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1. Introduction 

Since their introduction in the mid 70's (see [5] and [1], as well as [7] for the discrete time analogue), 
observation spaces for nonlinear control systems 

= f ( x ) + ~ 2 u i g i ( x  ), y = h ( x ) ,  (1) 

have played a central role in the understanding of realization theory. For the system (1), one defines the 
observation space ~ as the linear span of the Lie derivatives 

Lx, .. .  Lx,  h, 

where each X, is either f or one of the &'s. (Here we are taken states x( t )  in a manifold, f ,  gl . . . . .  gm 
vector fields, and h a function from the manifold to R, the output map.) 

It is known that many important properties of systems, such as the possibility of simulating such a 
system by one described by linear vector fields (the 'bilinear immersion' problem [1]), are characterized by 
properties of this space. 

It was shown in [8] that a different type of 'observation space' is much more important when one 
studies questions of input-output equations satisfied by (1), i.e. equations of the type 

E(y{~)( t )  . . . . .  y ' ( t ) ,  y ( t ) ,  u{k)(t) , . . . ,  u ' ( t ) ,  u ( t ) )  = 0 (2) 

that hold for all those pairs of functions (u(-), y( . ))  that arise as solutions of (1). This alternative 
observation space is obtained by taking the derivatives y(t) ,  y ' ( t )  . . . .  as functions of initial states, over 
all u(t), u ' ( t )  . . . . .  This space is obtained by considering differentiable controls and time-derivatives, 
while the space previously considered is based on derivatives with respect to switching times in piecewise 
constant controls. 

The central fact used in [8] in order to relate i / o  equations to realizability is the equality of the two 
observation spaces defined in the above manners. This equality is fundamental not only for the results in 
that paper, which hold under the assumption that the spaces are finite dimensional, but also for the far 
more general results recently announced in [9]. However, the techniques used in [8] are based on a 
topological argument, involving closure in the weak topology, which does not in any way extend to the 
more general case of infinite dimensional observation spaces. Since the latter are the norm rather than the 
exception (unless the system can be simulated by a bilinear system to start with), one needs to establish the 
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equali ty of  these two types of  spaces using totally different  combina tor ia l  techniques.  Tha t  is the purpose  
of this paper.  

In the next  section we provide  background  mater ia l  on generat ing series. We  use this formal i sm because 
in appl icat ions one does not  want  to restrict to systems [1] but  one ra ther  wants  to treat  the case of  
arbi t rary  i n p u t - o u t p u t  operators .  Then  we int roduce r igorously the two spaces and  establish their equality. 
An impor tan t  role is p layed by  an analogue of the ma in  result in [4]. Final ly  we extend our  results to 
families of opera tors  and  then give a t ranslat ion of the results into the language of  systems (1). 

2. Generating series 

Let m be a fixed integer and I = {0, 1 . . . . .  m }. For  any integer k > 1, we define I k to be the set of  all 
sequences ( i  l i 2  . . .  i k ) ,  where i s ~ I , l < s < k .  For  k = 0 ,  we use I ° to denote  the set whose only 
e lement  is the emp ty  sequence q~. Let 

I * =  U ~ .  (3) 
k>_O 

Then  I *  is a free mono id  with the composi t ion  rule: 

( i l  i2 " ' "  i k ) ( J l  J2 " ' "  J t ) = ( i l i 2  " ' "  ik Jl  J2 " ' "  J l ) .  

If  t ~ I t, then we say that  the length of t, denoted by  l t I, is l. 
Consider  now the ' a lphabe t '  set P = { % ,  771 . . . . .  ~ )  and P * ,  the free mono id  genera ted by  P,  where 

the neutral  e lement  of  P *  is the emp ty  word,  denoted  by  1, and the p roduc t  is concatenat ion.  Let 
p k  = ( ~li, ~1i2 " " " ~1~ : 1 < i s < m ,  1 < s < k }  for  each k > 0. We define ~ to be  the R-a lgebra  generated 
by  P *, i.e., the set of  all polynomials  in the variables ~/~'s. A p o w e r  ser ies  in the  n o n c o m m u t a t i v e  var iab les  
% ,  */1 . . . . .  ~/~ is a formal  power  series 

oc 

c = ( c , ~ ) +  E E (c ,  7/,)7/,, (4) 
k = l  ~ I  k 

where 7/, = ~,  7/i 2 • • • 7/i, if t = i~ i2 • • • it, and (c,  ,/,) ~ R. No te  that  c is a po lynomia l  if only finitely 
m a n y  (c,  7/,)'s are non-zero.  A power  series is nothing more  than a m a p p i n g  f rom I * to R; as we shall see 
later, however,  the algebraic structures suggested by  the series fo rmal i sm are very impor tan t .  We use S~ to 
denote  the set of all power  series. 

For  c, d ~ d P  and 7 ~ R, yc + d is defined as the following: 

( re  + d, 7,) = v(c,  7,) + (d ,  7,). 

Thus, 6 p forms a vector  space over  R. 
We shall say that  the power  series c is c o n v e r g e n t  if 

I(  c, */,) I ~< K M k k !  for each t ~ I k, and each k > 0, (5) 

where K and M are some constants.  
Let  T be a fixed value of t ime and let q / r  be  the set of  all essentially b o u n d e d  funct ions u : [0, T] ---, R "  

endowed with the L 1 norm.  We write II u II oo for max{ II u~ II ~: 1 < i < m} if u i is the i-th c o m p o n e n t  of  u, 
and [I ui II o~ is the essential supernorm of u v For  each u ~ ~ r  and t ~  I t, we define inductively the 
functions V, = V,[u] ~ ~[0 ,  T] by  

Z 0 = l  and V, .... i , + , [ u ] ( t ) = f o t U i , ( s ) V  ~ . . . .  , , + , ( s ) d s ,  (6) 

where u~ is the i-th coordinate  of  u ( t )  for i = 1, 2 . . . . .  m and Uo(t  ) - 1. I t  can be proved  that  each m a p  

UT--" ~ [ 0 ,  T ] ,  u -  V,[u] 

is cont inuous with respect  to L ~ n o r m  in q/r ,  ~0  n o r m  in ~'[0, T]. 
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Suppose c is convergent  and let K and M be as in (5). Then  for  any  

T< (Mm + M)  -1, (7) 

the series of  functions 

E[u](t) = ~_,(c, n , ) V , [ u l ( t )  (8) 

is uni formly  and absolutely convergent  for all t ~ [0, T]  and all those u ~ °//r such that  l[ u l[ ~ < 1 (cf. 
[3]). In fact, (8) is absolutely and uni formly  convergent  for all t ~ [0, T]  provided  T l[ u [I o~ < (Mm + M ) - k  
For  each nonnegat ive  T, let 

Y/r = {u~q l r :  I]ullo~ < 1 ) .  (9) 

We say that  T is admissible for c if T satisfies (7). Since each opera to r  u ~ V~[u] is continuous,  it follows 
that  F~: Y/r ~ • 0 ,  T] is cont inuous if T is admissible  for c. We call F C an input-output m a p  defined on 
y/r-  Thus every convergent  power  series defines an i / o  map.  On the other  hand,  the power  series c is 
uniquely determined by  F c in the following sense: 

L e m m a  2.1. Suppose that c and d are two convergent power series. I f  F~ = F a on y/r for any T> O, then 
c = d .  

Proof .  It  is enough to show that  if c is convergent  and F~ = 0 on Y/r for some small T, then c = 0. 
Consider  piecewise constant  controls in Y/r, and use the nota t ion  

u =  tl)( 2, t 2 ) . . .  0 ,k,  tk) 

to denote  the piecewise constant  control  whose value is/~i in the t ime interval  

(j o J, j=0  

where 

~ j = ( ~ l j , ~ z j  . . . . .  ~mj) ~ R ' ~ ,  ]~ij l  < 1 ,  l<_ j<k , l<_i<_m,  

and to = 0. 
By assumption,  for any  I~i, ti, such that  ~2ti < T, F c[(#1 , ta)(~2, t z ) . . . ( t~k ,  t ~ ) ] ( t ) =  0, where t = F~ti. 

Take  y = F~[u] as a funct ion of lal . . . . .  /~k and q , - . . ,  tk- Then  

~k t=0+ a~ ~=0 
3tl ~ 3 t k  Obt,tj, --~)#id,~ y = 0 (10) 

for all i 1 . . . . .  i~, Ja . . . . .  j'~, where the evaluat ion at t + means  that  we evaluate  at t~- . . . . .  t [ .  We claim that, 
for i I . . . . .  i~, Jl . . . . .  j~ given such that  j~ ~jq if r 4: q, 

0k ,=o+ ,=0 ~t I - - -  at k ~/z~d, 3/zid~ y = (c ,  ~/t~ " ' "  *h,), (11) 

where 

{i~ i f k - ( p - 1 ) = j r ,  
lp= 0 i f k - ( p - a )  c~( j  I . . . . .  j~). 
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To see this, write y( t )  = Z(c ,  ~,)V,(t). Then, directly from the definition (6), 

~k t=0 + 3t 1 -- ~t k y = ~ (c, 7h, "'" rllk)l~t,k "'" txl, l. 

One can see that if ((il, Jl) . . . . .  (i~, L) )  c_ ((ll, k)  . . . . .  (lk, /)} and lp = 0 for p ~ {Jl . . . . .  L )  then 

~s ~=0 " -  / ~ / , k  " " " /~l~1 = 1 ; 

3Fid, 31XisL 

otherwise, 

~s /~=0 
~ i l J l  - ~l~i~j ~ ~ l l k  " " " ~ l k l  = O. 

Combining this fact and (12), we get (11). It follows immediately that if F~[u] = 0 
constant controls, then c = O. [] 

(12) 

for all piecewise 

3 .  O b s e r v a t i o n  s p a c e s  

To each monomial  a = ~/,, we associate a shift operator c ~ a -  1 defined by 

(a - l c ,  ~/,) = (c,  a~/,) for ~, • P * .  

Note that a~let( 1 = (ala2)-lc.  It  was shown in [8] that if c is convergent and T is admissible for c, than 
a -  1 is also convergent and T is also admissible for a -  1 for any a • P *. Using this notation, we get the 
following fundamental formula [2], which follows from the definition (6): 

d F c I u l ( t ) = F ~ o , c [ u ] ( t ) +  ~ u j ( t )Fn; ,c[ul ( t  ) (13) 
j = l  

for any u • UT which is continuous. 
Formula (13) implies, by induction, that if u • zcr T is of class cgk-l,  then Fc[u ] is of class cgk. 
In realization theory, the concept of observation spaces plays a very important  role. One may defined 

observation spaces in two ways. Let us now introduce the first approach. To each convergent power series 
c, we define the observation space ~-1 to be the space spanned by all the power series a - l c  over R, i.e., 

~ , ( c )  = s p a n .  ( a -~c :  a • P*  }. (14) 

It  is well known that F C can be realized by a bilinear system and only if dim ~'1(c) < 0o; see e.g. [1]. 
To define the second type of observation spaces, we need to introduce the shuffle product on ~ (cf. [6]). 

The shuffle product on ~ is defined in the following way. First, inductively on the length of of words in 
P * ,  we let 

l w z = z w l = z  for a n y z • P ;  

w z l l l w ' z ' = ( w l l l w ' z ' ) z + ( w z W w ) z '  f o r a n y w ,  w' • P * ,  z, z" • P .  

Note that the shuffle product is commutative: 

w l W w 2 = w 2 W w a  f o r a n y w ~ ,  w 2 • P * .  

If  c = E(c,  ~ ) ~  and d = Z (d ,  ~,)~, are polynomials, then 

cwd,=E Z 
n IKl+l~l~n 

The following lemma can be proved by induction on n: 
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t I 
Lemma 3.1. Suppose w 1 . . . .  , w~ ~ P *  and w, = w iz i with w i ~ P * ,  z~ ~ P. Then 

(Wl, , , . . .  u:w.. [] 
s = l  

Now consider for each q > 1, the following set of 2 × q matrices: 

,) Sq= i, i 2 " "  iq : is, J ~ Z ' l < i ' < m ' ( 0 ' l ) < ( i l '  J ' ) <  "'" < ( i q ,  L , 

where ' < '  is the lexicographic order on the set {(i, j ) :  i, j E Z } .  For each element in 
n > q + Eft ,  we define 

1~ j',~ . .." q ,( n ,~ = ~ k  III 1~il X j l  l.l] ~ i 2 X  j 2  III • • • I11 ~ i q X J q [ x  = 1 ,  

(15) 

Sq with 

(16) 

where k = n - q -  Ejs. The evaluation is interpreted as follows: first introduce a new variable X, then 
perform all shuffles, and finally delete X from the result. Note that (16) is different from 7b, w ~/s~ W • • • 
W ~bq, for example, 

'OolllrhXlx=l='OO'ql+2'Oa'Oo while 'OoW~='Oorh+rhr to .  

For w ~ P *  and c ~ 6  a, we define ~Pc(W) = w--ac. For any polynomial d =  E ( d ,  7/~)~/,, we define 

 c(d) = E ( d ,  

Now let Xj = (X1j . . . .  , Xmj) be m indeterminates over R, for j > 0. For any n > 0, let 

n ~ o  1 tPc (F /k ; ; . i Jqq(n ) )X id ,  . .  XiqJq ' c . ( X o  . . . . .  x . _ , ) = 4 . c ( n o ) +  : E s l !  - s,  ! (17) 

where the second sum is taken over all those elements of 5aq such that EJs + q < n, and where s I . . . . .  sp 
are integers so that 

,q):(:: 
i 1 i 2 " ' "  i q  ot 1 ol 2 . . .  o~ 2 . . .  

v 

S1 S 2 

and (al ,  B1) < (a2,/32) < " ' "  < (ap, tip). For n = 0, we define 

C O :=-  C .  

Otp 

Sp 

We are now ready to introduce the second type of observation space associated to c, o~2(c ). This is 
defined as follows: 

o ~ 2 ( c ) = s p a n n ( c , ( # o  . . . . .  # ,_1)"  # i ~ n m ,  o < i < n - 1 ,  n > O } .  (18) 

We will see below that the elements of ~-2(c) are closely related to the derivatives of F[u]( t )  with 
respect to time. A central fact that will be needed in the proof  of our main result is that the coefficient of 
the generating series can be partit ioned into infinitely many sets of finitely many  elements such that the 
coefficient of each monomial  uO,)u ( j 2 ) . . .  u(Jp ) appearing when computing the derivatives y(S) only "'i l  ~'i 2 tp 

depends on elements of one of these sets. This can be proved directly, but the following lemma gives a 
useful expression. This formula is an analogue, proved by using different techniques, of a similar formula 
proved for state space systems, given in the paper  [4]. 
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Lemma 3.2. I f  u ~ ~/'T is of class c~,-a and T is admissible for c, then we have 

d" 
d t ;F~[u]( t )  = F~.(,(,) ...... . - , ( ,))[u](t) .  (19) 

Before proving this formula, we look at an example to illustrate its meaning. 

E x a m p l e  3.3.  For  n = 2, we have 

c2(X, ,  X2) =+c(~2)  + ~ ~kc(~°(2))Xm 
i=1  

m m 

1 o o  2 + Y'- q~c(F~°°(2)) X,o~o + E 7~b¢(F,/ (2))X, o + Y" ~bc(F~l(2))X,~ 
i<j  i=l  i=l  

= ( ' r / 0 ~ 0 ) - l c  q - E ( ( T ~ 0 ' O / ) - I c  q - ( ' O l g / 0 ) - l c ) g i 0  

-~ E ( ( ~ i ~ j ) - l c - ~ -  ( ~ j ~ i ) - l c ) X i o S j o - ~  - E ( ~ i ~ i ) - l c S i 2 o  -~ E ~ t l c X i l  . 
i <j 

Thus, for n = 2, formula (19) becomes: 

y " ( t )  = Fc:(u( t ) ,u , ( t ) )[u]( t  ) 

= F ~ , o . 0 r l ~ [ u ] ( t )  + E(F~,o.y~c[U](t)+ F~,,,o)-'~[u](t))u,(t) 
+ E (F~,nj ) ,~[u]( t )  + F % ~ , ) , ~ [ u ] ( t ) ) u i ( t ) u j ( t ) +  ~-"F~,n,),~[u](t)u2i 

i < j  

+ Y ' .Fn 'c [u] ( t )u ; ( t ) .  (20) 

Proof  of Lemma 3.2. For each ~, ~ P*,  define 0~(~/,)= FnT, ~ and for any polynomial d =  Y.(d, 7/~)~/~, 
define 

O~(d) = E ( d ,  ~/~)O~(~,) = Y~, (d,  7/~)Fn:a ~. 

Then (19) is equivalent to 

d" ~ o ~  l Oc(FiJ~":Te(n)) ( t )u} /° ( t ) ' "uU° ' ( t ) '  (21) y ( n ) ( t )  = - ~ F c [ u ] ( t  ) = = Sl !  . - .  Sp! 'q " 

in the other words, y(")(t) is a polynomial in u(t) . . . . .  u(")(t) whose coefficients are the 0~(~,)(t)'s, and 
the coefficient of u}J')(t) .. (J~) • Uiq ( t )  in y(")(t) is 

1_ O ( r J ' J q ( n ) ) ( t ) .  ( 2 2 )  
Sl! " Sp! c \  q . . . ,q  

Note that the right side of (22) can also be written as 

_ k s~ B~ ~2 S B z  
sl! • Sp! 

if u}/') • • • u!J~ ) = (u(&)V, • • • (u(&)V, where 

WI lIISlw2111S2w3111 . . .  IIISp-lWp 

= Wl lll W2111W2111 . . .  III w2  Ill W3111 . . .  III w3 ELl . . .  Ill Wp lll . . .  Ill W p .  

S1 $2 Sp _ 1 
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We now use induction to prove the lemma. From (13) we see that the conclusion is true for n = 1. 
Suppose the conclusion is true for n - 1. Consider the coefficient of ui,‘l’ * * . u,(‘q) in y’“‘. By 

inducation from formula (13) it can be seen that Cj, + q I n. First we assume that kj, + q < n. Let 
k = n - E j, - q. Suppose 

&I) . . . ,W = 
‘I 

,u ( ugv)s’ . . . ( uhlp)y))3p, 

where (q, &) < . . . -e (up, j?,). Further, we assume that & = 0 for r I 1. Let 

where 

and ~,=s;! . . . sit! if 

and 

I s,! . . . ($1 l)! . . . g e(wJJ(t) if r I I, 

i 
s,! . . . (,’ I)! . . . q e(wJ(t) if r> 1. 

Let 

v&> =91(t) + l , e,(q!::$(n - l))zp(r) . * * zqql). 
s,! . . . sp. 

By induction assumption, the coefficient of u,(,) . . . ~1’:’ in y’“’ (t) is the same as in r;(t). Thus, this 
coefficient is 8,(w)(t), where 

+5 ,...(,,‘1,!...,,!~:~“~~,~... WS,-‘1),~XB,II177a,XPr-1W ... 
r=l+l S1. 

Ill sp QXP” 

(23) 
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Notice  that  

1 
W 1 l l l r - l w  2 = -- 

r 

and 

Y. Wang, E.D. Sontag / Observation spaces 

r - 1  
E W lJJtw2 ]111 JJ-jr-l-tw 2 
t=0 

(wi w2s  1)1x=1 = ((w, I]lr-lw2S~ll[ W2 gfl-1 ) g)lg  | 

1{( r-1 ) X=I" : r  

Applying  L e m m a  3.1 to (23), we get 

W 
sl! • so! 

1 

Sl! . - -  C ' : : <  

In  the case q + EJs = n, the p roof  is virtually the same except that  k = 0, which leads to the fact that  the 
coefficient of  u~{ ') . . .  u (iq) in y (n - l )  is 0, so the last te rm in (23) disappears .  [] iq  

4. Main result 

In  last section we defined /Ta.ii/J)(n) and c , ( X  o . . . . .  X n _ l ) .  One can see that  % ( X  o . . . . .  X , _ 1 )  is a 
• t . .  q . 

polynomia l  on the Xi's  with coefficients belonging to o~-1(c ). Thus,  %(1% . . . . .  /~,-1)  is a linear combination 
of  elements of  ~ 1 (  c) for  each f i x e d  value of  (t~ 0 . . . . .  t x.  - a ). There  fore, 

~:2(c)  _c ~-1(c ) . 

But in fact, these two spaces are the same as we can see in the following theorem• 

Theo rem 1. I f  c is a power  series, the ~ 1 ( c ) = ~ 2 ( c ) .  

Proof .  We have shown that  ~-2(c) ___ ~1(c ) .  The  other direction is however  much  less trivial. N o w  for fixed 
posit ive integers k and i a, i 2 , . . .  , iq such that  1 < i I < i 2 < • • • <_ iq <_ m,  let 

Sk ( i l ,  i 2 . . . . .  iq) = { a ( 0  . . . . .  0 ,  il, i 2 . . . . .  iq): o ~ S n ) ,  

k 

where n = k + q and  S, is the pe rmuta t ion  group on a set of  n elements• Let  

~2k(il, i 2 . . . . .  iq) = {(7//1~//2.-. ~ / / . ) - lc :  ( l  1 . . . . .  ln) ~ s k ( i l ,  i 2 . . . . .  i q ) ) .  

Then  

o ~ ] ( c ) = s p a n n ( d ~ 2 k ( i  1, i 2 . . . . .  i q ) :  k > 0 ,  q > 0 ) .  

Thus  the theorem can be proved  by  showing that  

~2k( i 1, i 2 . . . . .  iq) __.~2(C) (24) 

for any k, q, and (il ,  i 2 . . . . .  iq ) .  N o w  fix k and (il ,  i 2 . . . . .  i q )  and put  the lexicographic order  on 
~ k ( i l ,  i 2 . . . . .  iq )  according to the order  of  (l  a, l 2 . . . . .  l , ) .  Wri te  the e lements  of  ~2k(i a, i 2 . . . . .  iq )  ordered 
as Y1, II2 . . . . .  Yr- Let  

= Jl  "'" Jq • O \  . ~ k ( i l ,  i 2 , . . . ,  iq) ( d = l ~ c ( F i l . . . i q  ( k ) )  js > I 
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Then  we have lak(i 1, i: . . . . .  iv) _c.~2(c ). Put the lexicographic order  on ~2k(il, i 2 . . . . .  i q )  according to the 
order  of (E j , ,  Jl . . . . .  jq). Notice  that  for each element  di ~ ~2k(il, iz . . . . .  iq) ,  there exist some posit ive 
integers aii  such that  

d i = ~ a i j ~ .  
j=l  

Let A be the matr ix  of  r colunms and infinitely m a n y  rows whose (i, j ) - t h  ent ry  is aij ,  i.e., A = ( a o ) .  
We claim that  A is of  full co lumn rank in the sense that  there is no nonzero  vector  v ~ R" such that  

Av  = 0. Suppose there is some v :~ 0 such that  Av = 0. Const ruc t  a po lynomia l  e in the following way: 

(e ,  r/h " "" vi i , )= 0 

if (l  1 . . . . .  lt) ~ Sk ( il, i2 . . . . .  i q) and 

(e ,  rll, ' ' '  ~ll,) = vi 

if (ll  . . . . .  l,) E Sk ( i>  i 2 . . . . .  iq) and (~lt, " ' "  ~l,) - l c  corresponds  to the i-th e lement  of  ~2k(il, i 2 . . . . .  iq). 
By the definit ions of  A and d, we know that  

e,(/~ 0 . . . . .  /x.,) = 0 for any  n. 

Therefore,  

d" 
dt"  Fe[u](O) = Fa"(~° ..... ~,, ,}[u](0)  = 0 

for any n and any analytical control  u, which implies that  Fe[u ] = 0 for any  analytical  controls.  Since 
analytical  controls  are dense in ~e" r (under  the L x topology),  it follows that  F e - 0. By L e m m a  2.1, e = 0. 
Thus,  v = 0, a contradic t ion to the assumption.  Hence,  A is of  full co lumn rank. 

N o w  let ~ ,  be the subspace of R r spanned  by  the first s row vectors  of  A. Then  

s e l  c ,2c . . .  . . . .  

Since .~e c R r for any s, there exists some s o > 0 such that  ~¢s =~¢s0 for every s > s 0. Let  A 1 be the s o × r 
submatr ix  of  A consisting the first s o rows of A. Then A = TAt for  some matr ix  T. Therefore  rank A1 = r. 
By the construct ion of Aa, we know that  

111 dl ) 

Y2 d :  
A 1 • = 

Yr d!so 

F r o m  the facts that  d~ ~.~-2(c) and A 1 is of  full co lumn rank, we get the conclusion that  Y, ~o~2(c ) for 
each i, therefore, (24) holds. 

Since k, q and (i 1, i 2 . . . . .  iq) were arbi trary,  we get the desired conclusion Owl(e ) =o~2(c ). [] 

5. Families of series and systems 

In  this section we consider families of  power  series. Let  A be a index set. We say that  c is a family  of  
power  series (parameter ized by  X ~ A)  if c := { c x : X ~ A }, where c a is a power  series for each fixed 2,. A 
family c can also be viewed as a power  series with coefficient belonging to the ring of functions f rom A to 
R, i.e, 

e = I2  ( c ,  n ,>n, ,  

where (e,  n,)  : A ~ N, (e ,  rh)()~) ~ (c  x, ~/,). 
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Let ® be the set of all families of  power  series. For  c, d ~ ® and 7 ~ R, yc + d is defined to be  the 
family of power  series ( ' / c  a + d x : k ~ A }. Thus  ® forms  a vector  space over  R. 

We say that  c is a convergent family if each m e m b e r  of  the family  is convergent .  For  any monomia l  
a ~ P*, a - lc  is def ined to be  the family { a - l c  ~' : ~k ~ A ). For  any  n > O, c . ( X  o . . . . .  X . _ I )  is defined to be 
the family 

{ c. (x0 ..... xo_l): X A}, 

where ~ = ( X  n . . . . .  Xi.,) are m indeterminates  over R,  i > 0. Apply ing  3.2, we have that  

d" 
dt----gFc~[u](t) = Fc~(u(o . . . . . .  . - , ( t ) ) [u ] ( t ) ,  (25) 

for  each k. 
As in the case of  single power  series, we associate to c two types of  observa t ion  spaces in the following 

way: 

~ 1 ( c )  := spann  { a - a c :  a ~ P *  }, 

~ 2 ( c )  := spann{en( /z0  . . . . .  /.tn_l): t~i~Rm, O<_i<_n-1,  n>__O). 

Note  that  ~ l ( e )  (respectively, ~ 2 ( e ) )  is formal ly  analogous to ~ 1 ( c )  (respectively, ~ 2 ( c ) )  studied 
before.  Using c and  d instead of c and d in the p roof  of  Theo rem 1, we get the following result: 

Theorem 2. I f  c is a family of power series, then ~ a ( e ) =  52(¢). [] 

N o w  consider a state space system 

Yc = go(x)  + Y~.uig,(x), y = h ( x ) ,  (26) 

where x( t )  ~ X, a ~ "  manifold,  go, gl . . . . .  g,, are cg~ vector  fields, and h a cg~ funct ion f rom X to R. 
One  type of observat ion space associated with (26) is 

F 1 := span a ( L g , ,  . . .  Lg,kh: k > 0) .  

For/~0 . . . . .  /~k-1 given, we let, for each x ~ X, 

dk ,=o y~o ' " ~ ' - ' ( x ) : =  dt---- ~ yx(t) ,  

where y~(t) is the output  corresponding to initial state x and  any  c~¢ input  u such that  u(J)(0) = /z j  for 
O < j < k - 1 .  

We associate to (26) a second type of observat ion space, as follows: 

F 2 := span n ( y"~ "" "~-~: /z i ~ R " ,  k > 0}. 

By a fundamenta l  formula  due to Fliess (see [3]), the i n p u t - o u t p u t  m a p  of (26) can be writ ten as 

y ( t )  =F~[u]( t ) ,  

where the family c is def ined by  (c,  ~/,~ - - -  7/,~) = Lg,, . . .  Lg, h, or, equivalently,  for  the output  corre- 
sponding to the initial state x, 

yx(t)  = Fc~[u] ( t ) ,  

where (c  ~, */i~ " ' "  */ik) = Lg,~ . . .  L g q h ( x ) .  Thus,  

gg,k ' ' '  gg i lh  = (C ,  ~i] "°° ]]i k ) = ( ( ~ i  1 " * "  ~ ik )  - l c '  ¢~)'  
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and ,  therefore,  

F, = {~d ,  qS): d ~  ~ t ( c ) } .  

By (25), we k n o w  tha t  y~O ... ~, , = F,.Z~, ...... , ,  ,)[u](0) = ~c{(#o . . . . .  /~k-1), ~ ) -  Hence ,  

F 2 =  { c a ,  q~>: d ~  ~ 2 ( c ) ) .  

So the fo l lowing  c o n c l u s i o n  follows i m m e d i a t e l y  f rom T h e o r e m  2: 

Corol la ry  5.1. For the state space system (26), F 1 = F 2. [] 
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