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On Generalized Inverses of Polynomial
and Other Matrices

EDUARDO D. SONTAG

Abstract—Necessary and sufficient conditions are given for a rectangu-
lar multivariable polynomial matrix to have a (weak) generalized inverse,
extending recent results for single-variable polynomial matrices obtained
by other authors.

I. INTRODUCTION

The noticn of the generalized inverse of a real or complex matrix has
found many applications in various areas of system theory. Motivated by
the emerging theory of multidimensional systems [3] and corresponding
problems for networks and large-scale systems, Bose and Mitra [4]
discussed in a recent article the extension of the idea of (weak) gener-
alized inverse to the case of matrices whose entries belong to a poly-
nomial ring or to the ring of integers.

Using reduction to Smith form, Bose and Mitra characterized those
matrices admitting a weak generalized inverse in the cases of the rings of
integers and of polynomials in a single variable. For the general case of
interest, that of polynomials in several variables, they proved only partial
results and left the solution open. (Independently of that work, Batigne
[1} obtained the same results for the case of integer matrices, with
analogous methods.)

We give here a complete characterization for the case of polynomials
in several variables. The gist of the solution is that a generalized inverse
forces the existence of a “Smith form™ for the original matrix. The paper
will treat the even more general case of matrices (and other linear
transformations) over arbitrary integral domains, both because this is the
patural way of posing the corresponding questions and because of the
various rings that appear in the theory of linear systems over rings [13),
[9); the treatment with the added level of generality has the same degree
of difficulty as that for polynomials.

In the case of rings of rational functions with no real poles, we shall
also construct a (full) generalized inverse, and will sketch an application
to an optimization problem arising in the study of families of systems.

1I. DEFINITIONS AND STATEMENT OF RESULTS

Throughout this paper, R will denote an arbitrary integral domain. Of
particular interest will be the example R=Clz,,-*,z,}, the ring of
polynomials in n variables with complex coefficients. A ring of real
rational functions will appear later.

A weak generalized inverse (WGI) of a (nonnecessarily square) matrix
A (also called a “{1,2)-generalized inverse” of A) is any matrix 8 such
that the following equations hold:

ABA=A )
BAB=B (2)

(cf. [2D. If A and By satisfy (1), then B:= ByA4 B, is WGI of 4. Thus, A
has a WG iff there is some B satisfying (1).
For polynomial rings the main result will be the following.
Theorem 1: The following statements are equivalent for a matrix A =
A(zy, -+ ,2,) over R=C[z,," - -,2,].
a) A has a WGI.
b) There exist square unimodular (= nonzero scalar determinant)
matrices P,Q over R such that A= PAyQ, with

I 0
Ag=| "
° ( 0 o)
where I_is the identity matrix of order r=rank A.
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¢) As a function of the complex variables (z,,- - .2,), the rank of

A(zy, - - .2,} is constant.
This result will follow from a more general result below, which applies
to general domains R. In particular, R = Z{z,,- - - ,z,] [4], the statement in

part b) above will remain the same except for the fact that “unimodular”
will now mean determinant = * 1. For the case of R= R[z,, - -,2,}, the
result will remain the same as Theorem | except that P, Q in part b) will
be matrices of real polynomials. Note that it is immediate that part b)
implies a), since

B:Q 4P

1s then a WGI of 4.

The sequel will involve concepts from commutative algebra, a good
reference for which is [5]. All undefined terms will be found in this
reference. “Module™ will always mean R-module, “linear” will be R-lin-
ear. An R-field will be any R-algebra which is a field. The tensor product
“®” will mean tensor product as R-modules or of R-linear maps, and
“projective” will mean finitely generated projective R-module. Composi-
tion of maps will be denoted by juxtaposition. Throughout, M and N
will be two arbitrary but fixed projective modules and A:M >N a linear
map; A® K will be the map A®1,. As before, a WGI of 4 will be any
linear B:N— M satisfying (1), (2).

Definition: A splits iff the image of A is a direct summand of N.

Remark: The above means that A4 splits iff there is a factorization

A=DC 3)

with
C:M—S onto 4)

and
D:S— N one-to-one (5)

such that, further, S is projective and there exist C:S—>Mand D;:N->S
with CC, = D, D =identity of S. Equivalently, 4 splits iff
coker A= N/Im A is projective.

(6)

The main result is then the following.
Theorem 2: The following statements are equivalent.
a) A has a WGI.
b) A splits.
¢) A®K has a constant rank, independent of the particular R-field
K.

The statement ¢) can be simplified somewhat in the (present) case of
R =integral domain, although the general statement is desirable since the
proof will be valid in more generality (R with connected spectrum).
Specifically, it is enough to consider the cases K = quotient field of R
and K =all fields of the type R/J,J a maximal ideal of R. Furthermore,
if R is Jacobson-semisimple (= the intersection of all maximal ideals is
zero), it is enough to check c) for the fields R/J. Thus, for R=
Clz).- - - ,2,], which is semisimple, c) corresponds to checking the rank of
A®@K for each J=ideal of functions zero at some point of C”, by
Hilbert’s Nullstellensatz. When A is a matrix, this becomes condition c)
of Theorem 1.

Conditions b) of Theorems 1 and 2 are also equivalent for polynomial
rings. Indeed, by the Quillen-Suslin theorem [10], the S in (4)—(5) is free,
and bases can be chosen for M, N so that A has the matrix Aq given in
(6) of Theorem !: P,Q are the corresponding base change matrices.
Thus, Theorem | follows from Theorem 2.

II1.  PROOF OF THEOREM 2

We shall prove first that b) is equivalent to c).

b) implies c): With the notations in (4)-(5), the fact that R is a domain
(having, therefore, a connected spectrum and thus the rank being well-
defined for projectives) implies together with b) that the K-vector space
S ® K has constant dimension. Further, the fact that A splits implies that
C®XK is onto and D ® X is one-to-one. The dimension of S ® K is then
equal to the rank of A, since A® K has the full rank factorization

ABK=(DRKNC®K)
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by functoriality of — ® K. Therefore, the rank of A® K is also indepen-
dent of K.

c) implies b): Using the characterization in (6), it must be proved that
coker A is projective. Projectives being locally free |5, Theorem 11.5.2.1],
one may consider the various local rings R, obtained localizing R, and
prove that (coker A)® R, is free. But — @R, being flat, the latter is the
cokernel of 4® R,. The hypothesis c) is again true over R, (an R,-field is
also an R-field), so

(coker AQR,)® K=coker AQ K

has constant dimension. This is the situation in (5, Proposition 11.3.2.7),
form which one concludes that (coker 4)® R, is free, as wanted.

We now prove that a) and b) are equivalent.

b) implies a): With the notations in (4)-(5). let B:C,D,. Then

ABA=(DCYC D\ (DC)=D(CC,)(D,D)C=DC=4
and
BAB=(C\D)DCYC,D)=C(D,DNCC)Dy=C D, =B.

Thus, B is WGI of 4.
a) implies b): Let B be such that 4BA = A4. Denote

L:=AB:NN.
Then,
LL=(AB)(AB)=(ABA)B=AB=1,
so L is idempotent. Therefore,
S:=image of L

is a direct summand of N. But the equalities .= A48 and 4 = LA imply
that 4 and L have the same image: so the image of 4 is a factor of N as
wanted.

Remark: 1) There are various ways of checking the criterion c) when
A is a matrix (M,N =free). For example, if A is of rank r, then c) will
hold if and only if the ideal generated by all the r minors of A is the unit
ideal of R, a condition that can be checked for polynomial rings via
resultants. When R is a principal-ideal domain (PID) this condition is
equivalent to requiring that the greatest common divisor of all the
r-minors be a unit. In the PID case, moreover, the conditions are
cquivalent to all the invariant factors of 4 being units; this is in fact the
characterization obtained by Bose and Mitra and by Batigne for the
integers and for polynomials in a single variable.

2) For the case of R=Clz,,---,z,], the condition given for the ex-
istence of a WGI is one of no common zeros of the r-minors, which
define hypersurfaces in C”. Whether having a WGI is a “generic”
property or not (for arbitrary A of a given size) depends therefore on the
relation between the dimension of A and the number of variables .

3) It is interesting that, with the terminology of [13], [14], an in-
put/output map over a ring “splits” if and only if its Hankel matrix (and
corresponding reachability and observability matrices) admit a WGI.
This may have (as yet unexplored) consequences for the realization and
identification of split systems (delay-differential, etc.).

4) There is a connection between the results of this paper and theo-
rems of Dolezal and of Silverman and Bucy (see [12]) about matrices
over a ring of real-analytic functions in one variable. The results of these
authors ensure that an analytic basis exists for the kernel of such a
matrix. From this it is possible to deduce the existence of a WGI for a
constant-rank matrix over one-variable analytic function rings. In fact,
since these rings are “elementary divisor rings” (see [6]) “Smith forms™
exist over them, and the results of Bose—Mitra-Batigne mentioned
before already apply. Of course, as soon as rings of functions in more
than one variable are considered, the methods in this paper become
essential.

IV. GeNERALIZED INVERSES OVER CERTAIN RINGS

The usual (Moore-Penrose) generalized inverse (GI) of a real matrix
A is a WGI B which in addition to (1), (2) also satisfies the properties
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(AB)Y = AR @]

(BA)Y = BA (8)
where the prime indicates transpose. For complex matrices this defini-
tion is extended with the prime meaning conjugate transpose, but over
more arbitrary fields there is in general no satisfactory definition of GI
(see for instance [8], [15]). We shall not attempt here to define a GI over
arbitrary rings; rather, we shall restrict ourselves to a particular ring,
representative of those appearing in various applications.

Consider

R=R[z,. - (9)
the ring of rational functions a(z,,- - -.,z,)b(z), - ,2,)” ' with real coef-
ficients and with b(z,, - -,z,)#0 for all (z;,---.z,) in R". A Gl of a
matrix A over R is then a matrix B (also over R) satisfying (1), (2), (7),
and (8). The standard uniqueness proofs carry over to this case, and the
unique such B will be denoted by 4 *. if it exists. The main result here is
the following.
Theorem 3: The following statements are equivalent for any matrix A

over R.

a) A has a GI.

b) A has a WGI.

¢) A has constant rank over ail (z,.---.z,) in R”

d) A can be written as PAgQ, with P,Q unimodular R-matrices
,2,) in R") and

2,00

(= having determinant +0 for all (z,,- -

I 0
Ao ( 0 o)'
with I being the identity matrix of order r=rank A.

The equivalence of the last three statements is proved in a way
analogous to that of Theorem 1, as a consequence of Theorem 2. (In
fact, it can be also proved directly from the real version of the former,
writing A = g~ 'A, with A4 a polynomial matrix and ¢ a polynomial.) To
complete the proof of Theorem 3 one then needs only to prove that, say,
d) implies a) [since clearly, a) implies b)}.

Let P,Q be as in d). Denote

C:=(I,090

D= P( % )
0
Then A=DC, and C,D both have rank r when evaluated at each
(24, - .2,) In R". Thus the square matrices CC’ and D’D are both

invertible when evaluated at each (z,,- - - ,z,). and hence over the ring R.
Defining
A*t:=cC(ccH (p'D) 'D, (10)

it is easy (and standard) to prove that A is the GI of 4.
An example of a matrix A for which the above theorem fails is (with
n=1) A:=(z,). Calculating pointwise the GI of this 1X | matrix one

obtains
()

A(0)* =(0).

for z+0,

and

Since (by uniqueness) A *(z)=A(z)*. A" is not in R (i.e., it is not given
by a rational function with a nonzero denominator). The rank of this 4
degenerates at zero. (Of course, A being here square means that the
above machinery is not really needed.)

The implication proved above is valid for other rings of real functions;
the basic property needed is that a nowhere zero function be invertible,
as for instance with R above or with the ring of real-analytic functions.

Some system-theoretic applications of generalized inverses were men-
tioned in the paper of Bose with Mitra [4]. The above ring appears
naturally when using the theory of systems over rings in the study of
“families of linear systems” [7], which anse, for instance, in relation to
identification problems or in the study of some large-scale systems [9].
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An example of such an application is the following. Assume that

X (14 1) = Fux(1+ 1)+ Gyu(t+1) an

describes the time-evolution of a family of linear systems, one for each
value of the vector parameter A in R”. Furthermore, assume that the
parameterization has a reasonable algebraic structure, in this case, by
rational functions of A with no real poles. Consider the problem of
obtaining a minimum-energy control u(0),- - - ,u(¢+— 1) transfering an x,
into x(¢)=0 (fixed ). The problem is, for each system (each A) that of
calculating the GI of the reachability matrix

R, =[Gx FaGrr -+ FL Gy}

Rather than calculating the GI for each value A, it is clearly desirable to
be able to calculate Ry as a function of A, having the same algebraic
structure, i.e., of computing a GI over the ring R considered above. This
is accomplished by the above methods. Other applications are given by
the family-of-systems analogs of those in the paper of Lovass-Nagy et al.
[11].

Remark: There is in fact a simple algorithm to find A * when it exists.
Let B be a matrix over the field of rational functions calculated using
formula (10) from a full-rank factorization of the original matrix A over
the field. This construction is well-defined since the rank of A is the
same locally and over the rational function field; in fact, rational
functions over the reals give a field over which the setup in (8] applies. 4
prioiri B is then a matrix whose entries may have real poles. But for
every (z,,---.z,) not a pole of B, B(z) is the GI of A(2), i.e, 4%(2)
(existence of the latter being assured by the theorem). Since such
(z),-- - .2,) form a dense subset of R”, and since two rational functions
equal on a dense set are equal everywhere, then B=A4*. Thus, the latter
can be calculated in a rather straightforward way.

As a (simple) illustration of the above procedure, let (with x=z,,y =

z,),
A= ( x y xt+y+1 )
v o xy+rolityy
It is clear that 4 has rank one at every x,y. Calculating a full rank
factorization over the rational function field one obtains

P-(I 0),
xy 1

x y x +y+1
o=lo 1 0

0 0 1

Note that Q is not unimodular, since its determinant vanishes at x =0.
However, calculating 4 * through (10) resuits in

1 Xy
A+ =(ab)”! y x?
x24y+1  p(x2+y+1)
where
a= CC'=x2+y2+(x2+y+l)2
and

b=D'D=1+(x)%

Since both a,b have not real zeros, 4 * is indeed well-defined over the
ring R.

V. CONCLUSIONS

Weak generalized inverses were studied for matrices (and other linear
maps) over integral domains, and a characterization was given of those
matrices admitting a WGI. For rings of real functions these definitions
can be extended to treat generalized inverses, which possess the usual
optimization properties.
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As a suggestion for further research, it appears that an interesting next
step would be that of studying the existence of other generalizations of
A", having optimality properties with respect to the rings in question,
even if A* itself does not exist.
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