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0. Outline

The inner rank of an m X n matrix A over a ring is defined as the least integer 7
such that A can be expressed as the product of an m Xr and an r X n matrix. For
example, over a skew field this concept coincides with the usual notion of rank. A
ring homomorphism R = § is said to be rank-preserving if each matrix over R has
the same inner rank over R as its image has over S. Such a homomorphism is
necessarily injective, since a matrix has inner rank 0 if and only if all its entries are
0.

It is a theorem of P.M. Cohn [10] that every semifir has a rank-preserving
homomorphism to a skew field, and in this paper we study the rings which share this
property. In Section 1, Cohn’s prime matrix ideal theorem [8] is used to show
that the rings in question are precisely those for which Sylvester’s law of nullity holds.
For this reason we will call such rings Sylvester domains.

In [3], Bedoya and Lewin show that a two-sided Noetherian domain R is a
Sylvester domain if and only if the global dimension of R is at most 2 and R is
projective-free (that is, every finitely generated projective R-module is free of
unique rank). For the “only if”” part, essentially stronger statements can be made in
general. In Section 2 it will be proved that every Sylvester domain has weak global
dimension at most 2, and all its flat modules are directed unions of free sub-
modules; further a Sylvester domain must have IBN (that is, invertible matrices are
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244 W. Dicks, E.D. Sontag

square, or equivalently, every free module has unique rank). Let us see how close
these three necessary conditions come to being sufficient. Consider those rings with
IBN over which every flat module is a directed union of free submodules: where the
global dimension is 0 these are precisely the skew fields; where the global dimen-
sion is 1 these are precisely the seiifirs that are not skew fields, and by Cohn’s
Theorem [10] these are all Sylvester domains; where the weak global dimension is
2 the rings can fail to be Sylvester domains, as will be shown in Section 6 by
examples provided by G.M. Bergman. Thus the problem is to determine which
rings of weak global dimension 2 are Sylvester domains.

To decide whether a one-sided Ore domain has a rank-preserving homomor-
phism to a skew field it suffices to consider the usual skew field of (left or right)
fractions. We show in Section 2 that a two-sided Ore domain is a Sylvester domain
if (and only if) the weak global dimension is at most 2 and every flat module is a
directed union of free submodules. This gives an answer to the problem raised by
G.M. Bergman [4, p. 150], [8, Exercise 5.5.12°] of characterizing commutative
Sylvester domains. In Section 3 we deduce that a right coherent two-sided Ore
domain is a Sylvester domain if (and only if) it is projective-free and has weak
global dimension at most 2. This generalizes the main result of [3]. In Section 4 we
briefly discuss some commutative Sylvester domains.

The immediate example of a ring satisfying the conditions of the Bedoya-Lewin
result is the polynomial ring in one indeterminate over a principal ideal domain,
since this is Noetherian of global dimension at most 2 and projective-free. The
latter fact is Seshadri’s Theorem [18] and the fascinating aspect here is that an
analysis of Seshadri’s proof uncovers a rank-preserving homomorphism. Although
a rank-preserving homomorphism was to be expected, and gives no information
beyond the fact that projectives are free, the extension of Seshadri’s argument to
free algebras over a principal ideal domain, cf. [2, p. 212], does give new informa-
tion and enables us to show, in Section 5, that such free algebras are Sylvester
domains. Besides providing further interesting examples of Sylvester domains, such
as all free rings, this has applications to free radical rings in Appendix II.

In Section 6 it is proved that the coproduct of Sylvester domains amalgamating a
skew field is again a Sylvester domain. This is quite a natural result in light of the
fact that interest in rank-preserving homomorphisms to skew fields developed (via
semifirs) from Cohn’s investigation of the coproduct of skew fields amalgamating a
skew field.

Appendix I consists of some work of G.M. Bergman related to Sylvester’s law of
nullity. His results for example give a surprising connection between finitely
generated projectives and mappings to skew fields, for (semi) hereditary rings.

This article evolved from one of the authors (EDS) obtaining, independently of
[3], the main result of [3]. His argument suggested the statements and proofs in
Sections 2 and 3 to the other author (WD) who then carried on to obtain the other
results.
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We are grateful to G.M. Bergman for his permission to include Appendix I, and
we thank him and P.M. Cohn for their comments, from which this work has greatly
benefitted.

1. A characterization of Sylvester domains

We begin by recalling the essential result of Cohn [8, Chapter 7], referring the
reader to [8] or [16] for a proof.

Given aring R and a homomorphism from R to a skew field, we can form the set
P of all square matrices over R that are mapped to singular matrices over the skew
field. This set P is easily seen to have the following properties:

(1) The 1 X 1 matrix (1}is notin P.

2) For any square matrices A, B their diagonal sum (§ )isin P if and only
if Aor BisinP.

3) For any matrix A and columns b, ¢ if (A b), (A c) are square matrices
that belong to P, then (A b +c¢)is in P. Similarly for columns in positions
other than the last. Similarly for rows.

4) Every non-full square matrix is in P,

where a square matrix is called full if its inner rank equals its order, and non-full
otherwise.

Over a ring R, a set of square matrices satisfying (1)—(4) is called a prime matrix
ideal. Given a prime matrix ideal P over R we can consider the homomorphism
R - Rp which is universal with the property that each square matrix over R that is
not in P becomes invertible over Rp. What Cohn has proved [8, Theorems 7.5.3,
7.2.2] is that Rp is a local ring, and that each element of P remains noninvertible
over Rp. Thus if we write Rp/P to denote the residue skew field of Rp, then P is
precisely the set of those square matrices that are mapped to singular matrices over
Rp/P. It follows that there is a bijective correspondence between the set of prime
matrix ideals, P, and the set of (the usual equivalence classes of) ring epimorphisms,
R - Rp/P, from R to skew fields.

A homomorphism from R to a skew field is called fully-inverting if the image of
each full matrix is invertible. By Cohn’s Theorem then, R has a fully-inverting
homomorphism to a skew field if and only if the set of non-full square matrices is a
prime matrix ideal over R. This is clearly the smallest set for which (4) is satisfied,
and the conditions under which (1)-(3) are also satisfied by the set of non-full
square matrices are as follows:

(5) R is nonzero.
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(6) The diagonal sum of square full matrices is full.

(7) If (A b), (A c¢) are square non-full matrices, then (A b +c) is non-full,
and similarly for rows.

These rather technical conditions will be used in the proof of the main result of
this section. We will also need the following result that has proved extremely useful
on many occasions, cf. [8, 10]. An m X n matrix is left full if its inner rank is m.

Lemma 1 (Cohn). If A is a left full matrix that does not remain left full when the first
column is deleted then there is a factorization

o as() )

where B is square and C has one less row and column than A. When this happens B is
full and C is left full.

Proof. Say A is m X n, and write A =(d D) where d is mx1, D is mXn—1, not
left full. Then D = EC where Eismxm—1,Cism—1xn—1. Now

A=(d D)=(d E)(é g)

is the desired factorization. It is clear from (8) that if B is not full or C is not left full
then A is not left full.

The following result, abstracted from [10, Theorem 2], will enable us to show
that every fully-inverting homomorphism to a skew field is rank-preserving.

Proposition 2. If R is a ring such that the set of full matrices over R is closed under
products (where defined) and diagonal sums, then the inner rank of a matrix over R is
the maximum of the orders of its full submatrices.

Proof. Without loss of generality R is nonzero. Let A be an m X n matrix of inner
rank r, say A = BC is a minimal factorization (that is, B is m Xr, C is r xn). The
proof that A has a full r xr submatrix (clearly the largest possible) will be by
induction on n + m. Since the product of two full matrices is again full by assump-
tion, it suffices to show that B, C have full r X r submatrices, and by symmetry it
suffices to consider C. Now C is left full, and if it remains left full when the first
column is deleted then the induction hypothesis guarantees that the truncated
matrix, and hence C, has a full r X r submatrix. Thus we may assume that C does
not remain left full when the first column is deleted, so by Lemma 1 there is a
factorization C =D(; g) where D is full and E is left full. By the induction
hypothesis E has a full r—1xr—1 submatrix, so by the assumption that the
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diagonal sum of full matrices is full, 6 ,Og) has a full » X r submatrix. Now the product
with D is the desired r x r full submatrix of C.

Let us now introduce the rings that will turn out to have a rank-preserving
homomorphism to a skew field. A nonzero ring R is called a Sylvester domain if it
satisfies Sylvester’s law of nullity:

9) If Aisan m Xn, and B an n X s matrix over R, then
p(AB)=p(A)+p(B)—n,

where p denotes the inner rank. For n =1 this says that R has no proper
zerodivisors.

Examples (i) (Sylvester [19]) A field is a Sylvester domain.

(i) (Cohn [8, Proposition 5.5.5]) A semifir is a Sylvester domain. (Bergman
remarks that “sylvester” meaning *‘of the forest” is a very appropriate name for a
generalization of “fir’.)

It is more practical to have Sylvester’s law of nullity expressed in the following
apparently weaker form:

(10) If A is an m X n, and B an n Xs matrix over R such that AB =0 then
n=p(A)+p(B).

Clearly (9) implies (10), and to see the converse suppose that C is an m Xxn and D
an n X s matrix over R and let EF be a minimal factorization of CD. Taking

A=(C E),Bz(_l;)

we can apply (10) and the conclusion is n +p(CD)=p(A)+p(B) since the number
of columns of A is n +p(CD) by choice of E, F. Now p(A)+p(B)=p(C)+p(D)is
clear, so (9) is verified.

Let us now prove the following consequences of Sylvester’s law of nullity:

(11) For any matrices A, B over a Sylvester domain

p(g g) =p(A)+p(B).

(12) Over a Sylvester domain, if three matrices A, B, C have the same number
of rows, and if p(A B)=p(A C)=p(A), then p(A B C)=p(A).

By partitioning a minimal factorization of (0 5)we may write

(o &)-()o
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where the number of columns of X is p(y 8). Now XY'=0 so by (10) we have

A 0 A 0
2p(X)+p(Y)Zp(XY)+p(X'Y)=p(A)+ BZ( )
oy p)=P0+o(Y)=p(XV)+p(X Y )= p(A)+pBY=p (o o
which proves (11). To see (12), partition minimal factorizations of (A B), (A C),
say (A B)=D(E E"), (A C)=F(G G'), and A=DE=FG are minimal
factorizations of A. Thus the number of columns of (D F)is 2p(A) and

(D F)(_i) =0

so by (10) we have
E
20(4)2p(D F)+p(__)=0(D)+p(G)=p(DE)+p(FG)

=p(A)+p(A).

It follows that p(D F)=p(A), say (D F)= H(J K) where the number of columns
of His p(D F)=p(A). Then

(A B C)=(DE DE' FG')=(HJE HJE' HKG')
=H(JE JE' KG")

which shows p(A B () is at most the number, p(A), of columns of H. This proves
(12).

Let us digress briefly to recall why semifirs are Sylvester domains. One of the
characterizations of semifirs is that they are the nonzero rings which have the
following property:

(13) If AB =0 then there exists an invertible square matrix U such that
AU =(C 0), U 'B=(p), and the product of these is “trivially’ zero,

and this condition clearly implies (10).
Returning now to arbitrary rings, we can state and prove the main result of this
section.

Theorem 3. For any ring R the following are equivalent:
(i) The set of non-full matrices over R is a prime matrix ideal.
(i1) R has a fully-inverting homomorphism to a skew field.
(ii1) R has a rank-preserving homomorphism to a skew field.
(iv) R is a Sylvester domain.

Proof. (i)=> (ii)is Cohn’s Theorem [8] mentioned at the beginning of this section.
(i1) = (ii1). Let R - K be a fully-inverting homomorphism to a skew field. Then
the set of full matrices over R is closed under products (where defined) and
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diagonal sums, since the same is true for the set of invertible matrices over K. By
Proposition 2 the inner rank over R is then determined by the full submatrices, and
as these are preserved by R - K, this homomorphism is rank-preserving.

(111) = (iv) follows from the fact that a skew field is a Sylvester domain.

(iv) = (i). Since Sylvester domains are nonzero by definition, it remains to verify
(6), (7). From (11), (6) is immediate. To see (7), let A be an n X n — 1 matrix, b, ¢ be
n x 1 matrices and suppose (A b), (A ¢) are non-full. We wish to show that
(A b+c¢) is non-full and this is immediate if p(A)<n—2, so we may assume
p{A)=n—1. But then p(A b)=p(A c)=p(A)=n-1, so by (12), p(A b ¢)=
n—1. Now

I 0
(A b+c)=(A b )0 1
0 1

has inner rank at most n — 1 so is non-full. By symmetry, the analogous result holds
for rows.

The proof of (i1)=> (iii) above is similar to Cohn’s proof [10] that a semifir has a
rank-preserving homomorphism to a skew field; the proof of (iv)=> (i) is an exten-
sion of Cohn’s proof [8] that a semifir has a fully-inverting homomorphism to a
skew field.

In [8, Theorem 7.6.5] Cohn shows that if R is a Sylvester domain and P is the set
of non-full square matrices over R then the local ring Rp is already a skew field. Let
us now use a proof similar to Cohn’s to get a generalization that will be used in both
Appendix I and Appendix II. The statement is rather complicated since it has been
set up to apply to two quite different situations.

We recall the following from [8, Section 7.1]: For any set 3 of matrices over a
ring R there is a universal X-inverting homomorphism R - R, which is universal
with the property that the image of each element of X is invertible. If 1€ X and
whenever A, B¢ 3 then

(5 5)es

for any matrix C of the appropriate size, then we say X is multiplicative ; and when
this holds, every element of Rs is an entry in the inverse of some element of X, by
the proof of [8, Theorem 7.1.2].

Proposition 4. Let 3 be a multiplicative set of square matrices over a ring R, and let
R > 85- Rs - T be ring homomorphisms where R -~ Rs is the universal X-inverting
map. Suppose the following conditions hold

(14) Over S the image of each element of ¥ is full.
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(15) Each square matrix over S that is a left factor of the image of some
element of 2 becomes invertible over Rs.

(16) Each square matrix over R that is full over S remains full over T.

Then Ry - T is an embedding.

In applications S will be either R or Ry, and (14), (15) will be readily verifiable. For
example, suppose P is a prime matrix ideal and & is the set of square matrices not in
P, so Ry = Rp. If we take § = Ry then, as this is a local ring, (14), (15) are clearly
satisfied. If we take now T = Rp/P the proposition says that if each square matrix
over R that does not become invertible over Rp becomes non-full, then Rp is
already a skew field (and conversely). This obviously applies to the above
mentioned case dealt with by Cohn where every element of P is already non-full
over R.

Proof of Proposition 4. Let r be an element of Ry that is mapped to zero in T. By
the remarks preceding the statement of the proposition, there is, for some integer n,
an n X n matrix A € £ and an equation Ax +a =0 over Ry witha€"R,

X1
x=| - le"Rj5,
Xn

x; =r for some /, say i = 1. Here, and throughout the proof, we use the same symbol
to denote an element and its image; for this to be meaningful it is necessary to
specify the ring where the image is being considered. In R, partition A =(a; A))
where a, is the first column of A, and write A*=(a, a A,). Then in Rs, A* left
annihilates the transpose of (x; 1 x>...x,). Since x,(=r) is assumed to map
to 0in T, (a A,)becomes non-full over T, and hence is already non-full over § by
(16).Since A€ X, A and hence A*isleft full over S by (14); but we have seen that A*
does not remain left full over S when the first column is deleted. Hence by Lemma 1
there is a factorization

a=y o)

over S, where B is square and, as a square factor of A over §, becomes invertible
over Rs by (15). Hence over R,

10 -
=B A*
b o)

left annihilates the transpose of (x; 1 x;---x,) and so x; =0 in Rs. This shows
that Rz - T is injective.
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2. Rings over which all full matrices are non-zerodivisors

The problem remains that Theorem 3 is not readily applicable even in the
commutative case, and it would be useful to have a characterization as convenient
as the Bedoya-Lewin result. An approach that turns out to be illuminating is to
consider the class of rings whose full matrices are non-zerodivisors. Clearly this
class contains the class of all Sylvester domains, and for example these two classes
have the same intersection with the class of all domains with a one-sided Ore
condition, since over such domains the matrices that are non-zerodivisors are the
ones that become invertible in the usual skew field of fractions.

To make the statement of the next result more manageable we introduce the
following terminology. A module will be called spacial if every finite dependent
subset lies in a submodule generated by fewer elements; that is, if a dependent
subset has n elements then it lies in an » — 1 generator submodule. A module with
the weaker property of being a directed union of free submodules will be called
locally-free. A module is said to have local-rank n if n is the least integer such that
any finite subset lies in an n-generator submodule. For example, the local-rank of a
finitely generated module is the minimum number of generators. Another example
is that of a locally-cyclic module, such as the field of fractions of an integral domain,
which has local-rank 1.

Recall that for a ring R the right annihilator of a subset X of R" is the set of all
y € "R such that xy =0 for all x € X. The left annihilator of a subset Y of ™R is
defined dually. By the right annihilator of a matrix A, we mean the right annihilator
of the set of rows of A, and dually for the leftr annihilator of A. If the right
annihilator of A is 0 then A is said to be right regular, and dually for left regular. If
A is left and right regular it is said to be regular or a non-zerodivisor.

Theorem 5. For any ring R the following are equivalent:
(i) Every full matrix is left regular.

(1) Every left full matrix is left regular.

(ii1) Every free left module is spacial.

(iv) Every flat left module is spacial.

(v) The right annihilator of every nonzero matrix A has local-rank less than the
number of columns of A.

(vi) The right annihilator of every nonzero row vector a has local-rank less than the
length of a.
Further, when these hold, the kernel of any homomorphism between spacial right
modules is again spacial.

Proof. (i)=> (ii). Assume (i) and let A be an m X n matrix of inner rank m. We will
prove by induction on n that A is left regular. If the matrix obtained by deleting the
first column of A is left full then A is left regular by the induction hypothesis. In the
contrary case, Lemma 1 implies that there is a factorization A = B(}, &) where B is
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full, so left regular by (i), and C is left full so left regular by the induction
hypothesis. As a product of left regular matrices, A is then left regular.

(ii)=> (iv). Let M be a flat left R-module. Any finite dependent subset of M can
be arranged to form a column, say X € "M, and by dependence there is a nonzero
A€ R" such that AX =0. By flatness this comes from an R-relation, say AB =
0, X = BY where B is an n X m matrix over R and Y € "M, for some m. Since B is
not left regular it is not left full, by (ii). Say B=CD where C isnXn—1and D is
n—1Xm. Thus X = BY = C(DY) and the elements of X lie in the n — 1 generator
submodule of M generated by the entries of DY. This proves that M is spacial.

(iv) = (iii) is obvious.

(iii) = (ii), since each of the following statements implies the next. Every free left
R-module is spacial. For every m, n any set of m dependent elements of R" lies in
an m —1 generator submodule. For every m, n any m X n matrix that is not left
regular is the product of an m xm ~ 1 and an m — | X n matrix. Every matrix that is
not left regular is not left full. Every left full matrix is left regular.

(Alternatively we could have proved (ii) < (iii) by this argument, and proved
(iii)= (iv) (hence (iii)¢>(iv)) by using the fact that a flat module is a direct limit of
free modules [15], and a direct limit of spacial modules is spacial. The approach
used actually proves the small part of Lazard’s argument that we really need.)

(ii} & (v). Let A be a nonzero m X n matrix. Any finite set of columns in the right
annihilator of A can be arranged to form a matrix B such that AB = (). Now for any
minimal factorization B = CD, D is left full so left regular by (ii)so AC =0. Thus C
is not left regular so by (ii) is not left full. It follows that C has at most n — 1
columns. Now the columns of B = CD lie in the submodule (of the right annihilator
of A) generated by the columns of C, which shows that the right annihilator of A
has local-rank at most n — 1.

(v)= (vi)is clear.

(vi)=>(1). Let A be an » X n matrix and suppose that @A = 0 for some nonzero
a € R". Then the columns of A lie in the right annihilator of «, which has local-
rank less than s, Then the columns of A lie in an n — 1 generator submodule of "R, so
A is not full.

Assume now that (i)-(vi) hold and that a«: M - N is a homomorphism between
spacial right R-modules. Any finite dependent subset of Ker & can be arranged to
form a row, say X € (Ker a)™. Factor X = YA with Ye M", A’R™ and r minimal.
Then A has inner rank 7 (so is left regular), and since M is spacial r <<m and the
elements of Y are independent. Now a(Y)e N™ and again there is a factorization
«(Y)=ZB where the elements of Z are independent. Then

O=a(X)=a(YA)=a(Y)A = ZBA.

Since Z is independent and A is left regular it follows that B=0 so a(Y)=0.
Thus Y € (Ker @) which proves that Ker « is spacial. O
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Thus we have a substantial number of conditions equivalent to every full matrix
being regular; we leave the formulation of these to the interested reader, and for
now only record the following corollary.

Theorem 6. If R is a Sylvester domain then R has weak global dimension at most 2,
and every flat R-module is locally-free.

Proof. Over a Sylvester domain every full matrix is regular, so the conditions of
Theorem 5, and their duals, hold, so every flat module is spacial, hence locally free,
and the kernel of any homomorphism between spacial modules is spacial, which
says that the kernel of any homomorphism between flat modules is flat. Thus the
weak global dimension is at most 2.

Together with the obvious fact that Sylvester domains have IBN, this shows that
Sylvester domains are projective-free.

In Section 6 we will see examples that illustrate the distinctions between being a
Sylvester domain, having every full matrix regular, and having every full matrix left
regular. These examples will show in particular that the converse of Theorem 6 can
fail in an interesting way.

Now let us observe that the converse of Theorem 6 holds for two-sided Ore
domains.

Theorem 7. For any two-sided Ore domain R the following are equivalent:
(1) R is a Sylvester domain.

(i) The weak global dimension of R is at most 2 and every flat right R-module is
locally-free.

(iii) The right annihilator of every matrix is locally-free.

(iv) The right annihilator of every row vector is locally-free.

(v) Every full matrix is left regular.
These statements are further equivalent to their left-right duals.

Proof. (i)= (ii)=> (ili) = (iv) for any ring R.

(iv)= (v) for any right Ore domain R. Let K denote the skew field of right
fractions, and let @ be a nonzero row vector of length n over R. If the right
annihilator of o contains n right R-independent elements, then these are right
K-independent and this is impossible since a is nonzero. So the right annihilator
of a does not contain n right R-independent elements, and as it is locally-free by (iv),
it has local-rank at most n —1. Now by Theorem 5, (v) holds.

(v)=> (i) for any left Ore domain R. Any full matrix over R is left regular over R
so remains left regular over the skew field of left fractions of R, so becomes
invertible. Thus R has a fully-inverting homomorphism to a skew field, which
implies that R is a Sylvester domain, by Theorem 3.
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It seems worthwhile at this point to record the following consequence of the
above arguments (and also implicit in [3]) which provides a source of examples of
matrices that cannot have the same inner rank over a ring R and over a skew field
containing R. Suppose that some left R-module M has a free resolution

n A] n A() n
>R >R 5R™ M 0.

If M has projective dimension at least 3, or more generally, if the kernel of A, is

not free, then A, cannot be written A; = BC where B is right regular and C is left
regular. For if it can, then as B is right regular the rows of C lie in, and hence
generate, the left annihilator of Ay: and as C is left regular the rows of C are left .
R-independent. Thus the kernel of A, is free, a contradiction. For example, if k is

a field, the Koszul resolution for the ring R = k[x, y, z] is a minimal resolution

0>R->R*’>R*sR-k-0

and if bases are chosen one obtains matrices, for example

| —z 0 X X
(yzx),(y—x 0,(y)
Z

0 =z -y

and the middle matrix is full, cf [3].

3. Coherence and duality

Recall that for any ring R the dual of a left R-module M is the right R-module
M*=Homg(M, R), and the dual of a right R-module is defined similarly.
If M is a finitely presented left R-module, say A is an m X n matrix and

A

R™ >R"->M->0

is exact, then
A

0-M*>"R > "R
is again exact. This permits us to use the concepts *“‘dual of a finitely presented left )
module” and “right annihilator of a matrix™ interchangeably.

It is somewhat surprising that the Noetherian case of the following lemma can be

viewed as Bass’s Global Dimension Two Theorem [1], [13, p. 379].

Lemma 8. A ring has weak global dimension at most 2 if and only if the dual of
every finitely presented left module is flat.
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Since having weak global dimension at most 2 is a left-right symmetric condition,
this is also equivalent to the dual of every finitely presented right module being flat.

Proof. Asremarked above, the dual of a finitely presented left module is the kernel
of a homomorphism between flat (indeed, finitely generated free) right modules, so
is flat if the weak global dimension is at most 2. Conversely, suppose that R is aring
such that the right annihilator of every matrix is flat. To prove the lemma it suffices
to show that any homomorphism F; - F; of free right R-modules has flat kernel.
And since flatness is a “‘local” condition, it suffices to verify that any finite subset X
of the kernel K lies in a flat submodule of K. Now X lies in a finitely generated free
submodule F) of F,, and the image of F lies in a finitely generated free sub-
module F}, of Fy. Thus the kernel of F] - F§, is the right annihilator of a matrix, so
flat, and as a submodule of K containing X it has the requisite properties.

The above lemma combines well with the concept of “‘coherence”. Recall that a
ring R is said to be right coherent if the following equivalent conditions hold:

a7 Every finitely generated right ideal of R is finitely related (i.e. the right
annihilator of any row vector is finitely generated).
(18) The direct product of any family of copies of R is flat as left R-module.

(19) Every finitely generated submodule of a free right R-module is finitely
related.

For proofs that these are equivalent the reader is referred to [7] or [13, p. 439].
Since Homg(—, R) converts direct sums into direct products, it is clear that (18)
is equivalent to

20) The dual of every free right R-module is flat.
Further, it is not difficult to show that (19) is equivalent to

21 The dual of every finitely presented left R-module is finitely presented.

Proposition 9. For any ring R the following are equivalent:
(i) R is right coherent and has weak global dimension at most 2.
(i) The dual of every finitely presented left R-module is finitely generated pro-
Jective.
(iii) The dual of every right R-module is flat.

C.U. Jensen [14, Theorem SA] had previously observed the equivalence of (i) and
(1ii).
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Proof. (i) < (ii). Using right coherence in the form (21) we see, by Lemma 8, that
(i) is equivalent to the dual of every finitely presented left R-module being finitely
presented and flat, which is equivalent to (ii).

()= (iii). Observe that for any right R-module M there is a presentation F, -
Fo—>M >0 where F|, F, are free right R-modules. Dualizing gives M* as the
kernel of a homomorphism F§ - F¥ between modules that are flat by (20), and
hence M* is flat, since the weak global dimension is at most 2.

(ii1)=> (i) since (iii) implies right coherence in the form (20), and implies weak
global dimension at most 2 by the left-right dual of lemma 8. [

Our purpose in obtaining this proposition is to apply it to the Ore case although
there are some interesting statements that can be made by combining Proposition
9, Theorem 5, and their duals. For example the following are equivalent for any
ring R:

(22) R is left and right coherent and every full matrix is regular.

(23) The right annihilator of every nonzero row vector a is free of rank less
than the length of a, and dually for column vectors.

(24) The right annihilator of every nonzero matrix A is free of rank less than
the number of columns of A, and dually for the left annihilator.

Let us note one close connection between right coherence and full matrices that is
not yet immediate from our results: It is apparent from Chase’s arguments [7] that a
ring R is right coherent if and only if for any matrix A, say m X n and right infinite
matrix B, say n X v, if AB = (0 then there is a matrix C and a right infinite matrix D
such that AC =0, B =CD. Extending the notion of left full to right infinite
matrices we see that R is right coherent and every full matrix is left regular if and
only if every left full (possibly right infinite) matrix is left regular. To some extent
this explains why coherence is a natural property to impose on Sylvester domains.

By putting in right coherence we get the following natural consequence of
Theorem 7.

Theorem 10. For any two-sided Ore domain R the following are equivalent:
(i) R is a right coherent Sylvester domain.
(i1) The dual of every right R-module is locally-free.
(iii) R is right coherent, projective-free and has weak global dimension at most 2.
(iv) The dual of every finitely presented left R-module is free.
(v) The right annihilator of every matrix is free.
(vi) The right annihilator of every row vector is free.

Proof. (i)= (ii). If R is a right coherent Sylvester domain then it has weak global
dimension at most 2 so by Proposition 9 the dual of every right R-module is fiat,
and thus locally-free.
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(il) = (iii) = (iv) foliow easily from Proposition 9.

(ivY= (v)=> (vi) are clear.

(vi)=>(i). If the right annihilator of every row vector is free then R is a Sylvester
domain by Theorem 7, and is right coherent in the form (17), since over a right Ore
domain a free submodule of a free right module of finite rank again has finite rank.

4. The literature on commutative Sylvester domains

For rings with weak global dimension at most 1 the situation is quite straight-
forward, even in the non-commutative case.

Proposition 11, For any ring R of weak global dimension at most 1 the following are
equivalent:
(i) R is a semifir.
(ii) R is a Sylvester domain.
(ii1) R is right coherent projective-free.
If further R is commutative, these are equivalent to
(iv) R is a projective-free integral domain.

Proof. ()= (ii) is Cohn’s Theorem, cf. (13), and (ii)=> (i) by Theorem 6. Also
(i)= (1) is clear, and (iit) = (i) holds for if every finitely generated right ideal is
finitely related flat then it is projective and hence free of unique rank. Finally, if R
is a projective-free integral domain then from Endo’s Theorem [13, Exercise 11.11]
that over an integral domain every finitely generated flat module is projective, it
follows that R is a semifir.

Thus among commutative rings of weak global dimension at most 1, Sylvester
domains are characterized by being projective-free integral domains. The usual term
for a commutative semifir is Bezout domain, and the local Bezout domains are
precisely the valuation rings.

It seems unlikely that the two-dimensional case has much in common with the
one-dimensional case; but let us see what can be said about projective-free integral
domains R of weak global dimension 2:

If R is coherent then R is a Sylvester domain by Theorem 10. This subsumes the
case where R also has global dimension 2, since such rings are coherent, cf. [20,
6.1].

If R is not coherent then R is either a Sylvester domain or a non Sylvester
domain, and it would be interesting to have one example of each. However we have
only succeeded in finding examples of the former, as in the following curious case.

Theorem 12 (after Dobbs [12]). Let R be a local integral domain with maximal
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ideal M such that the ideals mM, m € M, form a chain under inclusion. Then the
following are equivalent:
(i) R is a Sylvester domain.
(1) R has weak global dimension at most 2.
(i) M is flat as R-module.
(iv) M is idempotent or principal.
(v) Mis locally-eyclic as R-module.

Examples of rings R with the given property can be constructed as follows: Let V
be a valuation ring, M an arbitrary ideal of V, and R a subring of V that is the
preimage of a subfield R/M of V/M. Then R is local, and the ideals mM form a
chain under inclusion. (Notice that if M is nonzero and R/M is a proper subfield of
V/M then R is not a valuation ring, so has weak global dimension at least 2.)
Conversely, every such R arises this way, since the conductor of M in the field of
fractions of R is a valuation ring, as can be easily verified.

Proof of Theorem 12. (i) = (ii) is clear. Observe that (i)-(v) are all true if R is a
valuation ring, so we may assume that R is not a valuation ring, so there exist
incomparable principal ideals aR, bR. By symmetry we may assume bM 2 aM so
aR > aR nbR 2aM, and as aM is a maximal submodule of aR, aR bR = aM.
Since the kernel of aR@®bR >R, (ax, by)—>ax—by may be identified with
aR n bR, we have an exact sequence 0> aM > aR @ bR — R. With this available we
can proceed with the next two steps of the proof.

(ii))=> (iii). If R has weak global dimension at most 2 then aM, and hence M, is
flat.

(1) => (iv). If M is flat as R-module then

O->aM Sr M >aMEIM > M

is exact, which means that aM? = aM ~ bM, and as this equals aM, so M*=M.

(iv)= (v). If M = M” then from the fact that M= (UmM we see that any finite
subset of M lies in some mM < mR, so M is locally-cyclic.

(v)= (i). Suppose that M is locally-cyclic. We will show that (iv) of Theorem 7
holds, by proving that the right annihilator A of an arbitrary nonzero row vector
aeR" is isomorphic to "'R@'"'M for some i<n, and hence is locally-free.
Consider first the case where A does not lie in "M, Here some x € A has a unit as
one of its entries, so there is a decomposition "R = xR@® B where B is free of
rank n—1. Then A =xR@ A’ where A’ is the kernel of B »"R SR. By induction
on n we may assume that A’, and hence A, is of the desired form. This leaves the
case where A lies in "M, and for this to happen a must lie in M", say a =
(my, ..., m,). One of the ideals m M, . .., m,M contains all the others, say m M,
and m, is not a zerodivisor so the projection A -»""'M, onto the last n — 1 coor-
dinates, is an isomorphism and A has the desired form. [
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In the above theorem, the given ring is coherent if and only if itis a valuation ring
or M is finitely generated. For if R is coherent and is not a valuation ring then

M=aM =aR nbR

is finitely generated; and conversely, if M is finitely generated then from the
description of right annihilators of row vectors given in the above proof, (17) is
satisfied and so R is coherent. But it is clear that if M is finitely generated then
M?2=mM for some meM, so if M is idempotent as well then it must be 0. It
follows that the coherent Sylvester domains occurring in Theorem 12 are the
valuation rings. Thus if V is a valuation ring, M a nonzero idempotent ideal of V,
and R/M a proper subfield of V/M then R is a noncoherent Sylvester domain.

Another source of noncoherent Sylvester domains is the following.

Example. Let B be a Bezout domain and § a multiplicative subset of B closed
under taking factors. Write Bs for the ring obtained by inverting the elements of S,
and R = B + xBs[x] for the subring of Bs[x] consisting of all polynomials whose
constant term lies in B. Such a ring need not be coherent since for any beB,
bR ~ xR is the directed union of the ideals (bx/s)R, where s ranges over the factors
of b in S, and this need not be finitely generated. For example, if b is nonzero and Sis
the complement of a nonmaximal prime ideal properly containing b.

Now R is the direct limit of the directed system of subrings B[x/s], s € S, each of
which is isomorphic to B[x]. So if B[x] is a Sylvester domain then so is R;
unfortunately we do not know when Bl[x] is a Sylvester domain (although some
partial results will be obtained in the next section). According to [20, 8.2(b)], B[x]
is always coherent, so it remains to decide when B][x] is projective-free.

To obtain a related projective-free ring we can localize B[x] at some prime ideal
of the form P[x]. This then gives a Sylvester domain, and the above mentioned
direct limit is again a Sylvester domain, and it need not be coherent.

5. Free algebras over Bezout domains

The following result arises from the proof of Seshadri’s Theorem givenin [2]. We
are indebted to G.M. Bergman for pointing out the present strong form of the
statement, and some subsequent applications.

Theorem 13. Let R be an integral domain, and let S be a set consisting of nonzero
elements p of R such that R/pR is a field. Let K denote the ring obtained from R by
inverting the elements of S. Then for any set X, the homomorphism R{X )~ K (X), of
free algebras on X, is rank-preserving.

Proof. Let A be a matrix over R(X) and suppose that we are given a factorization
A = BC over K{(X). We will prove that there exists an invertible matrix U over



260 W. Dicks, E.D. Sontag

K(X) such that BU™', UC have entries in R{X); it is then immediate that
R{(X)-> K{(X) is rank-preserving.

By multiplying C and dividing B by elements of S, we may transform the
factorization to the form A =s 'BC where B, C have entries in R(X) and 5 is a
product of elements of S. If s is the empty product we are finished, so’we may
assume that s = pr where p is an element of § and ¢ is a shorter product of elements
of §. Denote the field R/pR by k, and the homomorphism R{(X) - k(X) by f—F
Then BC = 0. By [8, Theorem 1.3.1] and the proof of [8, Theorem 2.2.4] there is a
matrix U over k(X ) that is a product of matrices that differ from the identity matrix
by one oft-diagonal entry, such that

= — - 0
BO™'=(B, 0), UC=( > )
¢,

Lifting U back to a product U of elementary matrices over R{X) we can express
this as

i c
BU'=(B, Bap), Uc:(” ‘).

C;

Thus we have transformed s 'BC to
—1 pCl
s'(B. B ( )
(B, 2P) C,
which can be further transformed to

_ C
N 1(Blp BZP)(C;)

which is of the form ¢t 'B’'C’ where B', C' have entries in R(X) and ¢ is shorter
than s. Continuing in this way eventually transforms the factorization to R{X).

To see why this argument gives Seshadri’s Theorem the reader can consult
Appendix [, which discusses inner rank and finitely generated projectives, cf.
Proposition 19 and Corollary 20.

Corollary 14. A free algebra over a principal ideal domain is a Sylvester domain.

Proof. Let R be a principal ideal domain and § be the set of atoms of R. Then
inverting the elements of § gives the field of fractions, K, of R. By Theorem 13,
R(X)- K{(X) is rank-preserving, but K{X) is a semifir so has a rank-preserving
homomorphism to a skew field, and hence so does R{X).

Combined with Theorem 6 this gives a strengthening of Seshadri’s Theorem,

namely, for a free algebra over a principal ideal domain every flat module is a
directed union of free submodules.
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It would be interesting to have a characterization of the commutative rings R for
which all free R-algebras are Sylvester domains. It can be seen that the class of all
such rings is contained in the class of all Bezout domains, contains the class of all
principal ideal domains, and is closed under taking direct limits. Bergman observes
that Theorem 13 applies to inverting the set § of atoms in any Bezout domain R
thus a given Bezout domain R lies in our class of rings if and only if the same is true
for the ring K obtained from R by inverting the atoms. (To see the “only if”" part
of this statement, observe that we are inverting central elements in the free algebras,
and these can be cleared from denominators in matrices without affecting the inner
rank.) For example, for any principal ideal domain Z with field of fractions Q, the
set S of atoms of Z in the ring R = Z + xQ[x] satisfies the conditions of Theorem
13, and inverting them gives the principal ideal domain K = Q[x], so R is in our
class of rings. More generally, since these constructions behave well with respect to
direct limits, the atom eliminating procedure can be repeated indefinitely and we
may thus associate with any Bezout domain R an atomless Bezout domain K,
possibly a field, such that free R-algebras are Sylvester domains if and only if free
K-algebras are Sylvester domains. (Notice that K is obtained by inverting certain
elements of R.)

(For the analogous problem of determining the commutative rings R for which
the free power scries R-algebras are Sylvester domains we know only the follow-
ing: If the free power series R-algebras are Sylvester domains then R is a Bezout
domain; and in the other direction, if R is a field then free power series R-algebras
are semifirs so Sylvester domains; and if R is a principal ideal domain then the free
power series R-algebra in one indeterminate is a Sylvester domain by the Bedoya—
Lewin Theorem.)

A far more difficult task is to characterize the semifirs R which have the property
that every ring R(X) freely generated over R by a set X of R-centralizing
indeterminates is a Sylvester domain. It is not even known if this is true for R a free
algebra (in more than one indeterminate) over a field. A major difficulty here is the
appearance of non-free projectives, observed by Ojanguren and Sridharan [17].
Let us examine their argument in greater detail. Suppose that in some given ring S,
a, b, ¢, d are non-zerodivisors such that ab —cd = 1. Then the exact sequence

0->ShNSd->ShDSd->5-0
splits and the ideal
Sb ~Sd = Sdab + Sbed

is a 2-generator projective module. If § is projective-free then this ideal would
have to be free of rank 1, and this amounts to S having elements p, g, r, s such that
rb =sd, da =qr, bc =ps. Now if a ring R with no proper zerodivisors contains
elements a, b, ¢ such that ab —ca =1 then the ring R[x] has a relation a(x +b)—
(x+c)a=1, so if R[x] is to be projective-free then it must contain elements
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P, q, r, s such that
r(x +b)=sa, a2=qr, (x +b)x +c)=ps.

From these equations, s, p are linear in x and their leading coefficients are units in
R. Adjusting by a unit of R we may write p =(x+5'), s = (x +¢') and hence r = a,
rb=c’a so a has (left) inverse ¢’'—c. Thus one condition that R must satisfy in
order for R[x] to be projective-free is that 1, or any unit, can be expressed in the
form ab —ca only if a is a unit. A semifir R, indeed a noncommutative principal
ideal domain, where this fails is K[¢], K a noncommutative skew field, say a8 —
Ba=y#0,s0 (t+a)B—B(t+a)=1v, t+a a nonunit. This is the example given in
[17].

6. Universal constructions: examples and counterexamples

In this section we examine how certain ring constructions relate to Sylvester
domains. The first construction is that of a coproduct with amalgamation, and it is
proved that the coproduct of Sylvester domains amalgamating a skew field is again
a Sylvester domain. The other construction is that of adjoining to a skew field two
matrices whose product is specified to be zero. This is found to produce a Sylvester
domain whenever the two adjoined matrices cannot violate Sylvester’s law of
nullity.

Our arguments are built on the following result which arises from G.M.
Bergman’s work on coproducts [5] and would have fitted in naturally in [5,
Section 2]. By a completely reducible ring K we mean a finite direct product of full
matrix rings over skew fields. By a faithful K-ring we mean a ring R given with an
injective ring homomorphism from K to R.

Lemma 16. Let K be a completely reducible ring, {R}rc 1 be a set of faithful K-rings
and R be their coproduct amalgamating K. Then any homomorphisms P' 5P 5 p" of
finitely generated projective left R-modules such that a8 =0 can be extended to a
commutative diagram

P - >P - P
(25) 3 « §

, DROay Prop,
@R®R,\P,\ —)®R®RAP/\
A A

DR, P{
A

) B,
where P, »P, > P} are homomorphisms of finitely generated projective left R,-
modules such that a,8, = 0.
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Proof. Assume, without loss of generality, that A is a finite set. By [5, Theorems
2.2, 2.3], there exists a commutative diagram

P . P d p

(26) ' g
®R®RAPA —— @DR®g,Im B,
A A
~ a
where 8, is the composite P, 3(Py)u '—- P -P", and each P, is a finitely generated

projective left R,-module. Since R is flat as right R,-module this extends to a
commutative diagram

P P P’

(27) o’ u g
BR®g, Ker Bi—— PR®g, P, ——@DRRg, Im B,.

cf. [5, Corollary 2.17]. Now Im a' is finitely generated as left R-module so lies in
an R-submodule of @, R ®g, Ker B8, generated by finitely many elements chosen
from the Ker 8,. Thus there is an R-linear map

@BR ®g, Py~ BR Qg, Ker B,

A A
whose image contains Im ' and the P} are free R,-modules of finite rank. Since P’
is projective, a’ factors through this map and we have a commutative diagram

p’ : 2 £ P

(28)
, BR®a,
@R®RAPA — DR®g,P,
A A
where each a,u”'B is zero. Dualizing gives a diagram

* *

Pu* P* hl P!*

(29)
@a: =R
DPF®Dr,R P ®g,R

A A
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where afu*‘lﬁ* = 0 for each A. Now the procedure that led from (26) to (28) leads
from (29) to the dual of a diagram of the form (25). Dualizing again will give the
desired result.

For our first application we have the following result.

Theorem 17. Let K be a skew field, {R,\},c.. be a set of K-rings, and R be their

coproduct amalgamating K. If each R, is a Sylvester domain then R is a Sylvester
domain.

Proof. If suffices to consider the case where A is finite,say A ={1,..., p}. Let A, B
be matrices over R such that AB =0. We may apply Lemma 16, and here all
finitely generated projective R,-modules are free, so there exist factorizations

A 0 B, 0
A=A U, B=U B’
0 A, L O B,
where each A,B, =0 over R,, and U is a square matrix over R, by [5, Corollary
2.11]. Let n, denote the number of columns of A, (or rows of B,). Since each R,

satisfies (10), and ring homomorphisms cannot increase inner rank, p(A))+
p(B,)<n, over R. Hence

p(A)+p(B)S§p(AA)+§AZp(BA)$§ R,

which proves that R satisfies (10).

Our next result illuminates some of the properties that were considered in
Section 2,

Let us fix a field k. For any positive integers m, r, n let R{m, r, n) denote the
k-algebra having an m X r matrix X =(x;), and an r xn matrix Y = (y;) whose
product is (), such that the pair X, Y is universal with these properties. That is, R is
the k-algebra presented on mr +rn generators xi;, yix and mn relations Z;=1 XiYik =
0.

Theorem 18 (with G.M. Bergman). Let m, r, n be positive integers.
R(m, r, n) is a Sylvester domain if and only if r=m +n.

R(m, r, n) has every full matrix regular if an only if r > max(m, n).
R(m, r, n) has every full matrix left regular if and only if r > n.

Proof. Write R for R(m,r, n). Observe that p(X)=min(m,r) since there are
homomorphisms from R to k which send Y to 0 and X to a matrix of inner
rank min(m, r), for example, let each x,; be mapped to the Kronecker delta, §,,.
Similarly p(Y)=min(r, n). Thus if R is a Sylvester domain then by (10) r=
min(m, r)+min(r, n), or equivalently, r = m + n. Similarly, if every left full matrix is
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left regular then r>n, and by symmetry if every full matrix is regular then
r>max(m, n).

To obtain the reverse implications we use the methods of [6]. Let S be the
k-algebra with generators e, f, g, x, y and relations saying that e, f, g are mutually
orthogonal idempotents summing to 1, and exf = x, fyg =y, xy = 0. As k-space, S is
five-dimensional, and as ring can be viewed as the image, modulo the square of the
radical, of the ring of 3 X 3 upper triangular matrices over k. The k-subalgebra K of
S generated by e, f, g is isomorphic to k Xk x k, and § is obtained by universally
adjoining to K maps x:Ke - Kf, y: Kf » Kg, whose composite is specified to be
zero.

Let M (k) denote the full ring of (m +r+n)x (m +r+ n) matrices over k. There is
an injective k-algebra homomorphism K - M (k) that sends

to (Im O) and t (O 0 )
€ .
0 0 8% 1,

These two partitions are different, and f=1—¢e — g is mapped to

0 0 0
0 I, 0]

6 0 O

There is a homomorphism from M(k)llx S to the ring M(R), of all (m +r+n)x
(m +r+ n) matrices over R, that extends the natural map M (k)— M(R) and sends
X,y to

0 X 0 0 0 O
0 o0 0}, O 0O Y
0 0 0 0 0 ¢

respectively. It is not difficult to verify directly from the universal properties that
this is an isomorphism. Alternatively, this can be derived as a special case of the
very general result {6, Theorem 3.4].

Now as in [6] we will use the coproduct results to obtain information on M(R),
and Morita equivalence will then give us information on R.

Let us sketch the elementary data on § that we will be using. The finitely
generated indecomposable projective left S-modules are, up to isomorphism, Se,
Sf. Sg. The nonzero Homg sets between these are eSe = ke, eSf=kx, fSf=kf,
fSg = ky, gSg = kg, all of which are one-dimensional over k. Observe that

0-Se >Sf >Sg

is exact. Now let 8: P - Q be a homomorphism of finitely generated projective left
S-modules, and choose decompositions

u:Ps ® P v:Q:(CDQ/
j=1
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into indecomposables. The map « ™ 'Bv: @ P;> ®Q; may be viewed as a b X¢
matrix whose (i, j)th entry, 8;, lies in Homs(P,, Q,). From our description of the
Homyg sets for Se, Sf, Sg we see that if some column has two nonzero entries, say
B, Bi-j» then these both lie in ke or kx w kf or ky U kg, so one factors over the other.
Say there exists y € Homg(P;, P;) such that yB8;; = Bi-;. The automorphism

1,‘ 0
(—y l,v')

of P,(BP. induces a row operation on u ' 8o, namely subtracting the composite of y
with the ith row from the /'th row, that converts B to 0. Since similar statements
hold with *‘row” and ‘“‘column” interchanged, we can transform u 'Bv by
automorphisms of ®P,, ® Q; until no row or column has two nonzero entries. By
interchanging the P; or the Q; we may further assume that the nonzero entries are
arranged along the diagonal. In particular if P’ SPSP are homomorphisms of
finitely generated projective left S-modules such that a8 =0 then they can be
extended to a commutative diagram

"

, a p g

| | |

Pn®(se)u I P()C‘B(Sf)a@Pl ————*(Sg)“@Pl

where a is an integer and the maps in the bottom row are the obvious ones
composing to zero. . s
Any homomorphisms P'»P ->P" of finitely generated projective left M (k)-

modules such that a8 = 0 can be extended to a commutative diagram

p' a P B P’

]

P”———) PU®PI —)Pl

where the maps in the bottom row are clear. . s

Thus by Lemma 16 any homomorphisms P’ P - P" of finitely generated pro-
jective left M(R)-modules such that a8 =0 can be extended to a commutative
diagram

P; P Plr

El |

Py®(M(R)e)* —— P,®M(R)fy®P,—— (M(R)g)*®DP,

where the maps in the bottom row are clear, a some integer.
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Now by Morita equivalence this says that any homomorphisms P’ 5p —B>P” of

finitely generated projective left R-modules such that a8 = 0 can be extended to a
commutative diagram

P P P’

| |

P,®R™ P,®R“®P, —— R™O®P,

where the maps in the bottom row are clear, a some integer. Now observe that
K - S induces a bijection on finitely generated projectives over the respective
rings, and hence the same is true of M(k)>M(R) by [5, Corollary 2.11]. This
implies that R is projective-free. So we have proved that for any matrices A, B
over R if AB =0 then there exist factorizations

Iy 0 0 0

. X Y
0 0 0 I,
where U is a square matrix. If there are a occurrences of X, Y then
p(A)ysp(lo)+ap(X),  pB)=<ap(Y)+p(l)
Now if r=m +n then
p(A)+p(B)<p(y)+ar+p(l)

and (10) is satisfied. Thus R(m, r, n) is a Sylvester domain if and only if r=m +n.
The other results follow similarly.

A more careful analysis shows that R(m, r, n) has left and right global dimension
2 and is left and right coherent. We do not know if all the flat modules are directed
unions of free submodules, except in the cases where they are spacial by Theorem
5.

Notice that the ring R(2, 3, 2) has all the good module theoretic properties that
could be desired; since every full matrix is regular, the flat modules are all spacial,
and it is known that the left and right global dimension is 2. And yet R(2,3,2) is
not a Sylvester domain.

Notice also that over R(3, 3, 2) every full matrix is left regular but not necessarily
right regular, which shows further that the conditions of Theorem 5 are not
left-right symmetric.

For any positive integer r let us call a nonzero ring an r-Sylvester domain if for
n=1,...,r whenever A, B are matrices with n columns and rows respectively, if
AB =0 then n =p(A)+p(B). Thus the 1-Sylvester domains are the nonzero rings
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without proper zerodivisors. Among these the 2-Sylvester domains are charac-
terized by the property that the intersection of any two principal right (or left) ideals
is locally-cyclic, that is, the directed union of the principal right (left) ideals it
contains. An integrally closed integral domain with this “Riesz interpolation pro-
perty” is called a Schreier ring, cf. [4, pp. 73, 150].

For any positive integer r the class of r-Sylvester domains is contained in the class
of (r + 1)-Sylvester domains, and these classes are not equal since, by the proof of
Theorem 18, R(m, r+1, n) is always an r-Sylvester domain, but is not an (r +1)-
Sylvester domain if m+n>r+1.

7. Open problems

1. Over a Sylvester domain is every (countably-generated) projective module
free?

2. Is every local integral domain that has weak global dimension 2 a Sylvester
domain? More generally, is every projective-free integral domain that has weak
global dimension 2 a Sylvester domain?

3. Let B be a Bezout domain. Is every free B-algebra a Sylvester domain? Is this
even true for B a valuation ring? Is every free power series B-algebra a Sylvester
domain? Is this even true for a principal ideal domain? Or a valuation ring? What is
the weak global dimension of a free power series B-algebra?

4. (Bergman, after Lewin) Let & be a field. Is the tensor product over k of two
free k-algebras a Sylvester domain? More generally, if in a free k-algebra, k(X),
relations are imposed saying that certain pairs of elements of X commute but these
pairs are chosen so that no three elements of X commute pairwise then the
resulting ring is known to have left and right global dimension at most 2. Is it a
Sylvester domain?

Appendix 1. Related results of G.M. Bergman

In Section 2 it was observed that for a ring to satisfy Sylvester’s law of nullity, its
finitely generated projective modules have to be free. This appendix presents a
weaker law of nullity that applies to a wider class of rings, whose finitely generated
projectives are not quite so restricted. The theory, propounded by G.M. Bergman
in a 1971 letter to P.M. Cohn, applies for example to the class of (left or right)
semihereditary rings, and gives information about homomorphisms to skew fields in
terms of the finitely generated projective modules.

Bergman's original arguments were phrased in the language of dependence
relations, and have in some ways benefitted from being transcribed here into matrix
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language. For example what here 1s the rather simple “law of nullity” was in
Bergman’s notation a rather complicated matroid like condition.

Let R be a ring. The set of isomorphism classes, [P], of finitely generated
projective left R-modules, P, is a commutative semigroup, Se(R), under the
operation [P]+[Q]=[P@®Q]. By a projective rank function p on R we mean a
homomorphism p:Sa(R)— N of semigroups-with-distinguished-element, where N
denotes the additive semigroup of non-negative integers. Thus p is a semigroup
homomorphism such that p([R])=1; this is a retraction of the canonical
homomorphism N - Sg(R) of semigroups-with-distinguished-element. The exis-
tence of a projective rank function on a ring already restricts the ring to some
extent; for example it implies that it has IBN, and is not a proper matrix ring.

Recall that every finitely generated projective left R-module is the homomorphic
image of an idempotent matrix (viewed as an endomorphism of a finitely generated
free left R-module) and that the image of every idempotent matrix is a finitely
generated projective left R-module. Further two idempotent matrices E, F (not
necessarily of the same order) have isomorphic images if and only if there are
factorizations E = AB, F = BA. (By replacing A with ABA and B with BAB we
may always assume EAF = A, FBE = B.) In this event let us say that E and F are
isomorphic.

There is a natural bijective correspondence between projective rank functions on
R and functions 7 that assign to each matrix A over R a non-negative integer rA,
called the r-rank of A, such that the following hold:

30) If E, F are isomorphic idempotent matrices then rE = rF.
(31) If E, F are idempotent matrices then r(§ #)=rE +rF.

(32) r(l)=1.

(33) For any matrix A, rA =min{rE | A = BEC, E idempotent},

In fact from the connection between finitely generated projective left modules and
idempotent matrices, it is clear that (30)-(32) are precisely the conditions for r to
determine a projective rank function. Thus we must show that (33) does not impose
any further conditions on the value of r on idempotent matrices. Although this is
obvious in terms of projective modules, let us verify it in terms of matrices. Suppose
that F is an idempotent matrix and that F = BEC with E idempotent. Without loss
of generality FBE = B, and ECF = C so F = BC, E — CB is idempotent and

is isomorphic to

(E—BCB)(C E-CB)= (g E—()CB)'
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So by (30) and (31), rE=rF. Hence for idempotent matrices A, (33) is a
consequence of (30), (31) so (33) extends r from the set of idempotent matrices to
the set of all matrices. For this reason, let us call r an inner projective rank function.

For example, a projective-free ring has a unique projective rank function, and
the corresponding inner projective rank function is the inner rank. Let us now show
that conversely, if the inner rank is an inner projective rank function then the ring
must be projective-free. This will follow immediately from the following result,
shown to us by J. Lewin.

Proposition 19 (Lewin). The inner rank of an idempotent matrix is the minimum
number of generators of the image.

Proof. Let E be an idempotent matrix. For any factorization E = AB, BABA is an
idempotent matrix isomorphic to E. If the number of columns of A is chosen as
small as possible then this is the inner rank of E, and is also the smallest order of an
idempotent matrix isomorphic to E, that is, the minimum number of generators of
the image of E.

Corollary 20. Over a nonzeroring R, inner rank is an inner projective rank function if
and only if R is projective -free.

Proof. We have seen one direction of this. To see the other direction suppose that
the inner rank is an inner projective rank function. Then by Proposition 19
“minimum number of generators” is additive on finitely generated projectives. In
particular R" has minimum number of generators n, and if P is projective with
minimim number of generators n then R" = P® Q where Q has minimum number
of generators 0, so P = R" for a unique n, and R is projective-free.

This says that inner projective rank functions would generalize inner rank, if we
had only defined inner rank on projective-free rings.

(A related result, not difficult to show, is that a ring is projective-free if and only
if it is nonzero and every full idempotent matrix is an identity matrix.)

Let us say that an inner projective rank function r satisfies the law of nulliry if

(34) for any matrices A, B if AB =0 then rA +rB <rE for every idempotent
matrix E such that AE=A, EB =B.

To see this is equivalent to Sylvester's law of nullity for projective-free rings,
observe that (34) certainly implies (10) when r is the inner rank. Conversely,
suppose {10) holds. In the situation of (34), we know by projective-freeness that
E=XY, YX =1, for some n, and by Proposition 19, n = p(E). Further

p(A)+po(B)=p(AXY)+p(XYB)<p(AX)+p(YB)
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and now by (10) this is at most n so p(A)+p(B)<p(E), as desired. Thus (34) is a
generalization of Sylvester’s law of nullity.

A rich source of examples can be arrived at through the following definition. A
ring R is said to be weakly semihereditary if for any matrices A, B if AB =0 then
there exists an idempotent matrix E such that AE = A, EB = (. For example a (left
or right) semihereditary ring is weakly semihereditary, and thus so is any left or
right hereditary ring.

Now if a ring R is projective-free then any idempotent matrix E is of the form

Lf”(l O)LJ
00

for some invertible square matrix U. (To see this write E= XY, YX=I, I - E =
WZ, ZW =1" and take

YE
=(EX W—EW), ”=( )
U=( EW) U .

Cf. [8, Proposition 0.2.6].) Thus projective-free weakly semihereditary rings satisfy
(13) and so are precisely the semifirs. And indeed weakly semihereditary rings seem
to be the analogue for the law of nullity of what semifirs were for Sylvester’s law of
nullity.

Proposition 21. If r is an inner projective rank function on a weakly semihereditary
ring then r satisfies the law of nullity.

Proof. Suppose AB=0 so AE=A,EB =05, for some idempotent, E. Then
A(B I —-E)=0s0bythe weakly semihereditary property there exists an idempotent
matrix F such that AF = A, F(B I —E)=0. Hence EFE is idempotent and

rA+rB=r(AEFE)+r((E - EFE)B)<r(EFE)+r(E—EFE)<rE
where the last inequality holds by (31). This verifies (34).

For an inner projective rank function r, let us call an n X n matrix, A, r-full if
rA =n.

Theorem 22. Letr be an inner projective rank function over a ring R, and let P be the
set of all square matrices over R that are not r-full. If r satisfies the law of nullity then
P is a minimal prime matrix ideal, Rp is a skew field, and R > Rp is rank-preserving
in the sense that the r-rank of each matrix over R equals the inner rank of the image
over Rp. In particular the kernel of R > Rp is generated by the entries of the idem -
potent matrices of r-rank 0.
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Proof. We need the following:

(35 For any matrices A, B r(o 8)=rA +rB.

(36) For any matrices A, B, C which all have the same number of rows, if
r(A B):r(A C):rA then r(A B C): rA.

The proofs of these are exactly as for (11), (12) and will be omitted.

The conditions (1)-(4) for P to be a prime matrix ideal are readily verified using
(35), (36), and the “transpose”” of (36).

For any m X n matrix A over R, if q is the greatest integer such that A hasa g xgq
r-full submatrix then every g+ 1xg+1 submatrix has r-rank at most q. So by
induction and (36), every q +1 X n submatrix has r-rank at most gq. Now by sym-
metry we can add rows and find that every m X n submatrix has r-rank at most g,
that is, rA = q. In other words, if rA =g then every ¢ +1X g+ 1 submatrix is not
r-full, and some g X q submatrix is r-full. Hence over Rp/P every g+1xg+1
submatrix of A is singular, and some g X g submatrix is nonsingular. This shows
that R - Rp/P is rank-preserving. In particular, the kernel of R - Rp/P consists of
all 1 x 1 matrices of ~-rank 0, and by (33) this is the ideal generated by the entries of
the idempotent matrices E with rE = 0.

Now Rjp is local, so projective-free, so Rp—> Rp/P preserves the unique pro-
jective rank functions. Hence also R » Rp preserves projective rank functions. In
particular R » Rp cannot increase the inner projective rank of any matrix, so every
element of P, being non r-full, is mapped to a non-full matrix in Rp. Now by
Proposition 4, Rp is a skew field; it is then obvious that P is a minimal prime matrix
ideal, which completes the proof.

The following is immediate from Proposition 21 and Theorem 22.

Theorem 23. Let R be a weakly semihereditary ring. Then there are bijective cor-
respondences between the following (possibly empty) sets:
(1) Projective rank functions p on R.
(ii) Inner projective rank functions ron R.
(iii) Minimal prime matrix ideals P over R.
(iv) Skew fields F obtained from R by inverting matrices.
The correspondences for the last three are given by:

r— P ={all square non r-full matrices},
P—F=Rp,

F s r=pullback of the inner rank along R > F.

Further, for any projective rank function p on R the corresponding skew field F will
contain R if and only if p is nonzero on nonzero projectives.
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One consequence of the theorem is that a weakly semihereditary ring has a
homomorphism to a skew field if and only if Sg(R ) has a retraction to N, and has an
embedding in a skew field if and only if $5(R)—{0} has a retraction to N —{0}.

For any ring R every prime matrix ideal P gives rise to a homomorphism to a
skew field R - Rp/P, and every homomorphism to a skew field R > F gives rise to a
projective rank function p on R. Thus it can be deduced that over a weakly
semihereditary ring, every prime matrix ideal contains exactly one minimal prime
matrix ideal. In this connection, notice that it is clear from Theorem 23 that a
weakly semihereditary ring has a unique minimal prime matrix ideal if and only if it
has a unique projective rank function; the corresponding condition for the skew
fields is that the ring has a “‘universal’” map to a skew field in a particular category,
cf. [8, Section 7.2].

Although Bergman’s letter also treats arbitrary semigroup homomorphisms
Se(R)~> N and ring homomorphisms from R to full matrix rings over skew fields,
this would take us rather far afield so we decided, with regret, not to include it.

Appendix II. Free radical rings

Let R be a commutative ring and A an R-algebra-without-1. There is associated
with A a homomorphism to an R-algebra (with 1), A->A(1)=R® A, that is
universal with this property. Also associated with A is a homomorphism to a
{Jacobson)radical R-algebra-without-1, A - w(A). The existence of such a map can
be seen by considering the variety of rings-without-1 with a quasi-inverse. In [9,
Theorem 1] it was shown that A > w(A) is universal with the property that every
square matrix over A becomes quasi-invertible. Thus A(1)-> (w(A))(1) is the
universal X -inverting map, where X is the set of all square matrices over A (1) which
become invertible in A(1)/A = R.

In this situation we will be able to apply the following result.

Theorem 24. For a principal ideal domain R and set X, the X-adic completion
R(X)-> R{XY) is rank-preserving. If 3 denotes the set of all matrices over R(X)
inverted by this homomorphism, and R - Ry is the universal X-inverting map then
Rs > R{X) is an embedding.

The (faithful) image of Rs in R{X) is denoted R™(X), called the R-algebra of
rational power series in X.

Proof. By [11, p. 416] this result holds in the case where R is a field, so holds for
the field of fractions K of an arbitrary principal ideal domain R. Thus in the
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commutative diagram

K{(X)

N

R{X) K{X»
R{X)

the upper path is rank-preserving by Theorem 13 and the result just quoted from
[11]. Hence the first arrow in the lower path is rank-preserving, which proves the
first part of the statement of the theorem. To see the second part, apply Proposition
4 with R and § of that proposition being R(X), and with T being R{X). Trivially
(14) holds, we have just verified (16), and (15) is immediate from the fact that a
square matrix over R(X) is in X if and only if the determinant of its constant term is
a unit in R.

Theorem 25. For a principal ideal domain R and set X, the free radical R-algebra-
without-1 on X is XR"™ (X ). In particular, the free radical ring-without-1 on X is
XZ™{X Y.

Proof. By universal properties the free radical R-algebra-without-1 is w (XR({X))
since XR(X) is the free R-algebra-without-1 on X. The remarks preceding
Theorem 24 together with Theorem 24 itself now show that XR™(X) is the free
radical R-algebra-without-1 on X.

Theorem 25 was known for R a field, [9]. It should be noted that [9, Theorem 5]
alleges that for any integral domain R the free radical R-algebra-without-1 on X is
contained in R{X), but the argument given is not valid. The error does not affect
any results other than [9, Theorem 5].
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