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Abstract. This paper deals with global convergence to equilibria, and in particular
Hirsch’s generic convergence theorem for strongly monotone systems, for singular
perturbations of monotone systems.

1 Introduction

This paper studies extensions, using geometric singular perturbation theory,
of Hirsch’s generic convergence theorem for monotone systems ([3, 4, 5, 10]).
Informally stated, Hirsch’s result says that almost every bounded solution of
a strongly monotone system converges to the set of equilibria. There is a rich
literature regarding the application of this powerful theorem, as well as of
other results dealing with everywhere convergence when equilibria are unique
([10, 1, 6]), to models of biochemical systems. Unfortunately, many models in
biology are not monotone. In order to address this drawback (as well as to
study properties of large systems which are monotone but which are hard to
analyze in their entirety), a recent line of work introduced an input/output ap-
proach that is based on the analysis of interconnections of monotone systems.
For example, the approach allows one to view a mon-monotone system as a
“negative” feedback loop of monotone open-loop systems, thus leading to re-
sults on global stability and the emergence of oscillations under transmission
delays, and to the construction of relaxation oscillators by slow adaptation
rules on feedback gains. See [11, 12] for expositions and many references. The
present paper is in the same character.

Our motivation arose from the observation that time-scale separation may
also lead to monotonicity. This point of view is of special interest in the
context of biochemical systems; for example, Michaelis Menten kinetics are
mathematically justified as singularly perturbed versions of mass action ki-
netics. A system that is not monotone may become monotone once that fast
variables are replaced by their steady-state values. A trivial linear example
that illustrates this point is & =—z—y, ey =—y+z, with €>0. This system
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is not monotone with respect to any orthant cone. On the other hand, for
€ < 1, the fast variable y tracks z, so the slow dynamics is well-approximated
by & = —2z (which is strongly monotone, because every scalar system is).

We consider systems & = f(z,y), ey = ¢g(x,y) for which the reduced
system & = f(x, h(z)) is strongly monotone (in fact, a slightly stronger tech-
nical condition on derivatives is assumed) and the fast system ¢ = g(x,y)
has a unique globally asymptotically stable steady state y = h(zx) for each
x, and satisfies an input to state stability type of property with respect to x.
One may expect that the original system inherits global (generic) convergence
properties, at least for all £>0 small enough, and this is indeed the object of
our study. This question may be approached in several ways. One may view
y—h(x) as an input to the slow system, and appeal to the theory of asymptot-
ically autonomous systems. Another approach, the one that we develop here,
is through geometric invariant manifold theory ([2, 7, 9]). There is a manifold
M., invariant for the full dynamics, which attracts all near-enough solutions,
with an asymptotic phase property. The system restricted to the invariant
manifold M, is a regular perturbation of the fast (¢=0) system. As remarked
in Theorem 1.2 in Hirsch’s early paper [3], a C! regular perturbation of a flow
with eventually positive derivatives also has generic convergence. So, solutions
in the manifold will be generally well-behaved, and asymptotic phase implies
that solutions track solutions in M., and hence also converge to equilibria
if solutions on M. do. A key technical detail is to establish that the track-
ing solutions also start from the “good” set of initial conditions, for generic
solutions of the large system.

For simplicity, we discuss here only the case of cooperative systems
(monotonicity with respect to the main orthant), but proofs in the case of
general cones are similar and will be discussed in a paper under preparation.

2 Statement of Main Result

We are interested in systems in singularly perturbed form:

dx d
== flay), <=l =glwy), (1)
where z € R", y € R™, 0 < ¢ < 1, and f and g are smooth functions. We will
present some preliminary results in general, but for our main theorem we will
restrict attention to the case when g has the special form g(z,y) = Ay + h(z),
where A is a Hurwitz matrix (all eigenvalues have negative real part) and h
is a smooth function. That is, we will specialize to systems of the form:

dx 8@

—f(x,y), dt

- = = Ay + h(x). (2)

(We remark later how our results may be extended to a broader class of
systems.) Setting € to zero, we have:
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d
= = fla,mo(x)), (3)
where mo(x) = —A~1h(x). As usual in singular perturbation theory, our goal

is to use properties of the limiting system (3) in order to derive conclusions
about the full system (2) when 0 < ¢ < 1. It is helpful to consider the fast

system (7 = L):

dx

-V = Ef(l'vy)a

e = Ay + h(x). (4)

il
dr
We will assume given three sets K, K, and L which satisfy the following
hypotheses (some technical terms are defined later):

H1 The set K is an n-dimensional ' simply connected compact manifold
with boundary.

H2 The set L is a bounded open subset of R™, and My = {(z,y) | y =
mo(z), = € K}, the graph of my, is contained in K x L.

H3 The flow {¢;} of (3) has eventually positive derivatives on K.

H4 The set K is convex, and therefore it is p-convex too.

HS5 For each € > 0 sufﬁmently small, the forward trajectory under (2) of
each point in D =IntK x L is precompact in D.

H6 The equilibrium set Fy = {z € IntK | f(x, mo(z)) = 0} is countable.

H7 The set K C IntK is compact, and for each € > 0 sufficiently small, the
set D = K x L is positively invariant.

Note that the equilibria of (2) do not depend on €, and the ones in D are
in 1-1 correspondence with elements of Ey. The main theorem is:

Theorem 1. Under assumptions H1-HT7, there exists €* > 0 such that for
each 0 < e < €*, the forward trajectory of (2) starting from almost every point
i D converges to some equilibrium.

Remark: A variant of this result is to assume that the reduced system (3)
has a unique equilibrium. In this case, one may improve the conclusions of the
theorem to global (not just generic) convergence, by appealing to results of
Hirsch and others that apply when equilibria are unique. The proof is simpler
in that case, since the foliation structure given by Fenichel’s theory (see below)
is not required. In the opposite direction, one could drop the assumption of
countability and instead provide theorems on generic convergence to the set
of equilibria, or even to equilibria if hyperbolicity conditions are satisfied, in
the spirit of what is done in the theory of strongly monotone systems.

3 Proof of the Main Theorem

Let us first define some technical terms for any differential equation ‘fi—f = F(2).
Its flow {¢;} is said to have eventually positive derivatives on a set V. C RY if
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there exists to such that %(z) > 0 for all t > tg, 2 € V. When the system is

of dimension one, this holds automatically. In general, the following sufficient

condition is easier to check. If for all z € V, g?’ (z) > 0, for all i # j, and

the matrix %—f(z) is irreducible, then {¢;} has eventually positive derivatives.
(This condition is not necessary.)

An open set W C RY is called p-conver, if W contains the entire line
segment joining x and y whenever x,y € V and x < y, where z < y means
r; <y;foralli=1,--- N. _

Recall the definition of My = {(z,y)| v = mo(x),z € K}. It is called
normally hyperbolic relative to (4), provided all eigenvalues of the matrix A
have nonzero real part. This is satisfied in our case as A is Hurwitz. Our proofs
are based on Fenichel’s theorems [2], in the forms presented and developed by
Jones in [7].

Fenichel’s First Theorem Under assumption H1, if My is normally hyper-
bolic relative to (4), then there exists g > 0, such that for every 0 < e < g
and r > 0, there is a function y = m.(x), defined on IN(, of class C™ jointly
in z and ¢, such that M. = {(z,y) | y = me(z), = € K} is locally invariant
under (2).

We will pick a particular » > 1 in the above theorem from now on. Because
of H5, in our case local invariance implies that (xz(t),y(t)) satisfies y(t) =
me(x(t)) and

dx(t
0 1wy, me(atr) )

for all ¢ > 0. Applying Theorem 1.2 of [4], one can prove

Lemma 1. Under assumptions H1-H3, for each 0 < & < &¢, the flow {¢1}
of (5) has eventually positive derivatives on IntK .

Our assumptions allow us to apply Theorem 4.4 of [4] to obtain:

Lemma 2. Under assumptions H1-H6, for each 0 < & < eq, there exists a
set Cc C IntK such that the forward trajectory of (5) for every point of C-.

converges to some equilibrium, and the measure of IntK \ C. is zero.

See [13] for proofs of the above results. Until now, we have discussed the flow
only when restricted to the locally invariant manifold M.. The next theorem,
stated in the form given by [7], deals with more global behavior. In [7], the
theorem is stated for £ > 0, but some properties also hold for e = 0 ([8]). (We
will apply this result again with a fixed r > 1.) The notation [—d, ] stands
for the cube { (y1,...,ym) | —0 <|y;| <9 }.

Fenichel’s Third Theorem Let €y be as in Fenichel’s First Theorem. Under
assumption H1, if My is normally hyperbolic relative to (4), then there exists
0 <e <egandd >0 such that for every 0 < e < &1 and r > 0, there is a
function he : K x [—0,8] — R™ such that the following properties hold:

1. For each x € K, he(z,0) = .
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2. The image of the map T : K x [—d,0] — R™ x R™, sending (z,\) to
(he(x, N), N+ me(he(z, X)), is defined as the stable manifold W2 (M.) of
M. Forp = (z,m.(x)) € M., the stable fibers W2 (p), defined as T.({zx} x
[—4,0]), form a “positively invariant” family when e # 0, in the sense that
WE(p) we ey t S WE(Di(p))-

3. “Asymptotic Phase”. There are positive constants k and « such that for
any p,q € R"™ if g € W2(p), e # 0, then |¢:(p) — ¢:(q)| < ke for all
t >0 as long as ¢(p) and ¢(q) stay in WE(M,).

4. The stable fibers are disjoint, i.e., for ¢ € WZ2(p;), i = 1,2, either
W2(p1) NWE(p2) = 0 or WE(p1) = WZ(p2).

5. The function h.(x,\) is C" jointly in (e,2,\). When ¢ = 0,
hos(z,\) = .

W' () W 50 ,(m)

P X =hg (P M,

Fig. 1. Sketch of the locally invariant manifold and stable fibers of a system with
n = m = 1. The critial manifold My is the graph of mo(z) — m.(z) (black curve),
and M. is the graph of A = 0. They may intersect at some equilibrium points.
Through each point p € M. (z-axis), there is a stable fiber WZ(p) (blue curve),
which consists of the pairs (he(z,\),\) with |A\| < §. If a solution (purple dashed
curve) starts on fiber W2 (p), after a small time ¢, it evolves to a point on another
stable fiber W2 (¢+(p)) (light blue curve); this is the “positive invariance” property.

The next lemma gives a sufficient condition to guarantee that a point is
on some fiber.

Lemma 3. Let €1 and § be as in Fenichel’s Third Theorem. There exists
0 < &3 < €1, such that for every 0 < € < eq, the set As = {(z,y) | = €
K, |y —mo(z)| < 3} is a subset of W2 (M.).

To prove this lemma, we need the following result:

Lemma 4. Let U and V' be compact, convex subsets of R"™ and R™ respec-
tively. Suppose given a continous function ¢ : UxV — R™xR™, it maps (z,y)
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to (¢1(x,y), ¢2(x,y)), and satisfies [|¢p1(x, y) —z| < p1, |[P2(2,y) —y| < p2 for
some p1 >0, p2 >0 and all (x,y) € U x V. Then every point (o, ) € U x V
with dist(a, OU) > p1 and dist(5,0V) > py is in the image of ¢.

See [13] for proofs of Lemma 4 and Lemma 3. The next lemma describes
the trajectory of an arbitrary initial point in D.

Lemma 5. Let e be as in Lemma 3, and & as in Fenichel’s Third Theorem.
Under assumption H7, there exists 0 < €3 < g9 such that for each 0 < € < g3,
if p € D, then there exists To > 0, and ¢¢(p) € As for all t > Tp.

Proof. Setting z = y — mo(x) (4) becomes

dx dz

e ef(z,z +mo(x)), pr Az —emy(z) f(z, 2 + mo(z)).

Using the variation of parameters formula for the z equation, together with
the fact that A is Hurwitz, one can prove that z(t) eventually becomes smaller
than §/2 for 7 large. Back to the slow time scale, there exists Tj such that
ly — me(x)] <0 for t > Tp, as wanted. O

Remark: Except for the normal hyperbolicity assumption, Lemma 5 is the
only place where the special structure (2) was used. Consider a more gen-

eral system as in (1), and assume that g(z,mo(z)) = 0 on K for some
smooth function mg. By the same change of variables as in the above
proof, (1) is equivalent to g—f = ef(z,z + mo(x)), % = g(x,z + mo(z)) —
emy(z)f(x,z + mo(x)). The only property that we need in the lemma is
that for any initial condition (z(0),z(0)), the solution (z(t),z(t)) satisfies
limsup,_, . |2(t)| < (limsup,_, . d(t)) where 7 is a function of class I, that
is to say, a continuous function [0,00) — [0,00) with v(0) = 0, and d(t) =
em(z(t)) f(z(t), 2(t) +mo(x(t))). In terms of the functions mg and g, we may
introduce the control system dz/dt = G(d(t), z) + u(t), where d is a compact-
valued “disturbance” function and w is an input, and G(d, z) = g(d, z+mo(d)).
Then, the property of input-to-state stability with input « (uniformly on d),
which can be characterized in several different manners, including by means
of Lyapunov functions, provides the desired condition.

Lemma 5 proves that every trajectory in D is attracted to As and therefore
is also attracted to M. This will lead to our proof of the main theorem.

Proof of the Main Theorem

Choose €* = g3, defined in Lemma 5. For any p € D, there are three cases:

1. p € M.. By Lemma 2, the forward trajectory converges to an equilibrium
except for a set of measure zero.

2.p e As € W2(M.). Then p is on some fiber, say W2 (p), where p =
(Z,ms(Z)) € M. If T is in C. (defined in Lemma 2), then ¢.(p) — ¢,
for some g € Fy. By the “asymptotic phase” property of Fenichel’s Third



Singular Perturbations of Strongly Monotone Systems 421

Theorem, ¢;(p) also converges to ¢. To deal with the case when & ¢ C.,
it is enough to show that the set B, = UEEIHtf(\C W2 (p) as a subset of

R™*+" has measure zero. Define F. = (IntK \ C.) x [—4, 8. Since IntK \ C.
has measure zero in R™, F. also has measure zero. On the other hand
T.(F.) = B., and Lipschitz maps send measure zero sets to measure zero
sets, we are done.

3. p € D\ As. By Lemma 5, ¢:(p) € As for all t > Ty. Without loss of
generality, we assume that Tj is an integer. If ¢, (p) € As \ Be, then ¢¢(p)
converges to an equilibrium. Otherwise, p € U~ pez @k (Be). Since the
set B. has measure zero and ¢_j is Lipschitz, (b__k(Bg) has measure zero
for all k, and the countable union of them still has measure zero. O

4 An Example

Consider the following system:

dl‘i .
dt :’yi(y:l’""ym)_ﬂi(x17""xn)7 2217"'777/7
dus
6%: —djy; —oj(z1,...,xn), d; >0, j=1,....m, (6)

where «;, §; and 7; are smooth functions. We assume that

1. When n > 1, for all i,k = 1,...,n, i # k, and all z € R", the partial
derivatives 8[31 t(r) <Oand 3," 9% ()99 (1) < 0.

1=1 9y, \¥) 5z,
2. The functlon 52 satisfies that that %i(xl, ceoyTp) = 400 as all z; — +oo
and B;(z1,...,z,) = —00 as all z; — —o0.
3. There exists a positive contant M; such that |o;(x)| < M, for all z € R™.
4. The number of roots of the system of equations v;(a1(z),...,an(x)) =
Gi(x), i=1,...,m, is countable.

The conditions are very natural. The condition on the (;’s is satisfied, for
example, if there is a linear decay term —zx; in the differential equation for x;,
and all other variables appear saturated in this rate, see an more interesting
example in [13].

We are going to show that on any large enough region, and provided that
¢ is sufficiently small, almost every trajectory converges to an equilibrium. To
emphasize the need for small €, we also show that when € > 1, a limit cycle
could appear.

To apply our main theorem, we take L = {y € R™ | |y;] < bj, j =

1,...,m}, where b; is an arbitrary positive number greater than L. Picking

such b; assures y; dJ < 0 for all z € R and |y;| = b, i.e. the Vector field
points transverally inside on the boundary of L. Let K = {x € R" | —a;2 <
x; < a1, 1=1,...,n}, where a;; and a; 2 can be any positive numbers such
that 3;(x) > N; := max|y,|<p, [Yi(Y1,---,Ym)|, whenever x € R™ satisfies that
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its ith coordinate z; > a;1; and §;(x) < —N;, whenever x € R” satisfies that

its ith coordinate z; < —a; 2. All large enough a; ;’s satisfy this condition,

because of the assumption made on (3. So, we have xi% <0 forally € L,

z; = a;1 and x; = —a; 2. We then take K = {x eR"| —a;0—1<ua; <
aix+1,i=1,...n}, D=K x Land D =IntK x L. Thus, the vector field

will point into the interior of D and D. Hypotheses H5 and H7 follow directly
from this fact. It is easy to see the other hypotheses also hold. By our main
theorem, for sufficiently small ¢, the forward trajectory of (6) starting from
almost every point in D converges to some equilibrium.

On the other hand, convergence does not hold for large . Let n =

3
L, Bi(z1) = F —21, m =1, ay(x1) = 4tanhzy, (1) = y1, dy = 1. It
is easy to verify that (0,0) is the only equilibrium. When ¢ > 1, the trace of
the Jacobian at (0,0) is 1—1 > 0, its determinant is 12 > 0, so the (only) equi-
librium in D is repelling. By the Poincaré-Bendixson Theorem, there exists a
limit cycle in D.
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