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ABSTRACT
This paper studies fundamental analytic properties of generating series for nonlinear control

systems, and of the operators they define. It then applies the results obtained to the extension
of facts, which relate realizability and algebraic input/output equations, to local realizability
and analytic equations.

1 Introduction

State space models tend to play a central role in nonlinear control theory. However, other de-
scriptions involving directly the input/output behavior, such as Volterra series, are also appro-
priate and often useful. Indeed, these are closer to the transfer functions and transfer matrices
that appear in the development of linear control theory; there, i/o representations were used
first in the analysis of linear systems and state-space approaches were only later introduced.
In particular, generating series have been a popular choice for representing input/output op-
erators, starting with the work of Fliess in the late 1970s (see for instance the references [2],
[4]).

This paper has two main goals. First, we study a number of properties of generating series
and the operators they define. While many of these properties have long been known and are
used often by previous authors, it is hard to find complete proofs of them in the literature. In
particular, the results proved here provide a mathematical foundation for many of the properties
cited in our paper [15]. A second objective of this paper is to relate the rich theory that exists for
differential-geometric nonlinear realization (for which see for instance [6], [8], [9], and [13]) to the
results in [15]. The purely algebraic material in that reference shows the equivalence between
on the one hand the existence of algebraic differential equations relating inputs and outputs,
and on the other hand realizability by rational systems. In order to relate to the differential
geometric framework, one must generalize [15] to analytic realizations and i/o equations. This
is done here, using analogous ideas but quite different mathematical techniques. There are
major differences with the algebraic case not only in the tools used but in the fact that, in
contrast to that case, it is generally not true that every state space system gives rise to a global
i/o equation, even under analyticity assumptions; only the converse, going from i/o equations
to realizability, holds.

Outline of this work: We start by giving the basic terminology regarding series and con-
vergence. Then for operators defined by the evaluation of these series, we study smoothness
properties of their output functions, including the fact, needed in later results, that analytic
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inputs give rise to analytic outputs. Later, our results from [15] relating algebraic i/o equations
to internal realizability are complemented here with a result relating analytic i/o equations
and local internal realizability. To do this, we first construct a “meromorphic” realization by
studying the properties of meromorphically finitely generated field extensions, and we impose
similar properties on the observation fields already introduced in the former paper. Finally,
by a perturbation approach, together with the Lie rank condition for realizability (cf. [3] and
[12]), we show that around each point there is local analytic realization. (This could also be
done by using the rank condition studied in [7].) In the last section, we compare the results of
this paper with those in [15].

2 Analytic Aspects of Generating Series

We develop in this section the basic facts about operators defined by generating series.

2.1 Definitions

We call a power series in the noncommutative variables η0, η1, . . . , ηm, where m is a fixed integer,
a formal power series

c =
∑
ι∈I∗
〈c, ηι〉ηι, (1)

where we use the notation ηι = ηi1ηi2 · · · ηil for each multiindex ι = i1i2 · · · il. The coefficients
〈c, ηι〉 are assumed to be real. The set of all power series (over a fixed but arbitrary alphabet
P) forms a vector space with “+” defined coefficientwise.

We shall say that the power series c is convergent if there exist K, M ≥ 0 such that

|〈c, ηι〉| ≤ KMkk! for each ι ∈ Ik, and each k ≥ 0. (2)

For any fixed real number T > 0, let UT be the set of all essentially bounded measurable
functions

u : [0, T ]→ IRm

endowed with the L1 norm. We write ‖u‖1 for max{‖ui‖1 :, 1 ≤ i ≤ m} and ‖u‖∞ for
max{‖ui‖∞ :, 1 ≤ i ≤ m} where ui is the i-th component of u, and ‖ui‖1 is the L1 norm of
ui, ‖ui‖∞ is the L∞ norm of ui. For each u ∈ UT and each ι ∈ I l, we define inductively the
functions

Vι = Vι[u] ∈ C[0, T ]

by

Vi1···il+1
[u](t) =

∫ t

0
ui1(s)Vi2···il+1

(s) ds, (3)

where Vφ = 1 and ui is the i-th coordinate of u(t) for i = 1, 2, . . . , m and u0(t) ≡ 1.
For each formal power series c in η

0
, η

1
, . . . , ηm , we define a formal operator on UT in the

following way:
Fc[u](t) =

∑
〈c, ηι〉Vι[u](t). (4)

It has been known that for any T < (Mm + M)−1, the series (4) converges uniformly and
absolutely for all t ∈ [0, T ] and all those u ∈ UT such that ‖u‖∞ ≤ 1 (cf [6]). In fact, for any
L1 input u, there exists some δ > 0 such that (4) converges uniformly and absolutely on [0, δ).
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For each T > 0, we define

VT = {u ∈ UT : ‖u‖∞ < 1}, (5)

and we shall say that T is admissible for c if T < (M(m+1))−1 for some M such that (2) holds.
Then Fc is always well defined on VT if T is admissible for c. We shall call Fc an input/output
operator defined on VT if T is admissible for c. Hence, every convergent power series defines
an i/o map, or more precisely, one such map on each VT for which T is admissible. (We often
identify any two such operators, when there is no danger of confusion, dealing in effect with
“germs” of such operators.)

To each monomial z = ηκ, we associate a “shift” operator c 7→ z−1c defined by

〈z−1c, ηι〉 = 〈c, zηι〉 for ηι ∈ P ∗.

It has been shown in [11] that if c is a convergent series and T is admissible for c, then T is
admissible for z−1c for any z ∈ P ∗.

2.2 Properties of I/O Operators

Assume c is a convergent series and pick up a T admissible for c. We shall first show that
Fc : VT → C[0, T ] is a continuous operator with respect to the L1 norm in VT and the C0 norm
in C[0, T ]. For this purpose, we need to establish the following lemma:

Lemma 2.1 For every multiindex ι ∈ I∗, the map

Vι : VT → C[0, T ], u 7→ Vι[u]

is continuous with respect to the L1 norm in VT and the C0 norm in C[0, T ].

Proof. We use induction on the length of ι. For ι = i ∈ I1, we have

Vι[u](t) =
∫ t

0
ui(s) ds.

It follows that for any u, v ∈ VT ,

‖Vι[u]− Vι[v]‖∞ ≤ ‖u− v‖1,

where “‖ · ‖∞” denotes the C0 norm in [0, T ]. Thus Vι is continuous for any ι ∈ I1.
Suppose the conclusion is true for all ι with |ι| ≤ n. Then for κ = iι ∈ In+1 and u, v ∈ UT ,

we have

|Vκ[v](t)− Vκ[u](t)| =
∣∣∣∣∫ t

0
vi(s)Vι[v](s) ds −

∫ t

0
ui(s)Vι[u](s) ds

∣∣∣∣
≤
∣∣∣∣∫ t

0
(vi(s)− ui(s))Vι[v](s) ds

∣∣∣∣ +
∣∣∣∣∫ t

0
ui(s)(Vι[v](s)− Vι[u](s)) ds

∣∣∣∣
≤ ‖u− v‖1 ‖Vι[v]‖∞ + ‖u‖1 ‖Vι[v]− Vι[u]‖∞.

Notice Vι is continuous, thus for any ε > 0 given, there exists some τ > 0 such that

‖Vι[v]‖∞ ≤ ‖Vι[u]‖∞ + 1 and ‖u‖1 (‖Vι[v]− Vι[u]‖∞) < ε/2,
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for all v ∈ Bτ (u), where Bτ (u) is the ball of radius τ centered at u in UT . Now let

δ = min
{

τ,
ε

2(1 + ‖Vι[u]‖)

}
.

Then for any v ∈ Bδ(u),
|Vκ[v](t)− Vκ[u](t)| < ε

for all t ∈ [0, T ], which implies that ‖Vκ[v] − Vκ[u]‖∞ < ε. This shows that Vκ is continuous,
completing the induction step.

Now let c be a convergent series, and pick any T admissible for c. Then for u, v ∈ VT and
0 ≤ t ≤ T ,

|Fc[u](t) − Fc[v](t)| =
∣∣∣∣∣∑
ι

〈c, ηι〉 (Vι[u](t)− Vι[v](t))

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
|ι|≤s
〈c, ηι〉 (Vι[u](t)− Vι[v](t))

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑
|ι|>s
〈c, ηι〉 (Vι[u](t)− Vι[v](t))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
|ι|≤s
〈c, ηι〉 (Vι[u](t)− Vι[v](t))

∣∣∣∣∣∣ + 2
∑
i≥s

(M(m + 1)T )i

for any s ≥ 0. Since Vι : VT → C[0, T ] is continuous and∑
i≥s

(M(m + 1)T )i −→ 0 as s → ∞,

it follows that for any ε > 0 given, there exists some δ > 0 such that

|Fc[u](t) − Fc[v](t)| < ε

for any v ∈ VT satisfying ‖u− v‖1 < δ. Thus, we get the following conclusion:

Lemma 2.2 Assume that c is a convergent power series and T is admissible for c. Then the
operator

Fc : VT → C[0, T ]

is continuous with respect to the L1 norm in VT and the C0 norm in C[0, T ]. 2

We now turn to considering the smoothness properties of Fc[u](t) as a function of time
t. Notice that, for every multiindex ι, Vι[u](t) is absolutely continuous as a function of t. It
follows immediately from the fact that Fc[u] defined by (4) converges uniformly that Fc[u](t)
is continuous on [0, T ]. If fact, it was shown in [14] that for any u ∈ VT , Fc[u](·) is absolutely
continuous.

Differentiability of these operators has been studied in [5], and the following formula, which
follows from the definition (3), was provided in [5]:

d

dt
Fc[u](t) = Fη−1

0 c[u](t) +
m∑
j=1

uj(t)Fη−1
j c[u](t) (6)
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for all t ∈ [0, T ], and each continuous u ∈ VT . In fact, (6) also holds for any u ∈ VT for almost
all t ∈ [0, T ]. By (6), one can use induction to prove that Fc[u] is of class Ck+1 if u is of class
Ck. The following Lemma, however, is a less trivial one.

Lemma 2.3 Suppose c is a convergent series and T is admissible to c. Then Fc[u] is analytic
if u ∈ VT is analytic.

To prove Lemma 2.3, we need the following fact: For u ∈ Vτ (τ < T ) and v ∈ VT−τ , we use
u#τ v to denote the concatenated control:

(u#τ v)(t) =

{
u(t) if 0 ≤ t ≤ τ ,
v(t− τ) if τ < t ≤ T .

Lemma 2.4 Suppose c is a convergent series which satisfies (2) and T is admissible for c. For
any 0 ≤ τ < T, u ∈ Vτ , let d be the series defined by

〈d, ηι〉 = Fη−1
l
c[u](τ). (7)

Then d is also a convergent power series and T − τ is admissible for d. Furthermore, for each
v ∈ VT−τ ,

Fc[u#τ v](t + τ) = Fd[v](t). (8)

Proof. It follows from (2) that

|〈η−1
ι c, ηκ〉| ≤ KM l+k(l + k)! for ι ∈ I l, κ ∈ Ik.

Thus for any 0 ≤ τ ≤ T and any u ∈ Vτ ,

|Fη−1
ι c[u](τ)| ≤

∣∣∣∣∣∑
κ∈I∗
〈c, ηιηκ〉Vι[u](τ)

∣∣∣∣∣
≤

∞∑
k=0

KM l+k(l + k)!(m + 1)k
τk

k!

= KM l
∞∑
k=0

sk

k!
(l + k)! , (9)

where s = M(m + 1)τ . For power series (9), we have

∞∑
k=0

sk

k!
(l + k)! =

dl

dsl

∞∑
k=0

sk

k!
=

dl

dsl
sl

1− s
=

l!
(1− s)l+1

,

for |s| < 1. Therefore,

|Fη−1
ι c[u](τ)| ≤ KM ll!

(1−M(m + 1)τ)l+1
,

i.e.,
|〈d, ηι〉| ≤ KτM

l
τ l! for ι ∈ I l, l ≥ 0 , (10)

where

Kτ =
K

1−M(m + 1)τ
,
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Mτ =
M

1−M(m + 1)τ
,

and the constants M and K are as in (2). Since

1
Mτ (m + 1)

=
1

M(m + 1)
− τ > T − τ,

it follows that T − τ is admissible for d.
Formula (8) will follow from the following formula:

Vρ[u#τ v](t + τ) =
∑
ικ=ρ

Vι[v](t)Vκ[u](τ), (11)

for any ρ ∈ I∗, since if we assume (11) holds, then

Fc[u#τ v](t + τ) =
∑
ρ

〈c, ηρ〉
∑
ικ=ρ

Vι[v](t)Vκ[u](τ) (12)

=
∑
ι

∑
κ

〈c, ηιηκ〉Vι[v](τ)Vκ[u](t) (13)

=
∑
ι

∑
κ

〈η−1
ι c, ηκ〉Vκ[u](τ)Vι[v](t)

=
∑
ι

Fη−1
ι c[u](τ)Vι[v](t)

= Fd[v](t). (14)

Note here that we can rearrange the terms in (12) to get (13) because the series of functions in
(12) is absolutely convergent for 0 ≤ τ + t ≤ T .

We now return to prove (11) by induction on the length of ρ. Equation (11) is true when
ρ = j ∈ I1 because

Vρ[u#τ v](t + τ) =
∫ t+τ

0
(uj#τ vj)(s) ds

=
∫ τ

0
uj(s) ds +

∫ t

0
vj(s) ds = Vρ[u](τ) + Vρ[v](t).

Now assume that (11) holds for ρ ∈ In. For any

ρ = i1i2 · · · in+1 ∈ In+1,

we have

Vρ[u#τ ](t + τ) =
∫ t+τ

0
(ui1#τ vi1)(s)Vi2i3···in+1 [u#τ v](s) ds

=
∫ τ

0
ui1(s)Vi2i3···in+1 [u#τ v](s) +

∫ t

0
vi1(s)Vi2i3···in+1 [u#τ v](τ + s) ds

= Vρ[u](τ) +
∑

i1ικ=ρ

∫ t

0
vi1(s)Vι[v](s)Vκ(τ) ds

= Vρ[u](τ) +
∑

|ι|≥1,ικ=ρ

Vι[v](t)Vκ[u](τ)
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=
∑
ικ=ρ

Vι[v](t)Vκ[u](τ).

We completed the proof of (11) by induction.

We now return to prove Lemma 2.3.
Proof. Take an analytic control u in VT . First notice that if T is admissible for c, then there
exists some ε > 0 such that T +ε is also admissible for c. Assume ε is so small that u is analytic
in (−ε, T + ε). Let T1 = T + ε and

ũ(z) = (ũ1(z), . . . , ũm(z))

be the complex analytic function whose restriction to the real interval (−ε, T1) is u. One would
like to say that the output is the restriction to real t of the complex output corresponding to ũ,
from which analyticity would follow by the above differentiability (extended to the complexes).
However, it is not necessary that ũ be bounded by 1 for |z| ≤ T1, so a local analysis is needed.

For any 0 ≤ t0 ≤ T , there exist some δ > 0 and σ > 0 such that

|ũ(z)|M(m + 1)T1 ≤ 1− σ if z ∈ Bδ(t0)

since
|ũ(t0)|M(m + 1)T1 < 1

where Bδ(t0) is the ball of radius δ centered at t0 and M is as in (2). Assume here that δ < ε.
By Lemma 2.4,

Fc[u](t) = Fd[v](t− t0)

where d is defined as in (7) and v(t) = u(t + t0). Let ṽ(z) = ũ(z + t0). For any complex vector
function w(z) = (w1(z), . . . , wm(z)) of dimension m which is defined and analytic for all z in
a ball around the origin, we define

Vi1···il+1
[w](z) =

∫ z

0
wi1(s)Vi2···il+1

(s) ds,

inductively, where Vφ = 1 and w0(z) :≡ 1. By induction, the integrand is analytic, so the
integral is independent of the path and the result in analytic too. Then∣∣∣∣∣∑

l

〈d, ηι〉Vl[ṽ](z − t0)

∣∣∣∣∣ ≤
∞∑
l=0

Kt0M
l
t0(m + 1)lN l|z − t0|l (15)

where Mt0 , Kt0 are defined as in the proof of Lemma 2.4 and

N = max
z∈Bδ(t0)

ũ(z).

Notice that the series ∞∑
l=0

M l
t0(m + 1)lN l|z − t0|l

converges uniformly for

|z − t0| ≤
1− σ

NMt0(m + 1)
.
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Now let
δ̃ = min

{
δ,

1− σ

NMt0(m + 1)

}
.

Then the series of complex functions∑
〈d, ηι〉Vl[ṽ](z − t0)

defines an analytic function in Bδ̃(t0) since it converges uniformly, (cf: Theorem 5.1 in [1]). For
t real,

Fd[v](t− t0) =
∑
〈d, ηι〉Vι[v](t− t0) =

∑
〈d, ηι〉Vι[ṽ](t− t0).

Thus, Fd[v](t − t0), i.e. Fc[u](t), is analytic for |t − t0| < δ̃. Since t0 can be chosen arbitrarily
in [0, T ], we get the desired conclusion.

Observe here that we have not claimed the following stronger statement: if u has a single
convergent power series representation on [0, T ] then Fc[u] also does. We only proved that
Fc[u] is analytic, that is, it has a local power series expansion around each point. The following
example shows that the above stronger statement is not true in general.

Example 2.5 Consider the series

c = 1 + η
1

+ 2η(2)
1

+ 3!η(3)
1

+ · · · + k! η(k)
1

+ · · · .

It is not hard to see that any T < 1 is admissible for c, and

Fc[u](t) =
∞∑
k=0

k!
∫ t

0

∫ s1

0
· · ·
∫ sk−1

0
u(s1) · · ·u(sk) dsk · · · ds1

=
∞∑
k=0

(∫ t

0
u(s) ds

)k
=

1
1−

∫ t
0 u(s) ds

.

Let u = − sinπt. Then
∫ t

0
u(s) ds =

2
π

sin2 π

2
t. Hence

Fc[u](t) =
π
2

π
2 + sin2 π

2 t
.

Consider the equation
π

2
+ sin2 π

2
θ = 0 (16)

on the complex plane. When θ = bj where j =
√
−1, equation (16) becomes

ebπ/2 − e−bπ/2

2
= ±

√
π

2
.

Let f(b) = ebπ/2−e−bπ/2
2 . Then f(0) = 0 and

f(1) =
∞∑
k=0

(π2 )2k+1

(2k + 1)!
≥ π

2
≥
√

π

2
.
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Therefore there exists some b ∈ (0, 1) such that f(b) =
√

π

2
which implies that there exists

some θ ∈ C with ‖θ‖ < 1 such that (16) holds. Therefore, the complex function

g(z) =
π
2

π
2 + sin2 π

2 z

has at least one singularity inside the unit disc. It then follows that Fc[u](t) cannot have a
global convergent power series representation on [0, T ] if 0 < 1 − T < δ for δ small enough,
even though u has a global convergent power series representation. 2

3 Realizability by Analytic Systems

For any given convergent series c, we say that Fc is realizable by an analytic system

Σ = (M, (g0, . . . , gm), x0, h) (17)

if there exist some analytic manifoldM, some x0 ∈M, (m + 1) analytic vector fields

g0, g1, . . . , gm

on M and an analytic function
h : M → IR

such that for each u ∈ VT with T admissible for c, there exists a solution x(·) of the equation

x′ = g0(x) +
m∑
j=1

gj(x)uj ,

x(0) = x0

defined on all of [0, T ], and

Fc[u](t)(t) = h(x(t)) , t ∈ [0, T ] . (18)

We shall say that Fc is locally realizable by an analytic system (17) if the solution x(·) of
(17) is only defined for, and (18) only holds for, t small enough.

For any given power series c, we define the observation space F1(c) as the IR-space spanned
by all the series α−1c, the observation algebra A1(c) is the IR-algebra generated by the elements
of F1(c), under the shuffle product (see [15]), and the observation field Q1(c) is the quotient
field of A1(c). Note that Q1(c) is always defined since A1(c) is an integral domain (cf [15]).

For any given convergent power series c, we say thatA1(c) is an analytically finitely generated
IR-algebra if there exist an integer n and n elements c1, c2, . . . , cn of A1(c) such that for every
element d in A1(c), there exists some analytic function ϕ defined on IRn such that

Fd[u](t) = ϕ (Fc1 [u](t), . . . , Fcn [u](t))

for all u ∈ VT , t ∈ [0, T ] and for any T admissible for c.
We say that the observation fieldQ1(c) is a meromorphically finitely generated field extension
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of IR if there exists an integer n and

c1, c2, . . . , cn ∈ A1(c)

such that for each element d in Q1(c), there exist some analytic functions ϕ0 and ϕ1 defined on
IRn such that

ϕ0 (Fc1 [u](t), . . . , Fcn [u](t)) Fd[u](t) = ϕ1 (Fc1 [u](t), . . . , Fcn [u](t))

for all u ∈ VT , t ∈ [0, T ] and for any T admissible for c, and,

ϕ0 (Fc1 [u], . . . , Fcn [u]) 6= 0

for some u ∈ VT , and some T admissible for c. If this is the case, we call c1, . . . , cn the generators
of the field, or, we say that the field is generated by c1, . . . , cn. Informally speaking, then, a
meromorphically finitely generated field extension of IR is one for which every element can be
expressed as a meromorphic function of a finite set of generators.

The following Theorem shows that certain finiteness properties imply realizability.

Theorem 1 Assume that c is a convergent series. Then

(a) Fc is realizable by an analytic system if A1(c) is analytically finitely generated.

(b) Fc is locally realizable by an analytic system if Q1(c) is a meromorphically finitely gener-
ated field extension of IR.

Proof. (a): Assume that A1(c) is generated by c1, c2, . . . , cn, for some integer n. It follows
that there exist an analytic function gij such that

Fη−1

j
ci

= gij (Fc1 , . . . , Fcn) (19)

for any i = 1, . . . , n, each j = 0, 1, . . . , m, and an analytic function h such that

Fc = h (Fc1 , Fc2 , . . . , Fcn) .

Take M to be the Euclidean space IRn and let

x0 = (〈c1, φ〉, 〈c2, φ〉 . . . , 〈cn, φ〉)′ . (20)

It follows from (19) and formula (6) that the function

x(t) = (Fc1 [u](t), Fc2 [u](t), . . . , Fcn [u](t))′

satisfies the equations

x′ = g0(x) +
m∑
j=1

gj(x)uj ,

x(0) = x0 ,

for any u ∈ VT , and (20) implies that

y(t) = Fc[u](t) = h(x(t))
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for all t ∈ [0, T ]. We proved that Fc is realizable by an analytic system.
(b): Assume that Q1(c) is meromorphically generated by c1, c2, . . . , cn. Without loss

of generality, we may assume that c1 = c. Similarly to part (a), one knows that for each
i = 1, 2, . . . , n, j = 0, 1, . . . , m, there exist analytic functions gij and qij such that

qij (Fc1 , . . . , Fcn) Fη−1

j
c = gij (Fc1 , . . . , Fcn) (21)

and qij (Fc1 , . . . , Fcn) 6= 0. (These are all equations among operators.) Without loss of gener-
ality, we may assume that qij = q for all i and j and

q (Fc1 [u], . . . , Fcn [u]) 6= 0 . (22)

It is not hard to see that for any u ∈ VT , the function

x(t) = (Fc1 [u](t), Fc2 [u](t), . . . , Fcn [u](t))′ (23)

satisfies the equation

q(x(t))x′(t) = g0(x(t)) +
m∑
j=0

gj(x(t))uj(t) (24)

x(0) = x0 = (〈c1, φ〉, 〈c2, φ〉 . . . , 〈cn, φ〉)′ , (25)

and,
y(t) = Fc[u](t) = x1(t).

It is clear that if
q(x0) 6= 0 , (26)

then q(x) 6= 0 in a neighborhood N of x0, thus, Fc is locally realized by the analytic system

(N , g̃0, g̃1, . . . , g̃m, x0, h) ,

where g̃i =
gi
q

and h(x) = x1.

We now assume q(x0) = 0. Note that the function x(·) defined by (23) is of class Ck if u is
of class Ck−1 for any k ≥ 1, and x(·) is analytic if u is analytic. Since analytic controls is dense
in VT (with respect to the L1 topology), (22) implies that there is at least one analytic input
u0 for which the function

q (Fc1 [u0], . . . , Fcn [u0])

is not identically zero. Fix such an u0. Then the analyticity of Fci [u](t) and the analyticity of
q imply that there exists some δ > 0 such that

q (Fc1 [u0](t), . . . , Fcn [u0](t)) 6= 0 (27)

for all t ∈ (0, δ). For each λ ∈ (0, δ), we define a series cλ by

〈cλ, ηι〉 = Fη−1
ι c[u0](λ).

11



By Lemma 2.4 cλ is a convergent series and

Fcλ [u](t) = Fc[u0#λu](λ + t) (28)

for any u ∈ VT−λ and any λ ∈ (0, δ), which implies that, for each u ∈ VT−λ, the function

xλ(t) =
(
Fcλ1

[u](t), Fcλ2
[u](t), . . . , Fcλn [u](t)

)′
also satisfies equation (24) with the initial state

xλ(0) = (Fc1 [u0](λ), Fc2 [u0](λ), . . . , Fcn [u0](λ))′

and
F λ
c [u](t) = xλ1(t) .

Notice that (28) means that
q(xλ0) 6= 0

for each λ ∈ (0, δ). thus for each fixed λ, there exists a neighborhood Nλ of xλ such that

q(x) 6= 0, for all x ∈ Nλ.

Hence, each of these “perturbed” operators Fcλ is locally realized by the analytic system(
Nλ, (g̃0, g̃1, . . . , g̃m), xλ, h

)
.

To show that Fcλ is still realizable when λ = 0, we need to introduce more notations. Let
P be the set of polynomials in η

0
, η

1
, . . . , ηm . We now define the Lie bracket [· , ·] on P as

follows:
[P1, P2] = P1 · P2 − P2 · P1

where “·” denotes the standard product defined for polynomials. With [· , ·] defined as above,
P forms a Lie algebra. Let L be the subalgebra of P generated by η

0
, η

2
, . . . , ηm . The elements

of L will be called Lie polynomials.
We now define

ψc(w) =
∑
〈w, ηκ〉 η−1

κ c

for any polynomial w =
∑ 〈w, ηκ〉. Now for a given series c, we define the Lie rank ρ(c) of c

to be the dimension of the IR-space spanned by ψc(w), over all Lie polynomials w ∈ L, i.e.,

ρ(c) = dim (span IR {ψc(w) : w ∈ L}) .

It is well-known that the i/o operator Fc is locally realizable by an analytic system if and
only if the Lie rank ρ(c) is finite, and, if Fc is realizable by a system of dimension n, then the
Lie rank ρ(c) is less than or equal to n (cf [3], [6], [12]).

It follows from the second part of the above statement that the Lie rank ρ(cλ) of cλ is
bounded by n for any λ ∈ (0, δ).
Claim: ρ(c) ≤ n.

Suppose ρ(c) > n. Then there exist w1, . . . , wn+1 such that the n + 1 series

ψc(w1), . . . , ψc(wn+1)

12



are linearly independent.
We now enumerate the elements of P ∗, the set of all monomials in ηi’s, as z1, z2, . . . and

we let Aλ be the matrix of n + 1 columns and infinitely many rows whose (i, j)-th entry is
〈ψcλ(wj), zi〉. Then A0 is full column rank in the sense that there is no nonzero (n + 1)-vector
v such that A0 v = 0. For any integer i, let Bi be the subspace of IRn+1 spanned by the first i
row vectors of A. Then we have

B1 ⊆ B2 ⊆ · · · ⊆ Bi ⊆ · · · .

Since rankBi is bounded by n+1 for any i, it follows that there exists some k such that Bi = Bk
for any i ≥ k, which implies that A = TBk for some matrix T of infinite rows and n+1 columns,
where Bk is the k × (n + 1) submatrix of A consisting the first k rows of A. Hence there is no
nonzero (n + 1)-vector v such that Bkv = 0, that is, rankBk = n + 1.

Now let the Bλ be the submatrix of Aλ consisting of the first k rows of Aλ. Note that for
the (ij)-th entry aλij of Bλ, we have

aλij = 〈ψcλ(wj), zi〉 = 〈cλ, wjzi〉 = F(wjzi)−1c[u0](λ).

Thus the entries of matrix Bλ are continuous functions of λ, from which it follows that the rank
of Bλ is a semicontinuous function of λ. Therefore,

rank Bλ = n + 1 (29)

for λ ∈ (0, ε) for some ε > 0. It follows immediately from (29) that the series

ψcλ(w1), ψcλ(w2) . . . , ψcλ(wn+1)

are linearly independent. This contradicts the fact that ρ(cλ) is bounded by n. Therefore, the
Lie rank ρ(c) is bounded by n. Applying the results in [3], [6], [12] cited above, we conclude
that Fc is locally realizable by an analytic system. Furthermore, since ρ(c) ≤ n, we know that
also Fc is locally realizable by a system of dimension less than or equal to n.

4 Analytic I/O Equations

In complete analogy with the algebraic case ([15]), an analytic input/output equation of order
k is an equation of the type

A
(
u(t), . . . , u(k)(t), y(t), . . . , y(k)(t)

)
= 0, (30)

where A is an analytic function defined on IRm(k+1)× IR(k+1) and nontrivial in the last variable.
The latter means that there exists some point

µ̄
0
, µ̄

1
, . . . , µ̄

k
, ν̄

0
, . . . , ν̄

k−1

in IRm(k+1) × IRk such that

A
(
µ̄

0
, µ̄

1
, . . . , µ̄

k
, ν̄

0
, . . . , ν̄

k−1
, ν

k

)

13



is not a constant function. Generalizing the notions in the algebraic case, we also consider two
special classes of i/o equations, as follows. First, meromorphic equations are those for which
A(µ

0
, . . . , µ

k
, ν

0
, . . . , ν

k
) takes the form:

A0(µ0
, . . . , µ

k
, ν

0
, . . . , ν

k−1
)ν
k

+ A1(µ0
, . . . , µ

k
, ν, . . . , ν

k−1
), (31)

In other words,
∂2A(µ

0
, . . . , µ

k
, ν

0
, . . . , ν

k
)

∂ν2
k

= 0

identically, the term “meromorphic” referring to the fact that ν
k

is meromorphic in the
remaining variables. Second, we consider analytically recursive equations, those for which
A(µ

0
, . . . , µ

k
, ν

0
, . . . , ν

k
) takes the form

A0(µ0
, . . . , µ

k
)ν
k

+ A1(µ0
, . . . , µ

k
, ν, . . . , ν

k−1
); (32)

the term is used because ν
k

can be expressed analytically in terms of the other ν
i
’s. Given

an i/o operator Fc, where c is a convergent series, Fc will be said to satisfy the analytic i/o
equation (30) if (30) holds for each Ck i/o pair (u, y) of Fc (and then we call (30) an analytic i/o
equation for Fc, and in particular we say that the operator Fc satisfies an analytically recursive
i/o equation if there is some such equation for which A is analytically recursive, and that Fc
satisfies a meromorphic i/o equation if A can be chosen meromorphic and minimal in the sense
that A0 = 0 is not an i/o equation of Fc.)

Lemma 4.1 Let A : IRm(k+1) × IRk+1 → IR be real-analytic, and assume that Fc is an i/o
operator. Then, the property

A

(
µ

0
, . . . , µ

k
, Fc, Fc1(µ

0
), . . . , Fc

k
(µ

0
,...,µ

k−1
)

)
= 0, (33)

holds for each µ
0
, µ

1
, . . . , µ

k
∈ IRm if and only if Fc satisfies the i/o equation (30).

Remark 4.2 Equation (33) means that

A

(
µ

0
, . . . , µ

k
, Fc[u](t), Fc1(µ

0
)[u](t), . . . , Fc

k
(µ

0
,...,µ

k−1
)[u](t)

)
= 0, (34)

for any u ∈ VT and any t ∈ [0, T ] . By definition, (34) holds for those u such that u#tωµ ∈ Ck.
But in general, u#tωµ is not of class Ck. The following proof of Lemma 4.1 in fact shows that
equation (30) holds for all Ck i/o pairs of Fc if and only if it holds at any point at which u(t)
is Ck, for every u ∈ VT . 2

To prove Lemma 4.1, we need the following Lemma:

Lemma 4.3 Assume f ∈ C[0, 1] and f(0) = 0. Then for each given integer n ≥ 0, there exists
a sequence of polynomial functions {fk} such that

fk −→ f, as k →∞

uniformly and f
(i)
k (0) = 0 for all k and 0 ≤ i ≤ n− 1.

14



Proof. Suppose f ∈ C[0, 1] and f(0) = 0. Let f̂(x) = f(x1/n). Then, by Weierstrass’ Theo-
rem, there exists a sequence of polynomials approaching to f̂ ; in particular, the sequence of
polynomials can be chosen as the Bernstein polynomials

f̂k(x) =
k∑
j=0

f̂

(
j

k

)(
k
j

)
xj(1− x)k−j .

Notice that
f̂k(0) = 0

for all k. Now let fk(x) = f̂k (xn). Then

fk(x) −→ f(x) as k →∞

uniformly and fk’s are polynomials of xn. Since fk(0) = 0, it follows that f
(i)
k (0) = 0 for

0 ≤ i ≤ n− 1.

We are now ready to prove Lemma 4.1.
Proof. Assume equation (34) holds for any u ∈ VT and t ∈ [0, T ]. Take an input

u ∈ VT
⋂
Ck−1

and pick any t ∈ [0, T ]. Assume
u(s)(t) = µs

for 0 ≤ s ≤ k. Then

y(s)(t) =
∂s

∂ts
Fc[u](t) = Fcs(µ0

,...,µ
s−1

)[u](t)

for 0 ≤ s ≤ k. Therefore,

P
(
u(t), . . . , u(k)(t), y(t), . . . , y(k)(t)

)
= 0.

Since u and t can be picked arbitrarily, it follows that A = 0 is an i/o equation for Fc.
Now assume A = 0 is an i/o equation for Fc. Take any fixed u ∈ VT and consider

û := u#tωµ,

where µ = (µ
0
, µ

1
, . . . , µ

k
). We shall prove the Lemma by first showing that (34) holds for all

u ∈ VT and t and all those µ’s such that |µ
0
| < 1. For this purpose, we will first find a sequence

{vj} ∈ Ck such that
‖vj − û‖1 → 0, as j →∞, (35)

vj(s) = û(s) = ω(s− t) for s ≥ t,

and there exists some fixed δ > 0 such that

|vj(s)| < 1 for s ∈ [0, t + δ]

for all large enough j.
Assuming for now that there exists such a sequence {vj}, we show how to complete the

proof. The output Fc[vj ] is defined and differentiable in [0, t + δ] for large enough j. Applying

15



(30) to the Ck pair (vj , yj) at time t, we get

A
(
vj(t), . . . , v

(k)
j (t), yj(t), . . . , y

(k)
j (t)

)
= 0, (36)

where yj = Fc[vj ].
By Lemma 2.2, we know that for t ≤ τ ≤ t + δ for some δ > 0

y
(s)
j (τ) → ds

dts
Fc[û](τ) as j →∞.

Letting
j → ∞ and τ → t+

and taking the limits on both sides of (36), we get

A

(
µ

0
, . . . , µ

k−1
, Fc[û](t),

d

dτ

∣∣∣∣
τ=0+

Fc[u](t + τ), . . . ,
dk

dτk

∣∣∣∣∣
τ=0+

Fc[û](t + τ)

)
= 0.

Since u and t can be chosen arbitrarily, we get (34) under the assumption that |µ
0
| < 1. To

remove this assumption, notice that for any fixed u ∈ VT and t, the function

A

(
µ

0
, . . . , µ

k−1
, Fc[u](t), Fc1(µ

0
)[u](t), . . . , Fc

k
(µ

0
,...,µ

k−1
)[u](t)

)
(37)

is analytic in µ. Hence (34) holds for all µ, not only for those with |µ0| < 1. Again, as u and t
can be chosen arbitrarily, we get (33).

Now we return to prove the existence of {vj}. Take u ∈ VT and µ
0
, . . . , µ

k
∈ IRm, where

|µ
0
| < 1. Notice that the set

V̂T :=
{
u ∈ VT ∩ C[0, T ] : u(t) = µ

0
, ‖u‖∞ < 1

}
is dense in VT (still using the L1 norm), so we may assume that u ∈ V̂T . Now let

ũ(s) =

{
u(s)− ωµ(s− t) if s ≤ t,
0 if t < s ≤ T .

By Lemma 4.3, there exists a sequence ṽj in Ck[0, T ] such that

ṽj(s) → ũ(s)

uniformly and ṽ
(i)
j (t) = 0 for 0 ≤ i ≤ k. Let

vj(s) = ṽj(s) + ωµ(s− t).

Then {vj} → u#tωµ uniformly. Since

|u#tωµ(s)| < 1 for s ∈ [0, t + δ]

for some small δ, it follows that |vj(s)| < 1 for s ∈ [0, t + δ] if j is large enough.

Similar to the algebraic case discussed in [15], we have the following result:
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Lemma 4.4 If Fc satisfies an analytic i/o equation, then it satisfies a meromorphic i/o equa-
tion.

Proof. Assume that Fc satisfies an analytic i/o equation of order k;

A
(
u(t), . . . , u(k)(t), y(t), . . . , y(k)(t)

)
= 0.

Without loss of generality, we may assume that k is smallest possible among all analytic i/o
equations for Fc. Now let, for each i ≥ 0,

Qi(µ0
, . . . , µ

k
, ν

0
, . . . , ν

k
) =

∂i

∂νi
k

A(µ
0
, . . . , µ

k
, ν

0
, . . . , ν

k
).

Claim: There exists some i such that Qi = 0 is not an i/o equation for Fc.
Suppose by way of contradiction that Qi = 0 is an i/o equation of Fc for all i, i.e.,

Qi(u(t), . . . , u(k)(t), y(t), . . . , y(k)(t)) = 0 (38)

for all Ck i/o pairs (u, y) of Fc and for all i ≥ 0. For each fixed u and each fixed t, we let

(µ̄
0
, . . . , µ̄

k
, ν̄

0
, . . . , ν̄

k
) = (u(t), . . . , u(k)(t), y(t), . . . , . . . , y(k)(t)) .

Then (38) means that

∂i

∂ν
k

A(µ̄
0
, . . . , µ̄

k
, ν̄

0
, . . . , ν̄

k−1
, ν̄

k
) = 0

for all i. It then follows from the analyticity of A that

A(µ̄
0
, . . . , µ̄

k
, ν̄

0
, . . . , ν̄

k−1
, α) = 0

for all α ∈ IR. Since u and t can be chosen arbitrarily, one concludes that

A(u(t), . . . , u(k)(t), y(t), . . . , y(k−1)(t), α) = 0

for any Ck i/o pair (u, y) of Fc and any constant α. Choose an α such that the function

A1(µ0
, . . . , µ

k
, ν

0
, . . . , ν

k−1
) := A(µ

0
, . . . , µ

k
, ν

0
, . . . , ν

k−1
, α)

is not identically zero. (Such an α exists because A is not identically zero, by definition of i/o
equations.) It follows immediately that

A1(u(t), . . . , u(k)(t), y(t), . . . , y(k−1)(t)) = 0 (39)

for all i/o pairs of Fc, and this is a nontrivial equation, by the choice of α. We may assume
that

∂

∂ν
j

A1(µ0
, . . . , µ

k
, ν

0
, . . . , ν

k−1
) 6= 0

17



for some j = 0, 1, . . . , k − 1. Otherwise, if

∂

∂ν
i

A1(µ0
, . . . , µ

k
, ν

0
, . . . , ν

k−1
) = 0

for any i = 0, 1, . . . , k − 1, then there exist some ν
0
, . . . , ρ

k−1
so that

A2(µ0
, µ

1
, . . . , µ

k
) = A1(µ0

, µ
1
, . . . , µ

k
, ν

0
, . . . , ν

k−1
)

is not identically zero and
A2(u(t), u′(t), . . . , u(k)(t)) = 0

holds for all input functions and all t, which is impossible. Let j be as large as possible. Noting
the fact that y(j) does not depend on u(i) for any i > j, one knows that there exists some
analytic function

A3(µ0
, . . . , µ

j
, ν

0
, . . . , ν

j
)

such that A3 = 0 is an i/o equation for Fc of order j < k, which contradicts the assumed
minimality of k.

Thus we proved by induction that there exists some i such that Qi = 0 is not an i/o equation
of Fc. Now let r ≥ 1 be the smallest number for which Qr = 0 is not an i/o equation of Fc.
Then

Qr−1(u(t), . . . , u(k)(t), y(t), . . . , y(k)) = 0 (40)

is an i/o equation of Fc. Taking derivative with respect to time t on both sides of (40), one sees
that Fc satisfies the following meromorphic i/o equation:

Qr

(
u(t), . . . , uk(t), y(t), . . . , y(k)

)
y(k+1)

= P3

(
u(t), . . . , uk(t), y(t), . . . , y(k)

)
,

where P3 is some analytic function defined in IRm(k+1) × IR(k+1).

For any given series c, the observation space F2(c) is defined to be the IR-space spanned by
cn(µ0

, . . . , µ
n−1

) for all n and all values of µ
0
, . . . , µ

n−1
. For the definition of cn(µ0

, . . . , µ
n−1

)
we refer the readers to [16]. Roughly speaking, cn(µ0

, . . . , µ
n−1

) was defined in such a way that
for any convergent power series c,

dn

dtn
Fc[u](t) = Fcn(u(t),...,un−1(t))[u](t), (41)

for any continuous u ∈ VT such that T is admissible for c. The observation algebra A2(c) is
defined to be the IR-algebra generated by the elements of F2(c), and the observation field Q2(c)
is defined to be the quotient field of A2(c). Again, Q2(c) is always well defined since A2(c) is
an integral domain (cf [15]).

The following Theorem relates the existence of analytic i/o equations to analytic finiteness
properties of the observation algebra and field. An analogous result holds in the algebraic case
(see [15]).

Theorem 2 Assume c is a convergent power series. Then

(a) Q2(c) is meromorphically finitely generated if Fc satisfies an analytic i/o equation;
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(b) A2(c) is analytically finitely generated if Fc satisfies an analytically recursive i/o equation.

Proof. We shall only provide the proof of part (a). Part (b) can be proved by the same approach.
Assume Fc satisfies an analytic i/o equation. By Lemma 4.4, Fc satisfies a meromorphic i/o

equation

A0

(
u(t), . . . , u(k+1)(t), y(t), . . . , y(k)(t)

)
y(k+1)(t)

= A1

(
u(t), . . . , u(k+1)(t), y(t), . . . , y(k)(t)

)
. (42)

Taking derivative with respect to time t on both sides of the equation, one gets

A0

(
u(t), . . . , u(k+1)(t), y(t), . . . , y(k)(t)

)
y(k+2)(t)

= Ã2

(
u(t), . . . , u(k+2)(t), y(t), . . . , y(k)(t)

)
(43)

+ Â2

(
u(t), . . . , u(k+2)(t), y(t), . . . , y(k)(t)

)
y(k+1)(t),

where

Ã2 =
k+1∑
i=0

∂

∂µ
i

(A1 − A0)µ
i+1

+
k−1∑
i=0

∂

∂ν
i

(A1 − A0) ν
i+1

,

Â2 =
∂

∂ν
k

(A1 − A0) .

Multiplying by A0 on both sides of (43) and replacing y(k+1) by (42), one knows that there
exists some analytic function A2 such that

A2
0

(
u(t), . . . , u(k+1)(t), y(t), . . . , y(k)(t)

)
y(k+2)(t)

= A2

(
u(t), . . . , u(k+2)(t), y(t), . . . , y(k)(t)

)
.

Using the above arguments repeatedly, one proves that for each r > 0 there exists some analytic
function Ar so that

Ar
0

(
u(t), . . . , u(k+1)(t), y(t), . . . , y(k)(t)

)
y(k+r)(t)

= Ar

(
u(t), . . . , u(k+r)(t), y(t), . . . , y(k)(t)

)
.

According to Lemma 4.1, we have

Ar
0

(
µ

0
, . . . , µ

k+1
, Fc, . . . , Fck(µ

0
,...,µ

k−1
)

)
Fck+r(µ0

,...,µ
k+r−1

)

= Ar

(
µ

0
, . . . , µ

k+r
, Fc, . . . , Fck(µ

0
,...,µ

k−1
)

)
(44)

for any r > 0 and any µ
0
, . . . , µ

k+r
∈ IRm. Let

Ω =
{
(µ

0
, . . . , µ

k+1
) :

A0

(
µ

0
, . . . , µ

k+1
, Fc, . . . , Fck(µ

0
,...,µ

k−1
)

)
6= 0

}
.
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It follows from the fact that A0 = 0 is not an i/o equation of Fc that there exists some

(µ
0
, . . . , µ

k+1
) ∈ IRm(k+2),

some u ∈ VT , and some τ ∈ [0, T ] so that

A0

(
µ

0
, . . . , µ

k+1
, Fc[u](τ), . . . , Fck(µ

0
,...,µ

k−1
)[u](τ)

)
6= 0.

Since the function

ψ(µ
0
, µ

2
. . . , µ

k+1
)

:= A0

(
µ

0
, . . . , µ

k+1
, Fc[u](τ), . . . , Fck(µ

0
,...,µ

k−1
)[u](τ)

)
is an analytic function,

Ω1 :=
{
(µ

0
, . . . , µ

k+1
) : ψ(µ

0
, . . . , µ

k+1
) 6= 0

}
is an open dense subset of IRm(k+2). As Ω1 ⊆ Ω, Ω is itself an open dense set of IRm(k+2).

Now we let Φ be the set of all the coefficients of µ
ij

that appear in cn(µ0
, . . . , µ

n−1
), seen

as a polynomial in µ
ij

over the ring of power series in variables η
0
, . . . , ηm for all n ≤ k + 1.

Note that Φ is a finite set of power series.
Pick up an arbitrary r ≥ 2. Equation (44) implies that ck+r(µ0

, . . . , µ
k+r−1

) is meromor-
phically generated by the elements of Φ if

(µ
0
, µ

1
, . . . , µ

k+1
, µ

k+2
, . . . , µ

k+r−1
) ∈ Ω × IRr−2 .

Since Ω is dense in IRk+2, it follows that Ω× IRr−2 is dense in IRk+r. By Lemma 12.11 in [10],
we know that for any choice of µ

0
, . . . , µ

k+r−1
,

ck+r(µ0
, µ

1
, . . . , µ

k+r
) (45)

is a linear combination of the elements in the set

B :=
{
ck+r(µ0

, . . . , µ
k+r−1

) : (µ
0
, . . . , µ

k+r−1
) ∈ Ω× IRr−2

}
.

It follows immediately that (45) is meromorphically generated by the elements of Φ for any
µ

0
, . . . , µ

k+r−1
. Since r can be chosen arbitrarily, we get our conclusion that all of Q2(c) is

meromorphically generated by the finite set Φ.

5 Main Results

In the previous section we showed that the realizability of an operator is closely related to the
finiteness properties of A1(c) and Q1(c), while the existence of i/o equations is closely related
to the finiteness properties of A2(c) and Q2(c). One of the main results in [16] shows that
F1(c) = F2(c), which implies that A1(c) = A2(c) and consequently, Q1(c) = Q2(c). Combining
Theorem 2 and Theorem 1 we get our main results in this work:
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Theorem 3 Assume that c is a convergent series. Then

(a) Fc is realizable by an analytic system if Fc satisfies an analytically recursive i/o equation.

(b) Fc is locally realizable by an analytic system if Fc satisfies an analytic i/o equation.

6 Remarks

We have shown in [15] that the existence of an algebraic i/o equation is equivalent to realizability
by a singular polynomial system. However, in contrast to its algebraic analogue, the converse
of Theorem 3 does not hold in the analytic case. By a small modification of a construction due
to Respondek, it is shown in [14] that the following system defines an i/o operator F so that
F [u] is defined for 0 ≤ t ≤ 1 and all u for which ‖u2‖∞ ≤ 1, but F does not satisfy any analytic
i/o equation. The example, withM = IR3, is as follows:

x′1 = u1

x′2 = u2

x′3 = u3

h(x) = ex1

∞∑
k=0

akfk(x2)
xk3
k!

,

with initial state x(0) = 0. The functions fk and coefficients ak are defined via

fk(x) = exp(exp(· · · (exp(x)) · · ·))︸ ︷︷ ︸
k

for k ≥ 1, and f0(x) = 1, and ak = (fk(1))−1, k = 0, 1, . . ..
It is possible to provide partial converses to Theorem 3, however. One possibility is to

consider the mapping sending vectors

(x, u(0), u′(0), . . . , u(n−1)(0)) ,

consisting of states and (n− 1)-jets of inputs, into n-jets of outputs and (n− 1)-jets of inputs:

(y(0), y′(0), . . . , y(n)(0), u(0), u′(0), . . . , u(n−1)(0)) .

This map is analytic, and hence the image of compact sets is a finite union of embedded
submanifolds (from results in subanalytic set theory). This implies that, for bounded states
and bounded controls (in an appropriate Whitney topology), a finite number of local analytic
equations (as opposed to a single global equation) is satisfied by i/o pairs. Details will be given
in a future paper. An alternative, but closely related, idea is being developed by W. Respondek
(personal communication).

7 Comparison With Algebraic Results

Throughout the paper we have mentioned analogies with the algebraic case considered in [15].
In this section, we summarize these analogies and we point out the major differences with the
analytic case.
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The definition of input/output operator is the same in both papers, but while here we deal
with analytic systems (17), in [15] the interest is in systems defined by rational equations.
Essentially, the latter systems are defined by asking that the vector fields gi, and the output
function h, be expressible as rational functions of the state –technically one must add a non-
degeneracy condition to deal with the possible poles of these rational functions, and hence the
name “singular polynomial systems.”

Theorem 1 has an analogue in the algebraic case: in part (a), realizability by an analytic
system is replaced by realizability by a rational system, and “analytically finitely generated” is
replaced by the standard finite generation notion for algebras; part (b) has a similar analogue,
except that local realizability is replaced by global rational realizability when the field Q1(c) is
a finitely generated field extension of IR. Note that neither result contains the other, as global
realization by rational systems does not imply local analytic realizability, due to the possibility
of poles.

Analytic i/o equations (30) are replaced in [15] by polynomial equations, meromorphic
equations are replaced by “rational equations” in which the highest derivative of the output is
expressible as a rational function of lower order derivatives, and analytically recursive equations
are replaced by “recursive” equations in which the latter expression contains no derivatives of
outputs in the denominator. The analogue of Theorem 2 is somewhat easier to prove in the
algebraic case: algebraic i/o equations give rise to finitely generated (rather than meromorphi-
cally finitely generated) field extensions, and recursive i/o equations imply finitely generated
(rather than analytically finitely generated) algebras.

Finally, the form of the main Theorem 3 is similar to that in [15], except that the converse of
part (b) holds for algebraic equations and rational systems. This was discussed in the previous
section, and is due to the lack of a strong property of elimination in the analytic case.

References

[1] L. V. Ahlfors, Complex Analysis: An Introduction to the theory of Analytic Functions
of One Complex Variable, McGraw-Hill, New York, second ed., 1966.

[2] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull.
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