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Abstract: Biological complexity and limited quantitative measurements pose severe challenges to
standard engineering methodologies for modelling and simulation of genes and gene products inte-
grated in a functional network. In particular, parameter quantification is a bottleneck, and therefore
parameter estimation, identifiability, and optimal experiment design are important research topics
in systems biology. An approach is presented in which unmodelled dynamics are replaced by ficti-
tious ‘dependent inputs’. The dependent input approach is particularly useful in validation exper-
iments, because it allows one to fit model parameters to experimental data generated by a reference
cell type (‘wild-type’) and then test this model on data generated by a variation (‘mutant’), so long
as the mutations only affect the unmodelled dynamics that produce the dependent inputs. Another
novel feature of the approach is in the inclusion of a priori information in a multi-objective identi-
fication criterion, making it possible to obtain estimates of parameter values and their variances
from a relatively limited experimental data set. The pathways that control the nitrogen uptake
fluxes in baker’s yeast (Saccharomyces cerevisiae) have been studied. Well-defined perturbation
experiments were performed on cells growing in steady-state. Time-series data of extracellular
and intracellular metabolites were obtained, as well as mRNA levels. A nonlinear model was pro-
posed and was shown to be structurally identifiable given data of its inputs and outputs. The ident-
ified model is a reliable representation of the metabolic system, as it could correctly describe the
responses of mutant cells and different perturbations.

1 Introduction

Biomolecular circuits such as regulatory networks and
metabolic pathways, play a fundamental role in ongoing
research in cell biology. There is increasing awareness
that biological processes should be understood integrated
in their system environment (systems biology). Although
the identification of genes and proteins and the description
of metabolic pathways are very important issues, the next
step is to understand the dynamics and the function of
biomolecular networks. These networks cannot simply be
described as an assembly of genes, proteins and metab-
olites. Mathematical modelling and dynamic simulation
are important constituents of systems biology. Systems
biology inspires new developments in relevant exact
sciences, such as system and control theory [1]. The biologi-
cal complexity and limited quantitative measurements
impose major challenges for the methodologies that are
being developed for modelling and simulation. One of the
important bottlenecks is the estimation of model parameters
from experimental time-series data [2, 3].

This paper originated in our interest in the interaction
between metabolic and genetic regulatory networks. In
many human diseases, such as type 2 diabetes and heart
failure, there are delicate imbalances in these dynamic
interactions. In mammalian cells, the amino acids glutamine
and glutamate, besides glucose, are the primary nutrients for
cell functioning [4]. Glutamine is the most abundant amino
acid and an important precursor for peptide and protein syn-
thesis. It serves as a nitrogen transporter in the body and can
be used as fuel for different tissues and cell types.

In the low eukaryote Saccharomyces cerevisiae (baker’s
yeast) the structure of the metabolic network of glutamine
and glutamate (referred to as the central nitrogen metab-
olism, CNM; [5]) is similar to that in mammalian cells
(Fig. 1). As S. cerevisiae has important biotechnological
applications for the industrial production of (heterologous
and/or engineered) proteins, understanding and rational
manipulation of its amino acid and protein metabolism
(metabolic engineering) are of direct economical interest.

Cellular metabolism is highly adaptive, which enables
cells to select for the ‘most optimal’ substrate and survive
large differences in nutrient availability. Most unicellular
organisms regulate the uptake of nutrients via so called
catabolic repression: if the cell senses the availability of a
preferred substrate, the systems involved in the uptake
and processing of ‘bad’ nutrients will be down-regulated;
enzymes are degraded and gene transcription is repressed.
In S. cerevisiae, the preferred nitrogen sources are gluta-
mine, ammonia and, to a lesser extent, glutamate [6]. The
selectivity for these substrates is called nitrogen catabolic
repression (NCR). A surplus of glutamine or ammonia
also represses its own uptake and metabolism.
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One of the primary aims of this study was to illustrate
how concepts and methods from system identification and
parameter estimation can be used in the development of a
dynamic model of a system that integrates signal transduc-
tion, gene regulation and metabolic pathways. The model
should be able to describe the in vivo behaviour of NCR,
such as observed in chemostat experiments [7]. In a chemo-
stat, cells can be grown in a quantitatively well-defined
steady-state that is determined by the balanced inflow of
fresh culture medium (nutrients, minerals etc.) into the
fermenter and the outflow of fermentation broth [8]. A
synthetic medium is used of which the composition has
been designed such that all but one of the necessary
substrates are present in surplus. The inflow of the limiting
substrate determines the growth rate of the culture.
Glutamine limited chemostats were run and the steady-state
was perturbed by pulsing nitrogen substrates to the culture.
A model structure with five state variables was derived on
the basis of the known molecular mechanisms. The model
parameters of the genetic circuit were unknown and those
of the substrate kinetics had only been determined by
classic biochemical experiments (i.e. ‘in vitro’). On the
basis of experimental profiles of extracellular and intra-
cellular metabolites measured after excitation of the
system, estimates of the parameter values were obtained.

A second major goal of our work was to identify new direc-
tions for the extension of system identification theory motiv-
ated by the requirements of systems biology. Besides
independent inputs u, state variables x and observed outputs
y, the mathematical framework was extended with ‘dependent
inputs’ v. These artificial inputs v represent model variables for
which the values during a simulation are imposed by the cor-
responding experimental data (a problem sometimes referred
to as ‘closed loop identification’), but cannot be manipulated
by the experimentator, in contrast to the (classical) indepen-
dent inputs u. This framework allows study of the processes
of interest in a modular fashion. One of the intracellular
metabolites, which was measured during the perturbation
experiments, was treated as dependent input. Hereby, (the
regulation of) the transport systems for the uptake of glutamine
and ammonia and the genetic control circuit could be analysed
without the need to model all the downstream metabolic path-
ways. A significant reduction in the complexity of the system
to be described is achieved. The dependent input approach is
particularly useful in validation experiments, because it
allows one to fit model parameters to experimental data gener-
ated by a reference (‘wild-type’) cell type and then testing this
model on data generated by a variation (‘mutant’), so long as
the mutations only affect the unmodelled dynamics that

produce the dependent inputs. We justify the approach using
the theory of universal inputs for distinguishability [16–22].

We developed a model of S. cerevisiae, with seven
unknown model parameters that were estimated by an
output error approach. As usual, the model was optimised
for its predictive power (i.e. the fit of the data) by minimis-
ing the difference between the data and the model output
in a least squares criterion. However, the model was
also optimised for typical, a priori known (biological)
characteristics of the dynamics of the system. Owing to
the experimental setup with a chemostat, the cells were
assumed to be in steady-state before each perturbation. In
the numerical algorithm, the Least Squares criterion was
combined with constraints derived from this experimental
steady-state condition in a multi-objective optimisation
criterion.

2 Mathematical model

The following general model structure is proposed to
describe the dynamics and the model output of a general
nonlinear input–output system parameterised by a vector
u which represents the unknown constants in the system.
The state equation is

_xðt; uÞ ¼ f ðxðt; uÞ; uðtÞ; uÞ with xðt0; uÞ ¼ x0 ð1Þ

(dot indicates time-derivative) and the output equation is

yðt; uÞ ¼ Cxðt; uÞ ð2Þ

where x [ R�0
n is the state vector, u [ R�0

r the input vector
and y [ R�0

m the output vector. We assume in the general
formulation that the equations have the property that sol-
utions remain non-negative, when starting with initial
states that have non-negative coordinates, and using
inputs that are also non-negative. This is a property that is
verified when a model represents concentrations, and it
can be easily verified for our S. cerevisiae model.
(Sometimes, quantities of interest in biological models
may represent currents in ion channels, metabolic fluxes
or other signed quantities; the general considerations
apply equally well if we consider systems whose states,
inputs and outputs take arbitrary real values.) The com-
ponents of the vector field f are (nonlinear) functions that
describe the structure of the system, parameterised by a
vector u [ R�0

p . The matrix C selects the states that are
observed.

The states in a biomolecular circuit model are typically
the levels of messenger RNA (mRNA), proteins and

Fig. 1 Metabolic network of CNM

GS, glutamine synthetase; GDA, glutaminases; GOGAT, glutamate synthase; NAD/NADPH-GDH, NAD- and NADPH-dependent glutamate dehy-
drogenase; (NAD(P)(H) are redox cofactors)
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metabolites. Typically, such a network contains regulation
loops in which the feedback action is a function of the
state variables, as illustrated in Fig. 2. If the state variable(s)
acting in the feedback loop can be measured, then the
measured signal(s) could be used to drive the system,
while the actual feedback is removed

_xðt; uÞ ¼ f ðxðt; uÞ; uðtÞ; vðtÞ; uÞ ð3Þ

with v [ R�0
q , which we will refer to as the ‘dependent

inputs’ (or ‘driving function’). Especially for (complex)
network systems this concept can be advantageous
because it can significantly reduce the model size, as the
subsystem comprising the feedback loop does not need to
be described. In systems biology, one is often interested
in only a subsystem of the total cellular network; it is
usually neither feasible nor necessary to model the entire
system at the level of the molecular players. Moreover,
the use of ‘dependent inputs’ is a powerful tool in model
validation, as we discuss later. The drawback is a loss of
predictive power, because the ‘open-loop’ model can only
be used to simulate situations for which the dependent
inputs v have been measured in the real system.

We now discuss the model of S. cerevisiae, which was
developed on the basis of a previously published, more
extensive simulation model of CNM in yeast [5]. The
model structure was derived from mass balances of
the different species in the system. The model should be
able to describe the growth of yeast when ammonia and
glutamine are used as a nitrogen source (see experiments
described in Section 3). For the extracellular metabolites
ammonia (x1) and glutamine (x2) (both in mM), the chemo-
stat setup yields a description of the inflow of substrate
through the medium and the outflow of the fermentation
broth (cells, residual medium and metabolites produced
by the cells), both at a rate equal to the dilution rate D
[h21] of the chemostat. In (4) and (5), D(ui 2 xi), i ¼ 1, 2,
represents the net inflow of ammonia and glutamine into
the fermenter. A third term in the mass balance represents
the substrate uptake by the cells according to Michaelis–
Menten kinetics, scaled to the concentration of cells
[expressed as the dry cell weight (DCW), in (g � L21)].
Parameters Vmax represent the maximum (limiting) specific
activity (mmol � g21

� min21) and Km the substrate
affinity (mmol � g21).

_x1 ¼ Dðu1 � x1Þ � ðDCWÞx4

VmaxMepx1

KMep þ x1

ð4Þ

_x2 ¼ Dðu2 � x2Þ � ðDCWÞx3

VmaxGapglnx2

KGapgln þ x2

ð5Þ

Glutamine and many other amino acids are mainly trans-
ported into the cell via the General Amino acid Permease,
encoded by the gene GAP1 and subject to NCR. x3 is the
relative level of the active protein Gap1p. Three genes
were identified that encode for ammonia permeases,
MEP1,2,3. In the model, the three permeases have been

lumped as x4 (the relative level of Mepp). The ammonia
uptake system is also catabolically repressed. Repression
occurs via inactivation of the transcription factor Gln3
(x5) that binds to the promoters of the NCR sensitive
genes to initiate their transcription [6]. Gln3 is fully active
in the nucleus under nitrogen limitation, that is the exper-
imental condition of the chemostat experiments. NCR is
triggered when intracellular glutamine, v (mmol � g21),
reaches a critical value, indicated as glnT. Steep sigmoidal
functions (Hill equations) have been used to model gene
regulation and protein (in)activation (6)–(8). At the
protein level, the parameter n represents the ‘cooperativity
coefficient’. Especially protein activation and inactivation
via (de)phosphorylation can occur with relatively high
cooperativity [16] such that the sigmoid relation becomes
switch-like

_x3 ¼ ksx5 � kix3

vn

glnn
T þ vn

� kdx3 ð6Þ

_x4 ¼ ksx5 � kix4

vn

glnn
T þ vn

� kdx4 ð7Þ

_x5 ¼ kimð1� x5Þ � kexx5

vn

glnn
T þ vn

ð8Þ

where ks is the rate constant of protein synthesis (min21), ki

is the rate constant of NCR triggered inactivation (min21)
and kd the rate constant of protein degradation (min21). It
was assumed that the rate constants are equal for both
proteins. kim and kex are the translocation rate constants of
Gln3 to and from the nucleus, respectively, (min21). In
the steady-state of the glutamine limited chemostat, NCR
is not active: the sigmoidal function in (6)–(8) is 0,
Gap1p (x3) and Mepp (x4) are fully expressed (equal to 1)
and Gln3 (x5) is fully active in the nucleus (equal to 1).
Therefore ks ¼ kd to fulfil the steady-state condition for
the permeases. For simplicity, it was assumed that the
inactivation rate constant of Gln3 (which is the export
rate constant kex) is equal to the inactivation rate constant
of the permeases, ki. Moreover, it was assumed that the
translocation rate constants of Gln3 to and from the
nucleus are equal. In Fig. 3, the system is shown as a
three-compartment system.

The model is reformulated as follows

_x1 ¼ Dðu1 � x1Þ � a4x4

x1

a1 þ x1

ð9Þ

_x2 ¼ Dðu2 � x2Þ � a3x3

x2

a2 þ x2

ð10Þ

_x3 ¼ a5ðx5 � x3Þ � bx3

vn

gþ vn
ð11Þ

_x4 ¼ a5ðx5 � x4Þ � bx4

vn

gþ vn
ð12Þ

_x5 ¼ bð1� x5Þ � bx5

vn

gþ vn
ð13Þ

with a4 ¼ [DCW]VmaxMep, a3 ¼ [DCW]VmaxGapgln, a5 ¼
ks ¼ kd, b ¼ ki ¼ kex ¼ kim and g ¼ glnT

n.

In summary, the states xi are

x1 ¼ extracellular ammonia concentration [NH4
þ]ex in mM,

x2 ¼ extracellular glutamine concentration [gln]ex in mM,

Fig. 2 Opening the loop of the feedback system by threating a
measured variable in the feedback loop as a dependent system
input v
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x3 ¼ relative level of general amino acid permease Gap1p
[2],
x4 ¼ relative level of ammonia permease Mepp [2],
x5 ¼ relative level of nuclear transcription activator Gln3
[2],

the independent inputs ui are

u1 ¼ ammonia concentration in culture medium feed
[NH4

þ]feed in mM,
u2 ¼ glutamine concentration in feed [gln]feed in mM,

and the dependent input v is:

v ¼ intracellular glutamine concentration [gln]in in
[mmol � g21].

Intracellular glutamine (v) was measured in the experiments
in combination with the concentrations of extracellular
ammonia (x1) and extracellular glutamine (x2) (see
Section 3). The output matrix is C ¼ diag(1, 1, 0, 0, 0)
and y ¼ [x1, x2]T. The fixed parameters and initial conditions
(indicated with superscript 0) are given in Table 1.

3 Experiments

We studied the metabolic and genetic regulations involved
in NCR using glutamine limited chemostat cultures of
several strains of S. cerevisiae (S1278b and VWk43) and
two different mutants (Dgln1 and Dglt1, deficient in gluta-
mine synthetase and glutamate synthase, respectively; [7,
17]). Cells were grown aerobically at 308C and pH 5.0 in
working volumes ranging from 0.5 to 1.5 l. To perturb the
steady-state of the glutamine limited cells (growing at a
specific growth rate equal to the dilution rate of 0.1 h21)
and trigger the metabolic and genetic regulation, pulses of
different type and quantity of nitrogen sources were
subsequently added to the fermenter. Between the different
pulses, the cells were allowed to recover to steady-state. The
profiles of certain intra- and extracellular metabolites and
mRNA of NCR sensitive genes (specifically, extracellular
ammonia and glutamine concentrations as well as
intracellular glutamine concentration) were measured.
Data were obtained during steady-state and after the
pulses at 0, 1, 2, 3, 4, 6, 8, 10, 15, 20, 30, 45, 60, 90 and
120 min (Fig. 4).

To obtain the data, we performed the following exper-
iment. Fermentation broth was rapidly withdrawn from
the fermenter using a syringe. The sample was divided
into four fractions. Extracellular metabolites were measured
in the supernatant of the first fraction obtained after rapid
separation from the cells through filtration. Intracellular
metabolites were measured in cell extracts obtained from
the second fraction after quenching of protein and metabolic
activity in cold buffered methanol below 2208C and sub-
sequent extraction in boiling buffered ethanol. Metabolites
were determined by HPLC and/or enzymatic assay.
Intracellular metabolite levels were expressed as mmol per
gram biomass. Biomass was determined from the third frac-
tion as the dry cell weight in (g � L21) after overnight
drying of the cells at 1008C. The fourth fraction was
immediately frozen in liquid nitrogen and used for RNA
extraction. Labelled oligonucleotides were used for north-
ern blot analysis. ACT1 is expressed at constant levels and
was used as internal control in the northern blots for the
amount of RNA blotted. The blots were scanned and digi-
tised with imaging software. Quantitative expression
levels were obtained by calculating the intensity ratio
between the gene of interest and ACT1, with the observed
maximum expression level defined as 100%. Samples
were processed and analysed repeatedly (3–5 replicates)
to obtain an average value and standard deviation per
time sample.

Fig. 3 Experimental system of a glutamine limited chemostat in
which NCR is triggered by pulsing ammonia (u1) or glutamine (u2)

Arrows indicate activation, T-bars represent repression
GATA is the DNA sequence to which transcription factor Gln3 binds
It is assumed that binding of Gln3 results in the same rate of transcrip-
tion and translation for the different proteins
If intracellular glutamine reaches a threshold, Gln3 translocates into
the cytoplasm where it is kept inactive by binding to Ure2
Intracellular ammonia [NH4

þ]in is not included in the model, instead,
the measured profile of intracellular glutamine [gln]in is applied as a
dependent input v

Table 1: Model constants

Symbol Value Unit Description Source

x1
0 0 mM [NH4

þ]ex
0 experiment

x2
0 0.02 + 0.02 mM [gln]ex

0 experiment

x3
0 1 [–] Gap1p0 experiment

x4
0 1 [–] Mepp0 experiment

x5
0 1 [–] Gln30 experiment

u1
0 0 mM [NH4

þ]feed experiment

u2
0 20.5 mM [gln]feed experiment

v0 8.4 + 2.5 mmol � g21 [gln]in
0 experiment

D 0.1 h21 dilution rate experiment

(DCW) 9.4 + 0.4 g � L21 dry cell weight experiment

n 20 [–] cooperativity assumption
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Data of two experiments with wild-type strain S1278b
have been used for system identification: a 18 mM gluta-
mine pulse and a 40 mM ammonia pulse (Fig. 5). The
values reported in Table 1 represent the averages (+ stan-
dard deviation) as obtained from all steady-state samples. In
the model the average values have been used. To validate
the identified model, six different experiments were done
in either different yeast strains or with different perturbation
levels: (1) 18 mM glutamine pulse to a Dgln1 mutant,
(2) 40 mM ammonia pulse to a Dgln1 mutant, (3) 10 mM
glutamine pulse to wild-type strain VWk43, (4) 20 mM
glutamine pulse to wild-type VWk43, (5) 10 mM glutamine
pulse to a Dglt1 mutant and (6) 20 mM glutamine pulse to a
Dglt1 mutant. The Dgln1 mutant cannot synthesise
glutamine from ammonia after an ammonia pulse and the
Dglt1 mutant lacks a pathway to degrade glutamine (Fig. 1).

The mutant strains differ from the wild-type strains
in precisely the parts of the system that have been left
unmodelled and whose effect is represented by the
‘dependent inputs’. This means that the identified model
should remain the same for the mutant strains, although
the ‘dependent inputs’ used in testing the model when
applied to the mutant strains will be different than in the
wild-type case. In this manner, the introduction of ‘depen-
dent inputs’ provides a powerful mechanism for model
validation.

4 Identification

4.1 Structural identifiability

As a first step, we investigated if in the ideal, theoretical
case, the seven unknown model parameters (u ¼ [a1, a2,
a3, a4, a5, b, g]) could be estimated given the two indepen-
dent system inputs, two outputs and one dependent input.
We were able to show that this is, indeed, the case.
Moreover, we showed that a small number of combinations
of constant values for inputs and dependent inputs suffice
for identification. Appendix 9.1 provides a mathematical
proof of this fact.

Also in the appendix, we explain how the mathematical
theory of ‘universal inputs’ in control theory [9–15] guar-
antees that a ‘generic’ input will be enough for identifi-
cation in the ideal case, lending considerable support to
the whole concept of using dependent inputs.

4.2 Maximum likelihood

Owing to the presence of unmodelled dynamics, modelling
errors and measurement noise, the measured data are
assumed to be obtained from a stochastic process. The
discrete time measurement models are described by

zðtkÞ ¼ yðtkÞ þ 1ðtkÞ k ¼ 1; . . . ;N ð14Þ

wðtkÞ ¼ vðtkÞ þ 1ðtkÞ k ¼ 1; . . . ;N ð15Þ

where z are the measurements of the outputs, w the
measurements of the dependent inputs (both sampled at
the same, non-equidistant N discrete times tk) and 1 is the
measurement error, assumed to be additive zero mean
white noise with known variance s2(tk).

The difference between the measurements aligned in z
and the simulated time-discrete model output aligned in y,
that is the model error ek, was weighted in a quadratic
criterion JN

ek ¼ zðtkÞ � ŷðtk; u;w; ûÞ k ¼ 1; . . . ;N ð16Þ

JN ðûÞ ¼ eTWe ð17Þ

where û is the vector of estimated parameters, ŷ is the model
output for the parameter realisation û and W is a
[m . N � m . N ] positive definite symmetric weighting
matrix (the weighted least squares algorithm), where
m ¼ 2 is the dimension of the output space. Then

ûN ¼ arg min
û�0

JN ðûÞ ð18Þ

subject to _xðt0; ûÞ ¼ 0 ð19Þ

which imposes the steady-state requirement of the chemo-
stat before each pulse experiment. As the parameters have
a physiological interpretation, they were bounded to �0
(u [ R�0

p ).
The covariance matrix of unbiased parameter estimates

cov(û) has the inverse of the Fisher information matrix
(FIM) Vu as lower bound (cov(û) � Vu

21, the so called
Cramér–Rao bound [18, 19]). The FIM is based on the
weighted sum of squared residuals eTWe and the Jacobian
J of the cost function with respect to the parameters for
u ¼ û and the number of data points N

Vu ¼ N ðeTWeÞ�1JJT
ju¼û ð20Þ

This accommodates Gaussian model residuals under
maximum likelihood estimation and is asymptotically

Fig. 4 Input profile of a 18 mM glutamine pulse added to a
20.5 mM constant feed (u2) and a 40 mM ammonia pulse (u1)
after steady-state was recovered

Lower line indicates the timing of the 30 samples

a b

c d

Fig. 5 Data of two nitrogen pulse experiments with wild-type
strain S1278b used for identification

a extracellular glutamine (y2)
b intracellular glutamine (v) after an 18 mM glutamine (u2) pulse
c extracellular ammonia (y1)
d intracellular glutamine (v) after a 40 mM ammonia (u1) pulse
Bars indicate the standard deviation of the data
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correct for arbitrary distribution of the residuals under
weighted least-squares estimation [20, 21]. The weighting
matrix W was chosen as the inverse of the data covariance
matrix cov(z). Under this condition cov(û) ¼ Vu

21 [18].
Now ûN is the minimum variance, unbiased estimate and
the diagonal elements of the matrix Vu

21 are approximations
of the variance of the estimated parameters (ŝu

2).
Alternatively, the distribution of the parameter estimates
could also have been obtained using a bootstrap approach,
which does not require the model residuals to be Gaussian
distributed.

In z and ŷ, the data and model output, respectively, of the
18 mM glutamine pulse and 40 mM ammonia pulse to wild-
type strain S1278b were combined. The data variance was
obtained by processing and analysing the same samples
multiple times.

4.3 Technical information

The simulations and parameter estimation were carried out
in MATLAB 6.5 (The Mathworks, Inc.), running under
Microsoft Windows XP Pro on a 2.4 GHz IBM compatible
PC with 1 GB RAM. During simulation the independent
inputs u1 and u2 were defined according to the experimental
conditions. Dependent input v was a measured profile.
Linear interpolation of the input signals was used to
obtain values for each simulation time sample. For par-
ameter estimation the Levenberg–Marquardt algorithm
lsqnonlin was used from MATLAB’s Optimisation
Toolbox version 2.2. The termination tolerance for the
objective function was set to 1024. Parameters were esti-
mated with lower bounds equal to zero and the termination
tolerance for the parameter estimates was 1025. The
steady-state condition (19) was implemented by augment-
ing the output error criterion (17) with the sum of the
squared vector of the differential equations (9)–(13) at
t1 ¼ 0, penalising deviations from steady-state and resulting
in a two-objective criterion. Convergence to the global
minimum of the objective function cannot be guaranteed.
The algorithm was started with different initial values for
the unknown parameters to verify potential local
minimums.

5 Results and discussion

The estimated parameter values can be found in Table 2.
Standard deviations as high as 70% (ks) have been obtained.
On the basis of analysis of the FIM, it was concluded that
the system was not sufficiently excited to allow identifi-
cation of KMep from these data. This could be explained

because y1 ¼ [NH4
þ]ex was zero in steady-state (Table 1)

and after the 40 mM ammonia pulse the Mepp system
became immediately saturated (i.e. uptake flux equal to
VmaxMep) and this state was maintained for the following
2 h during which samples were taken.

Simulation results of the identified model are shown in
Fig. 6. The estimated NCR threshold level of intracellular
glutamine (glnT) has been included together with exper-
imental data. The response to glutamine showed a 50%

Table 2: Estimated model parameters
(mean +++++ standard deviation)

Parameter Value Unit

VmaxMep 0.0153+ 0.0070 mmol � g21
�min21

KMep n.i. mmol � g21

VmaxGapgln 0.148 + 0.014 mmol � g21
�min21

KGapgln 5.01 + 0.12 mmol � g21

glnT 60.1 + 1.2 mmol � g21

ks 0.0107+ 0.0074 min21

ki 0.0910+ 0.0103 min21

kim 0.0910+ 0.0103 min21

kex 0.0910+ 0.0103 min21

n.i.: not identifiable, a value of 0.2 was used for simulation

b

a

Fig. 6 Simulation results with identified model

a 18 mM glutamine pulse
b 40 mM ammonia pulse to wild-type strain S1278b
Experimental data (circles) have been included as the dependent input
(intracellular glutamine) and to verify the simulated output profiles
(extracellular ammonia and extracellular glutamine)
Horizontal dashed line indicates estimated NCR threshold level of
intracellular glutamine (glnT)
For GAP1 experimental mRNA levels (northern blot analysis) have
been shown
Actine mRNA (ACT1) was used as an internal control for the amount
of RNA blotted
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repression of the transporters Mepp and Gap1p within
10 min after the pulse and only less than 10% activity
after 50 min (Fig. 6a). The maximal repression of Gln3p
activity in the nucleus is only 50%. The model predicted
that reactivation occurs 2.5 to 3 h after the pulse, when
intracellular glutamine decreased below the threshold
level. The response after the ammonia pulse was less
trivial (Fig. 6b). Initially, the CNM maximally used the
increased availability in nitrogen. After 20 min, NCR was
activated and, apparently, the system was regulated at an
intracellular glutamine concentration close to the threshold
level.

A qualitative validation of the model was obtained by
comparison of the predicted profiles of Gap1p with the
experimental mRNA profiles of GAP1 included in Fig. 6.
The model correctly described a rapid decrease in GAP1
after the glutamine pulse and a somewhat delayed repres-
sion after addition of ammonia. After both pulses, the
decrease in the measured transcription levels was faster
than the predicted repression of protein activity.
Moreover, after the ammonia pulse, GAP1 was completely
repressed after 6 min, whereas Gap1p was never completely
repressed according to the model. The residual activity of
Gap1p and Mepp allows the cells to maintain growth, and
preventing an intracellular overload that might be toxic.
For a quantitative validation, the identified model was
used to describe the uptake profiles of glutamine and
ammonia in six different experiments.

Glutamine limited cultures of mutant strain Dgln1, which
lacks glutamine synthetase, were perturbed by pulsing
18 mM glutamine and 40 mM ammonia. As the mutant
strain was constructed in the genetic background of the
S1278b wild-type, it was assumed that the kinetic par-
ameters and rate constants had approximately the same
value. In Fig. 7, the model error is plotted (together with
the experimental standard deviation in the data). It has to
be noted that in the original study, the Dgln1 mutant was
used to show that NCR is not triggered by intracellular
glutamine only, but also by ammonia [6, 7]. The latter
mechanism was not incorporated in the model as presented
here. This ‘undermodelling’ could explain the error in the
description of the validation data. In both cases, the initial
uptake phases (the first 10 min after the pulses before
NCR was activated) were predicted correctly. In
Appendix 9.2, the model predictions and the data are
shown.

The validation of the model with data of the mutant (in
which glutamine-triggered NCR after an ammonia pulse
was impaired because of the lack of GLN1) indicated that
in the wild-type, intracellular glutamine caused the main
repression, whereas an additional repressive mechanism
was apparent in the mutant. This mechanism is probably a
signal derived from intracellular ammonia [6]. The

activation of this second repressive mechanism was most
profound after the ammonia pulse (Fig. 7b), when intra-
cellular glutamine did not rise to a level that could trigger
NCR (maximum of 15 mmol � g21; Appendix 9.2). This
observation was in agreement with the previous conclusion.
The non-white residuals in Fig. 7a suggested that this
second trigger was also activated after the glutamine pulse
to the mutant, in contrast to the response of the wild-type.
The analysis with the model showed that, among others,
the interaction between glutamine and ammonia
metabolism has to be incorporated for a more realistic
representation of NCR [5].

6 Conclusion

The aim of this paper was to illustrate an approach for data-
driven modelling and parameter estimation in combined
signal transduction and metabolic systems. The genetic
control of nitrogen uptake in S. cerevisiae was used as
case study.

Six of the unknown parameter values could be estimated,
given the limited data set of only 30 samples. The identified
model was shown to be a reliable representation of the
biological system, because it could correctly describe the
responses of different yeast strains and different pertur-
bations. The model clearly showed that intracellular
glutamine cannot be the only signal triggering NCR,
which is still an ongoing discussion between cell biologists
[6]. This systems biology approach to study NCR, provides
important insights on how yeast can optimally control
nitrogen uptake.

Two generic, highly valuable concepts were introduced
for parameter estimation in biomolecular networks. The
concept of ‘dependent inputs’ allows the opening of some
of the feedback loops that connect the pathways of interest
to the rest of the cell and its environment. The model can
focus on a smaller part of the network, as long as this sub-
system is still integrated in its in vivo system environment
through the measured input signals. If the intracellular
level of some of the proteins or metabolites can be (accu-
rately) measured in time, these signals can be used as
forcing functions for these inputs. The idea of forcing func-
tions has been applied to other areas of physiological mod-
elling since the 1970s. It is a well-known concept in
pharmacokinetic compartmental modelling in whole-body
metabolic and endocrine systems, such as glucose homeo-
stasis in which the measured insulin blood plasma profile
after a meal or intravenous injection of glucose is used as
input to describe the blood glucose levels and estimate
physiological parameters such as insulin sensitivity [20].
Other applications are modelling of haemodynamics, in
which measured blood flow is used as an input for a
model of blood pressure, or vice versa and functional
imaging of tumours with dynamic contrast enhanced MRI,
in which the arterial profile of an injected contrast agent is
used to describe the dynamics of contrast enhancement in
the surrounding (tumour) tissue to quantify the endothelial
permeability [22]. To our knowledge, this approach has so
far not been extended to the biomolecular networks typical
in systems biology.

Secondly, a priori knowledge was used to improve the
a posteriori identifiability of the model, that is the model
conditioned on the available experimental data. In many
biological and biomedical systems, the possibilities to
perturb the inputs to excite the system dynamics are
limited. Furthermore, when samples are taken from body
fluids or tissue and/or are (biochemically) analysed
off-line, the number of samples in a time-series data set

aa bb

Fig. 7 Model error in the description of the uptake profiles

a glutamine
b ammonia after injection to a glutamine limited culture of mutant
strain Dgln1 to validate the model
Bars indicate the standard deviation in the experimental data
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will be (extremely) limited. A possibility to obtain unique
and accurate parameter estimates in sparsely-sampled
systems is to include a priori information, both quantitative
and qualitative, on the system behaviour in the identifi-
cation criterion. Here, we applied the basal steady-state of
the chemostat experiments as additional information to
restrict the feasible parameter space. Also this concept
can readily be applied to other systems biology applications,
although the translation of (qualitative) a priori information
into a numerical identification criterion and the relative
importance of the different objectives in a multi-objective
criterion will always be somewhat subjective.
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9 Appendix

9.1 Structural identifiability of the continuous
model

We will refer to this system as the model system

_x1 ¼ Dðu1 � x1Þ � a4x4

x1

a1 þ x1

_x2 ¼ Dðu2 � x2Þ � a3x3

x2

a2 þ x2

_x3 ¼ a5ðx5 � x3Þ � bx3

u3

gþ u3

_x4 ¼ a5ðx5 � x4Þ � bx4

u3

gþ u3

_x5 ¼ bð1� x5Þ � bx5

u3

gþ u3

where ai’s, b, g are seven unknown positive constants,
states and inputs are non-negative and the outputs are
y1 ¼ x1 and y2 ¼ x2. Note that, for convenience, we have
replaced vn by u3. For the purposes of showing identifiabil-
ity, this replacement is valid because, given any
(non-negative) input u3 for the current system, we may
use v ¼

ffiffiffi
un
p

3 (recall that n ¼ 20 is assumed known) and
obtain the same behaviour for the original system.

Assuming that D is known, that the inputs u1, u2, u3 can
be manipulated experimentally and that initial condition
x(0) ¼ x0 is as in Table 1, we will show that the parameters
ai, b, g are identifiable from y1(t) (t � 0) and y2(t) (t � 0).
(We will show that four constant inputs are enough.)

Of course, in our application, the input u3 cannot in
reality be manipulated, as it represents signals which arise
from ignored parts of the system. The assumption that u3

is a free input is merely a convenience for the identifiability
argument. Later, appealing to a theorem from control
theory, we show that, in fact, a single generic (‘randomly
chosen’) input function (u1(t), u2(t), u3(t)) suffices as well,
so that u3(t) could be the signal arising from the unmodelled
subsystem. This theorem from control theory assumes that
one has already proved identifiability.

We provide a precise mathematical statement next. It
says that if two parameters sets are such that the same
outputs result when certain four input functions are
applied, then the parameters must coincide.
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First, we introduce a notation for outputs. For a system

_x ¼ f ðx; u; uÞ; y ¼ hðxÞ

any initial state x0, any parameter set

u ¼ ða1;a2;a3;a4;a5;b; gÞ

(vector of non-zero numbers), and any time-dependent input
function u ¼ u(.), we denote by F(x0, u, u) the function y(.),
where y(t) ¼ h(x(t)) and x(t) is the solution of the initial
value problem ẋ(t) ¼ f (x(t), u(t), u) with initial condition
x(0) ¼ x0. (We assume that this solution is unique and is
defined for all t � 0, for each input that is admissible in
the sense of e.g. [9], as is the case with our model.)

The coordinates of the state x in our case are x1, x2, x3, x4,
x5, and they are always non-negative. In particular, we
denote by x1

0, x2
0, x3

0, x4
0, x5

0 the coordinates of the initial
state x0. Moreover, we assume that x4

0 ¼ x5
0. (We could

assume, instead, that x3
0 ¼ x5

0. Note that Table 1 gives the
values that apply to our model, in particular
x3

0 ¼ x4
0 ¼ x5

0 ¼ 1.)

Lemma: Consider the model system, and a fixed initial
state x0.

Pick any six scalar non-zero real-analytic (for example,
constant) inputs U, U , V, V , W, W , such that U = U ,
V = V and W(0) = W (0), and consider the following
four vector inputs

u1
¼ ðu1

1; u1
2; u1

3Þ ¼ ðU ;V ;W Þ

u2
¼ ðu2

1; u2
2; u2

3Þ ¼ ðU ;V ;W Þ

u3
¼ ðu3

1; u3
2; u3

3Þ ¼ ðU ;V ;W Þ

u4
¼ ðu4

1; u4
2; u4

3Þ ¼ ðU ;V ;W Þ

Suppose that u and ũ are two parameter vectors with the
following property

Fðx0; ui; uÞ ¼ Fðx0; ui; ~uÞ; i ¼ 1; 2; 3; 4

then, u ¼ ũ.
Note that writing equality v ¼ w, for two functions of

time, means that v(t) ¼ w(t) for all t (we sometimes write
v ; w if in order to emphasise that the functions are
identical). Thus, for example, in the lemma statement, U
being non-zero means that U(t) = 0 for some t, and
U = U means that U(t) = U (t) for some t.

The lemma says that the mapping from parameters
to possible observations is one-to-one, or in other
words, that the parameters are, at least theoretically,
reconstructible from the observations. (After the proof,
we remark that powerful theorems in control theory
imply that, then, a single ‘generic’ input time function
suffices.)

Proof: We prove the lemma through several steps.

Step 1. We first consider the outputs that result from
applying the input u ¼ u1. As F(x0, u1, u) ¼ F(x0, u1, ũ),
and the coordinates x1 and x2 are part of the output, in
particular we have that x1(t) ¼ x̃1(t) for all t � 0, where
we denote by x(t) (resp. ~x(t)) the solution when the
parameter vector is u (resp. ũ). Therefore it also holds that

_x1ðtÞ � Dðu
1
ðtÞ � x1ðtÞÞ ¼

_~x1ðtÞ � Dðu
1
ðtÞ � ~x1ðtÞÞ ð21Þ

for all t � 0. Let us introduce the functions

wðtÞ ¼ a4x4ðtÞ
x1ðtÞ

a1 þ x1ðtÞ
and ~w ¼ a4 ~x4ðtÞ

~x1ðtÞ

a1 þ ~x1ðtÞ

¼ a4 ~x4ðtÞ
x1ðtÞ

a1 þ x1ðtÞ

Then, from the form of the differential equation for x1 and
using (21)

wðtÞ ¼ ~wðtÞ

for all t � 0.

Step 2. Next, we consider the output that results from
applying u ¼ u3. Let us denote by c(t) and c̃(t) the func-
tions a4x4(t)(z1(t))/(a1þ z1(t)), and analogously for ~z,
that result from the solutions z and ~z of the model system
when using this new input. It is important to observe that
we have the same coordinates x4(t) as earlier, because
both u1 and u3 have the same third coordinate, and x4 is
not affected by the first two input coordinates. By an argu-
ment as earlier, c ; c̃.

Claim: For a generic time t ¼ t, the following four
properties hold

1. x1(t) = 0
2. z1(t) = 0
3. x1(t) = z1(t)
4. x4(t) = 0

(By ‘generic’ in this claim we mean ‘except at most for a
countable subset of [0, 1).’)

Proof of Claim: Let S be the set of times t such that
x1(t) ¼ 0, R the set of times t such that z1(t) ¼ 0, T the set
of times t such that x4(t) ¼ 0, and D the set of times t
such that x1(t) ¼ z1(t). The solutions of our differential
equations are real-analytic functions of time ([9],
Proposition C.3.12). So x1(t) is an analytic function of t,
and therefore one of two cases must happen: either x1 ; 0
or S is a discrete (countable, possibly finite or empty) set.
If x1 would vanish identically (first case), then the equation

0 ; _x1 ; Dðu1
1 � x1Þ � a4x4

x1

u1
1 þ x1

; Du1
1

would imply that u1
1 ; 0, which is a contradiction, because

we assumed that U is non-zero. Thus S is a discrete set.
Similarly, the set R is discrete. We claim that T is discrete
too: if this were not the case, then x4(t) ; 0, which contra-
dicts the assumption that x4

0
= 0. Finally, regarding D,

suppose by way of contradiction that, instead, x1 ; z1.
Then also _x1 ; _z1, which means that

Dðu1
1 � x1Þ � a4x4

x1

a1 þ x1

; Dðu3
1 � x1Þ � a4x4

x1

a1 þ x1

(recall that the same x4(t) appears in both terms). Therefore
u1

1 ; u1
3, which contradicts U = U . It follows that the union

S < S < T < D is discrete (a union of discrete sets is
discrete), and therefore a generic t has all the required
properties, and the claim is proved. A

An analogous claim holds, clearly, for the parameter set
ũ. We now consider any generic point t, so that the proper-
ties of the claim hold both for the system with parameters u

IEE Proc.-Syst. Biol., Vol. 153, No. 4, July 2006 271



and with parameters ũ. We denote

A U wðtÞ ¼
qx1ðtÞ

a1 þ x1ðtÞ

and

B U cðtÞ ¼
qz1ðtÞ

a1 þ z1ðtÞ

where we write for simplicity q U a4x4(t) = 0. Note that,
as w(t) ¼ w̃(t) and c(t) ¼ c̃(t) we also have that

A ¼ ~wðtÞ ¼
~qx1ðtÞ

~a1 þ x1ðtÞ

and

B ¼ ~cðtÞ ¼
~qz1ðtÞ

~a1 þ z1ðtÞ

where we write q̃ U ã4~x4(t) = 0 and we used that
x1(t) ¼ ~x1(t) for all t � 0 (as F(x0, u, u) ¼ F(x0, u, ũ), for
each of the two inputs being considered), and therefore
x1(t) ¼ ~x1(t), and similarly z1(t) ¼ ~z1(t).

We will next show that a1 ¼ ã1 and q ¼ q̃.
We first remark that Az1(t) = x1(t)B. Indeed, if this is

not the case, then the definitions of A and B would give
us that

qx1ðtÞz1ðtÞ

a1 þ x1ðtÞ
¼

qx1ðtÞz1ðtÞ

a1 þ z1ðtÞ

and therefore as qx1(t)z1(t) = 0 (recall our choice of t), it
would follow that x1 ¼ z1 (t), which is a contradiction with
the choice of t.

Notice that

x1ðtÞ �A

z1ðtÞ �B

� �
q

a1

� �
¼

x1ðtÞ �A

z1ðtÞ �B

� �
~q

~a1

� �

¼
Ax1ðtÞ

Bz1ðtÞ

� �

We showed that the determinant Az1(t) 2 x1(t)B of the
above matrix is non-zero, so it follows that (a1, q) ¼ (ã1, ~q).

The functions a4x4(t) and ã4~x4(t) are both continuous,
and we know that a4x4(t) ¼ ã4~x4(t) for generic t; it
follows that a4x4(t) ¼ ã4~x4(t) for all t. In particular

a4x0
4 ¼ a4x4ð0Þ ¼ ~a4 ~x4ðtÞ ¼ ~a4x0

4

and therefore as x4
0
= 0, a4 ¼ ã4. Also

x4ðtÞ ¼ ~x4ðtÞ for all t � 0

An argument entirely analogous to this, but considering the
output y2 instead of y1, shows that a2 ¼ ã2 and a3 ¼ ã3, as
well as

x3ðtÞ ¼ ~x3ðtÞ for all t � 0

We have shown the identifiability of ai, i ¼ 1, 2, 3, 4
from the outputs corresponding to the two inputs u1 and
u3. We also showed that x3(t) ¼ ~x3(t) and x4(t) ¼ ~x4(t), pro-
vided that outputs coincide when u1 and u3 are applied to
our model system. Therefore also ẋ4 ; ẋ̃4. Using x4

0 ¼ x5
0,

we have that a5(x4
0 2 x5

0) ¼ 0, and

b
c

gþ c
¼ ~b

c

~gþ c
ð22Þ

where c ¼ u3
1(0) ¼ W(0) and c ¼ u3

2(0) ¼ W (0), which
follows from _x4(0)/x4(0) ¼ ẋ̃4(0)/~x4(0).

An entirely analogous argument, using the pair of inputs
u2 and u4 instead of u1 and u3, gives

b
c

gþ c
¼ ~b

c

~gþ c
ð23Þ

Dividing (22) by (23), we conclude that

gþ c

gþ c
¼

~gþ c

~gþ c

and cross-multiplying and simplifying, we obtain
(c 2 c)g ¼ (c 2 c)g̃ and hence g ¼ g̃, as c = c. Using
this last equality in (22), we conclude that also b ¼ b̃.
We are only left with showing the identifiability of a5.

Observe that, as x5
0 is fixed, and b ¼ b̃ and g ¼ g̃, then

with the input u ¼ u1 (or with any other input, for that
matter), the fifth coordinate of the solutions with parameter
vectors u and ũ coincide: x5 ; ~x5. As we had proved that
x4 ; ~x4, and so also _x4 ; ẋ̃4, we have, then, using u ¼ u1

and dropping the superscript

a5ðx5 � x4Þ � bx4

u3

gþ u3

; ~a5ðx5 � x4Þ � bx4

u3

gþ u3

and therefore

a5ðx5ðtÞ � x4ðtÞÞ ¼ ~a5ðx5ðtÞ � x4ðtÞÞ for all t � 0

We then conclude a5 ¼ ã5, unless it is the case that
x5 ; x4. But this latter identity cannot hold, because it
would imply

0 ; _x4 � _x5 ; a5ðx5 � x4Þ � bx4

u3

gþ u3

� bð1� x5Þ � bx5

u3

gþ u3

; bð1� x5Þ

and therefore x5 ; 1, which in turn would give, using the
equation for _x5 and the fact that _x5 ; 0, that b(u3/
gþ u3) ; 0, which is a contradiction as u3 ¼ W = 0. In
summary, we showed that u ¼ ũ. A

Corollary: Consider the model system, and a fixed initial
state x0. Then, for a generic smooth input u, the following
property holds: if two parameter vectors u and ũ are such
that

Fðx0; u; uÞ ¼ Fðx0; u; ~uÞ

then u ¼ ũ.

The precise interpretation of the term generic in this
corollary is as genericity with respect to the Whitney
topology, as discussed in the citations given subsequently.
For purposes of this paper, however, it is enough to think
of ‘generic’ inputs as ‘random’ inputs: except for very
special inputs, the identifiability condition holds. (As an
example, consider the following two-dimensional system:
_x1 ¼ u, _x2 ¼ x1, with output y ¼ u(x1 2 x2), where u is an
unknown parameter and initial state x ¼ 0. Clearly, if the
input u is known, and thus x1(t) 2 x2(t) is also known, the
parameter u can be immediately obtained from y(t),
unless it so happens that x1(t) ¼ x2(t) for all t. But x1 ¼ x2

implies that _u ¼ €x1 ¼ €x2 ¼ u, that is, u ¼ cet. So, except
for those very special inputs that have the form u ¼ cet,
every other input serves to identify parameters.)
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Proof: We appeal to the universal input theorem for distin-
guishability, which says that generic smooth inputs are
capable of separating any two distinguishable states in a
system. More precisely, one applies the theorem to a
parametric identification problem by viewing parameters
as constant states, as described in the work of Sontag [10,
pp.148]. The universal input theorem is one of the key
results in control theory, and was proved first for bilinear
systems in the work of Grasselli and Isidori [11], for poly-
nomial as well as analytic nonlinear systems (restricted to
compact subsets) [10] and in general form [12]; the work
of Wang and Sontag [13] gave a relatively simple proof,
and applications to controllability and other problems are
described by Sontag [14].

Thus, as the lemma proves that any pair of parameters
can be distinguished by some input/output experiments,
the universal input theorem guarantees that generic inputs
will suffice for this task. A

The corollary supports the use of the ‘internal input’
approach, because it asserts that generic inputs, such as
those arising from measured data generated by unmodelled
dynamics, are sufficient for identifiability. Although it is
theoretically possible that the input v that appears in this
fashion will happen to be one of the ‘exceptional inputs’
that appear non-generically, this is unlikely. A somewhat
more serious gap between theory and practice is in the
use of ‘pulse’ inputs in our experiments. In general, there
is no theoretical guarantee that such inputs will be enough
for identification. However, pulses may be approximated
closely in an arbitrary manner by generic inputs, and, in

Fig. 8 Model description of a 10 mM (solid black) and 20 mM
(dashed grey) glutamine pulse to wild-type strain VWk43

Experimental data (circles) have been included as the dependent input
(intracellular glutamine) and to verify the simulated output profiles
(extracellular glutamine)

Fig. 9 Model description of a 10 mM (solid black) and 20 mM
(dashed grey) glutamine pulse to mutant strain Dglt1

Experimental data (circles) have been included as the dependent input
(intracellular glutamine) and to verify the simulated output profiles
(extracellular glutamine)

a

b

Fig. 10 Model description

a an 18 mM glutamine pulse
b 40 mM ammonia pulse to mutant strain Dgln1
Experimental data (circles) have been included as the dependent input
(intracellular glutamine) and to verify the simulated output profiles
(extracellular ammonia and extracellular glutamine).
Horizontal dashed line indicates estimated NCR threshold level of
intracellular glutamine (glnT)
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any case, one may argue that, in practice, the applied inputs
are never exactly pulses.

An interpretation of the conclusion of the corollary is
as follows. Suppose that we pick a generic input u, and
we use it as an input to the ‘true’ system, measuring the
outputs y ¼ (y1, y2), which we write as z(t). For any
parameter vector u, we write y(., u) ¼ F(x0, u, u) and
e(t, u) ¼ z(t) 2 y(t, u). Then, we set up the quadratic
criterion

J ðuÞ ¼

ðT

0

eðt; uÞTW eðt; uÞ dt

where T is time duration of the input and W is a positive
definite symmetric weight matrix.

Provided that the true system is a model system for some
(unknown) set of parameters u0, and that there is no noise in
observations, then minu J(u) ¼ 0, and the minimum is
achieved uniquely, at the true parameter set u ¼ u0. This
provides a theoretical justification for the use of the
maximum likelihood approach, at least when there is no
model mismatch and noise is small.

We do not provide details here, but it is also possible to
prove that sampling at generic times will suffice for identi-
fication in this same theoretical sense; in other words, the
error criterion could be stated for a sum over a certain
number of samples instead of as an integral over the
entire non-negative real axis, and the uniqueness result

holds. Refer to the work of Sontag [15], and in particular
the example provided in the introduction to that paper.

9.2 Validation

For a quantitative validation, the identified model was used
to predict the uptake profiles of glutamine or ammonia in six
different experiments. In Fig. 8 the results of a 10 mM and
20 mM glutamine pulse to wild-type strain VWk43 are
shown. The results of the 20 mM glutamine pulse are
comparable with those of the 18 mM glutamine pulse in
the identification data (Fig. 6), despite the intracellular
glutamine profile reaches significantly higher levels. Also
in wild-type VWk43, NCR is rapidly triggered after both
pulses and the uptake remained largely repressed during
2 h after the pulses. When the same pulses were applied
to the Dglt1 mutant, the results were somewhat different
(Fig. 9). The model predicted that NCR was released
approximately 1 h after the 10 mM glutamine pulse,
resulting in an increased glutamine uptake rate. The model-
predicted extracellular glutamine concentration at 120 min
matched the corresponding data point. Finally, in Fig. 10
the results of a 18 mM glutamine and 40 mM ammonia
pulse to the Dgln1 mutant are shown. The residuals of the
glutamine and ammonia uptake profiles have been shown
in Fig. 7.
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