha]$; i.e. that E is monogenic. Then we know by the Factoring Algorithm, to factor any p in E, all we have to do is factor f modulo p, since if $f = f_1^{e_1} \cdots f_g^{e_g} \pmod{p}$ then we have

\[
(p) = \prod_i p_i = \prod_i (f_i(\alpha), p)^{e_i}
\]
This gives us complete information about the ramification indices and inertial degrees; the e_i are the ramification indices, and $\deg f_i$ are the inertial degrees (since if $O_E/p_i \cong \mathbb{F}_p[X]/(f_i(X)))$.

In particular, if p is unramified then all the e_i are equal to 1, and we get

$$n = \deg f = \deg f_1 + \deg f_2 + \cdots + \deg f_g.$$

Once again we have a partition of n; we call this the factorization pattern of f modulo p. So, to see the factorization pattern of an unramified p in O_E, we just have to know the factorization pattern of the f (mod p).

Turning this on its head, if we want to know the factorization pattern of f (mod p), we just need to know how p decomposes. And it turns out these coincide even without the assumption that E is monogenic.

Theorem 38.7.2 (Frobenius Controls Polynomial Factorization)

Let α be an algebraic integer with minimal polynomial f, and let $E = \mathbb{Q}(\alpha)$. Then for any prime p unramified in the splitting field K of f, the following coincide:

(i) The factorization pattern of p in E.

(ii) The factorization pattern of f (mod p).

(iii) The cycle structure associated to the action of $\text{Frob}_P \in \text{Gal}(K/\mathbb{Q})$ on the roots of f, where \mathfrak{P} is above p in K.

Example 38.7.3 (Factoring $x^3 - 2$ (mod 5))

Let $\alpha = \sqrt[3]{2}$ and $f = x^3 - 2$, so $E = \mathbb{Q}(\sqrt[3]{2})$. Set $p = 5$ and let finally, let $K = \mathbb{Q}(\sqrt[3]{2}, \omega)$ be the splitting field. Setup:

$$
\begin{align*}
K &= \mathbb{Q}(\sqrt[3]{2}, \omega) \\
\mathfrak{P} &= x^3 - 2 = (x - \sqrt[3]{2})(x - \sqrt[3]{2} \omega)(x - \sqrt[3]{2} \omega^2)
\end{align*}
$$

The three claimed objects now all have shape $2 + 1$:

(i) By the Factoring Algorithm, we have $(5) = (5, \sqrt[3]{2} - 3)(5, 9 + 3\sqrt[3]{2} + \sqrt[3]{4})$.

(ii) We have $x^3 - 2 \equiv (x - 3)(x^2 + 3x + 9)$ (mod 5).

(iii) We saw before that $\text{Frob}_\mathfrak{P} = (\bullet)(\bullet \bullet)$.

Sketch of Proof. Letting $n = \deg f$. Let H be the subgroup of $G = \text{Gal}(K/\mathbb{Q})$ corre-
corresponding to E, so $[G : E] = n$. Pictorially, we have

We claim that (i), (ii), (iii) are all equivalent to

(iv) The pattern of the action of Frob on the G/H.

In other words we claim the cosets correspond to the n roots of f in K. Indeed H is just the set of $\tau \in G$ such that $\tau(\alpha) = \alpha$, so there’s a bijection between the roots and the cosets G/H by $\tau H \mapsto \tau(\alpha)$. Think of it this way: if $G = S_n$, and $H = \{\tau : \tau(1) = 1\}$, then G/H has order $n!/(n-1)! = n$ and corresponds to the elements $\{1, \ldots, n\}$. So there is a natural bijection from (iii) to (iv).

The fact that (i) is in bijection to (iv) was the previous theorem, Theorem 38.7.1. The correspondence (i) \iff (ii) is a fact of Galois theory, so we omit the proof here. \qed

All this can be done in general with \mathbb{Q} replaced by F; for example, in [Le02].

38.8 Example Application: IMO 2003 Problem 6

As an example of the power we now have at our disposal, let’s prove:

Problem 6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p - p$ is not divisible by q.

We will show, much more strongly, that there exist infinitely many primes q such that $X^p - p$ is irreducible.

Solution. Okay! First, we draw the tower of fields

$$\mathbb{Q} \subseteq \mathbb{Q}^{\sqrt[p]{p}} \subseteq K$$

where K is the splitting field of $f(x) = x^p - p$. Let $E = \mathbb{Q}^{\sqrt[p]{p}}$ for brevity and note it has degree $[E : \mathbb{Q}] = p$. Let $G = \text{Gal}(K/\mathbb{Q})$.

Question 38.8.1. Show that p divides the order of G. (Look at E.)
Hence by Cauchy’s Theorem (Problem 13A*, which is a purely group-theoretic fact) we can find a \(\sigma \in G \) of order \(p \). By Cheboratev, there exists infinitely many rational (unramified) primes \(q \neq p \) and primes \(\mathfrak{Q} \subseteq \mathcal{O}_K \) above \(q \) such that \(\text{Frob}_\mathfrak{Q} = \sigma \). (Yes, that’s an uppercase Gothic \(Q \). Sorry.)

We claim that all these \(q \) work.

By Theorem 38.7.2, the factorization of \(f \) (mod \(q \)) is controlled by the action of \(\sigma = \text{Frob}_\mathfrak{Q} \) on the roots of \(f \). But \(\sigma \) has prime order \(p \) in \(G \)! So all the lengths in the cycle structure have to divide \(p \). Thus the possible factorization patterns of \(f \) are

\[
p = \underbrace{1 + 1 + \cdots + 1}_{p \text{ times}} \quad \text{or} \quad p = p.
\]

So we just need to rule out the \(p = 1 + \cdots + 1 \) case now: this only happens if \(f \) breaks into linear factors mod \(q \). Intuitively this edge case seems highly unlikely (are we really so unlucky that \(f \) factors into linear factors when we want it to be irreducible?). And indeed this is easy to see: this means that \(\sigma \) fixes all of the roots of \(f \) in \(f \), but that means \(\sigma \) fixes \(K \), and hence is the identity of \(G \), contradiction.

\[\square\]

Remark 38.8.2. In fact \(K = \mathbb{Q}(\sqrt[p]{p}, \zeta_p) \), and \(|G| = p(p - 1) \). With a little more group theory, we can show that in fact the density of primes \(q \) that work is \(\frac{1}{p} \).

38.9 Problems to Think About

Problem 38A. Show that for an odd prime \(p \),

\[
\left(\frac{2}{p} \right) = (-1)^{\frac{p - 1}{2}}.
\]

Problem 38B. Let \(f \) be a nonconstant polynomial with integer coefficients. Suppose \(f \) (mod \(p \)) splits completely into linear factors for all sufficiently large primes \(p \). Show that \(f \) splits completely into linear factors.

Problem 38C† (Dirichlet’s Theorem on Arithmetic Progressions). Let \(a \) and \(m \) be relatively prime positive integers. Show that the density of primes \(p \equiv a \) (mod \(m \)) is exactly \(\frac{1}{\phi(m)} \).

Problem 38D. Let \(n \) be an odd integer which is not a prime power. Show that the \(n \)th cyclotomic polynomial is not irreducible modulo any rational prime.