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Emerging technologies have enabled the acquisition of large genom-
ics and proteomics data sets. However, current methodologies for
analysis do not permit interpretation of the data in ways that unravel
cellular networking. We propose a quantitative method for deter-
mining functional interactions in cellular signaling and gene net-
works. It can be used to explore cell systems at a mechanistic level or
applied within a ‘‘modular’’ framework, which dramatically decreases
the number of variables to be assayed. This method is based on a
mathematical derivation that demonstrates how the topology and
strength of network connections can be retrieved from experimen-
tally measured network responses to successive perturbations of all
modules. Importantly, our analysis can reveal functional interactions
even when the components of the system are not all known. Under
these circumstances, some connections retrieved by the analysis will
not be direct but correspond to the interaction routes through
unidentified elements. The method is tested and illustrated by using
computer-generated responses of a modeled mitogen-activated pro-
tein kinase cascade and gene network.

Advances in high-throughput genomics and proteomics analysis
facilitate the monitoring of the expression levels of large gene

sets and the activity states of signaling proteins in living cells. The
explosive growth in the amount of data calls for the development
of novel quantitative approaches for analysis. Thus far, our under-
standing of cellular signaling and gene networks has been almost
exclusively qualitative. Recently, both qualitative and mechanistic
mathematical modeling have been applied to better understand
network molecular organization and kinetics in quantitative terms
(1–8). The mechanistic ‘‘bottom-up’’ approach has the advantage of
being readily testable against experiments as a computer replica of
cellular networks. However, a major disadvantage of a mechanistic
modeling is the large number of molecular processes to be consid-
ered, complicated by the fact that values for multiple kinetic
parameters are unknown. Moreover, a bottom-up approach inev-
itably misses the interactions and regulatory feedbacks still awaiting
discovery.

As an approach to studying cellular networks, we developed a
form of ‘‘top-down’’ sensitivity analysis to quantify the input–output
relations and molecular interactions in regulatory networks (9). The
control of the input signal over the output target was quantified as
the ratio of the input-to-output changes at steady state (called the
response coefficient in the limit of infinitesimal changes). The signal
may be a hormone, growth factor, neurotransmitter, or experimen-
tal intervention (e.g., an inhibitor), and the target process may be
the phosphorylation state or activity of a protein, mRNA level, or
transcription rate. If a full set of molecular interactions is known,
the (global) network response to a signal or experimental pertur-
bation can be predicted and expressed in terms of the individual
(local) responses by using a ‘‘map’’ of network connections (9).
However, when detailed information about molecular mechanisms
is lacking, a top-down analysis has advantages, because it can be
applied experimentally to any cellular network regardless of its
degree of complexity (10, 11).

The daunting challenge of understanding the coordinated be-
havior of numerous molecular interactions can be facilitated by
analyzing them within a ‘‘modular’’ framework (12, 13). A complex
cellular network can be divided conceptually into reaction groups
referred to as functional units or modules. Each module consists of
several signaling or gene interactions and performs one or more
identifiable tasks. For instance, each of the three tiers of the
mitogen-activated protein kinase (MAPK) cascade can be consid-
ered as a functional module that involves unphosphorylated, mono-
phosphorylated, and bisphosphorylated forms of a protein kinase
and the reactions converting these forms. Modules need not be
rigid, and entire MAPK cascades can serve as functional modules
in a signaling network that involves growth factor and stress-
activated pathways. For gene networks, modules can involve
mRNAs of a particular gene or gene cluster with regulatory
interaction loops running through metabolic and signaling path-
ways (14). Modules can be interconnected in multiple ways, many
of which may be unknown, even when the network components are
identified in genetic and biochemical studies. Fig. 1 illustrates such
potential interactions for a three-module cascade and dynamic
connections as well as possible unknown components for a gene-
expression network.

One of the fundamental problems in cell biology is to infer and
quantify interconnections in complex regulatory networks. The
present paper proposes a powerful method for attacking such
questions, assuming that knowledge of at least some network
components is on hand. Specifically, we develop a methodology
capable of unraveling and quantifying unknown molecular or
modular connections in signaling and gene networks. We demon-
strate how, by making systematic perturbations (using inhibitors,
activators, changes in external signals, etc.) and measuring global
responses only, one can discover a network ‘‘interaction map’’ that
can be expressed in terms of module-to-module connection
strengths. Importantly, we select experimental interventions that
directly perturb single modules, and we apply as many perturbations
as there are modules. We illustrate this approach by applying
perturbations to model networks and comparing quantitative re-
constructions to known interaction maps.

Methods
Fundamentals of Top-Down Regulatory Analysis of Modular Cellular
Networks. Quantitation of a network interaction map. We concep-
tually divide a signaling or gene network into modules (m). The
degree of complexity of each module is not restricted, and generally
a module involves many cellular components (intermediates) con-
nected by chemical reactions (intramodular interactions). We as-
sume that only a single intermediate, referred to as ‘‘communicat-
ing,’’ serves as the module output (this simplifying assumption is
relaxed in Appendix 1, which is published as supporting information
on the PNAS web site, www.pnas.org). A communicating molecule

Abbreviations: MAPK, mitogen-activated protein kinase; MKK, MAPK kinase; MKKK, MKK
kinase; P, monophosphorylated; PP, bisphosphorylated.
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may be the active form of a kinase, a second messenger, mRNA, or
transcription factor influencing other modules. Thus, communicat-
ing intermediates form molecular connections between modules,
referred to as intermodular interactions.

A top-down regulatory analysis ‘‘black-boxes’’ the molecular
organization of network modules, considering only communi-
cating intermediates (the module outputs). We designate by xi,
i 5 1, . . . , m, the activities (concentrations) of communicating
intermediates. Following our previous work (9), we quantify inter-
modular interactions in terms of the fractional changes (Dxiyxi) in
the activity of communicating intermediate (xi) of a particular
module (i) brought about by a change in the (output) activity (xj)
of another module (j). Output activities of all other modules (xk,
k Þ i, j) are assumed to remain fixed, whereas the affected module
(i) is allowed to relax to its steady state. A mathematical definition
requires the changes (Dxyx) to be infinitesimally small, resulting in
log-to-log derivatives,

rij 5 lim
Dxj3 0

SDxiyxi

Dxjyxj
D 5 S­ ln xi

­ ln xj
D

module i steady state
, i Þ j. [1]

The coefficient rij is referred to as the local response (coeffi-
cient), which quantifies the sensitivity of module i to module j.
The term ‘‘local’’ indicates that the response results from im-
mediate interactions between two modules when all other net-
work interactions are held constant. A response coefficient rij
less than 1 means that (small) fractional changes in module j
output are attenuated in module i, whereas a response greater
than 1 means that these fractional changes are amplified by the
factor rij. A response coefficient of 0 means that module j has no
direct effect on module i, whereas a negative response coefficient
means inhibition.

Because each module is assumed to have a single communicating
intermediate, all interactions between network modules are quan-
tified by mz(m 2 1) intermodular response coefficients, rij. These
‘‘connection’’ coefficients indicate how the network is ‘‘wired’’ and
compose the m 3 m matrix, r, hereafter referred to as the network
interaction map. The ith row of the matrix r quantifies how module
i is affected by each network module through immediate interac-
tion, whereas the jth column of r measures how module j directly
influences each network module. We assign values of 21 to the
diagonal elements (rii) of the matrix r, rii 5 21, i 5 1, . . . , m.

Local and global network responses to perturbations. Concep-
tually considering module i ‘‘in isolation’’ from the network, we
determine the local response coefficient (ripi

) of xi to a perturbation
of parameter pi, intrinsic to module i as follows: ripi

5 (­lnxiy
­pi)module i steady state. When module i is isolated from the network,
changes in parameters pj, influencing other modules (j), have no
effect on module i, and therefore the local response of xi to a
perturbation in pj equals zero. Local responses to perturbations,
affecting single modules only, form the diagonal m 3 m matrix,
dgrp, with diagonal elements ripi

and all off-diagonal elements equal
to zero.

If following a parameter (pi) perturbation intrinsic to module i an

entire network is allowed to relax, this perturbation not only causes
changes in those modules directly affected by module i but also
propagates further into the network through interactions between
other modules. The resulting time-dependent or stationary re-
sponses are called ‘‘global’’ responses of the network. We designate
by Rjpi

the global response coefficient of module j to a perturbation
in pi and by Rp the m 3 m matrix composed of these coefficients:

Rjpi
5 Sd ln xj

dpi
D

system steady state
j, i 5 1, . . . , m. [2]

The difference between the local dgrp and global Rp responses
is that only module i is allowed to reach the steady state to
determine ripj

, whereas an entire network is permitted to relax to
its steady state to measure Ripj

.

Models of Signaling and Gene Networks Used to Test and Illustrate the
Proposed Approach. Computer simulation of MAPK cascade responses
to specific perturbations. MAPK cascades consist of several levels,
where the activated kinase at each level phosphorylates the kinase
at the next level down the cascade. The three-tiered MAPK cascade
comprises MAPK (the terminal level), MAPK kinase (MKK) and
MKK kinase (MKKK) (Fig. 2). MAPKs are activated by MKKs,
which phosphorylate them at conserved threonine and tyrosine
residues. At one level upstream, MKKs themselves are phosphor-
ylated at serine and threonine residues by MKKKs. The kinases of
the first level, MKKKs, are activated by incompletely understood
mechanisms, involving interactions with the membrane-bound
GTPase Ras (in the case of the MKKK Raf-1) and phosphorylation
of Raf-1 at a tyrosine residue by an unknown protein kinase (15).
Thus, Ras-GTP and unknown membrane kinase(s) function as the
input signal that activates MKKK (Raf-1). At each cascade level,
protein phosphatases inactivate the corresponding kinases (Fig. 2).
Our computational model of the MAPK cascade resembles models

Fig. 2. Kinetic scheme of the MAPK cascade. Feedback effects of MAPK on the
rate of MKKK and MKK phosphorylation are shown schematically by dashed
lines. MKKKK, MKKK kinase; P and PP, monophosphorylated and bisphosphory-
lated forms.

Fig. 1. A three-module cascade (A) and a
genenetwork(B).Thequestionmarksstandfor
unknown connections and additional network
components (e.g., uncharacterized genes),
which can influence and in turn be affected by
the known components.
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developed previously (16, 17) but includes two negative feedbacks.
The first is formed by bisphosphorylated MAPK (MAPK-PP)-
mediated inhibition of the MKKK-activating reaction, and the
second results from MAPK-PP-induced activation of the MKK
phosphatases (18, 19). The kinetic equations, moiety conservation
relations, and rate expressions are presented in Table 1, which is
published as supporting information on the PNAS web site. We
used the model to generate global responses of the cascade com-
municating intermediates to perturbations, which imitated exper-
imental interventions.

Computer simulation of responses of a gene network to specific
perturbations. A kinetic scheme of a four-gene network is depicted
in Fig. 3. The level of each mRNA species is determined by the rate
of transcription and degradation, d[mRNAi]ydt 5 vi

synth 2 vi
degr.

Gene interactions result in nonlinear dependences of transcription
rates (vi

synth) on other mRNAj concentrations, which act as com-
municating intermediates (xi). The rates are described by the
Hill-type equations (1, 3) and presented in Table 2, which is
published as supporting information on the PNAS web site. Net-
work responses to perturbations in transcription rates were used to
infer functional interactions between genes.

Results
Relation Between the Local and Global Network Responses. Global
responses to perturbations can be measured in experiments with
intact cellular systems. However, local responses governed by the
network interaction map cannot be captured by using intact cells.
To measure the kinetics of local interactions between two modules
(proteins) directly, they should be isolated from the network.
Sometimes the interaction of interest can be reconstituted ‘‘in vitro,’’
but often only an entire system is accessible experimentally. We are
left with the question of how to determine quantitatively the
network interaction map if only global responses can be assessed.
We demonstrate that by making parameter perturbations to all
modules and measuring the global network responses, we can
retrieve the unknown interaction map (see Appendix 2, which is
published as supporting information on the PNAS web site, for the
abstract mathematical derivation).

An experimental intervention to perturb a parameter (pi) intrin-
sic to module i can employ a specific inhibitor or activator of a
reaction within module i, an antisense mRNA affecting the expres-
sion level of a protein, or a plasmid changing the rate of transcrip-
tion. A parameter change, Dpi, first causes a local perturbation in
xi, which subsequently propagates through intermodular interac-
tions described by the local response coefficients (rij). After the
network has relaxed to a new steady state, the resulting global
changes in communicating intermediates (xk) brought about by a
perturbation (Dpi) are related through

Dxk

xk
5 O

j Þ k

rkjz
Dxj

xj
1 rkpi

zDpi, rkpi
5 0, if i Þ k, k, i 5 1, . . . , m.

[3]

Dividing both sides of Eq. 3 by Dpi and using matrix notations,
we arrive at

rzRp 5 2dgrp. [4]

In intact cells, only the global response matrix, Rp, can be
monitored experimentally, whereas neither the network inter-
action map, r, nor local responses to parameter perturbations,
dgrp, can be measured. We demonstrate how the elements of
both matrices, r and dgrp, can be calculated by using the matrix
Rp. After multiplying both sides of Eq. 4 by the inverse matrix
Rp

21, we obtain, r 5 2dgrpzRp
21. Because all the diagonal

elements of the matrix r are equal to 21, the elements of the
diagonal matrix, dgrp, are expressed readily in terms of the
diagonal elements of the matrix, Rp

21. Designating by dg(Rp
21)

the diagonal matrix with diagonal elements (Rp
21)ii and all

off-diagonal elements equal to zero, we have I 5 dgrpzdg(Rp
21),

where I is the identity matrix. By expressing dgrp from this
equation, we obtain

r 5 2@dg~Rp
21!#21zRp

21. [5]

This final expression gives us the answer: if the (global) responses
of a cellular network to perturbations to all modules have been
measured, the network interaction map (r) can be retrieved by
the inversion of the response matrix (Rp).

Importantly, our method does not require the parameter changes
(Dpi) to be measured or estimated. Instead of response coefficients,
one can simply consider the global (Dilnxj) fractional changes in
communicating intermediates (xj) caused by a parameter change
Dpi. Accordingly, we redefine the global response matrix, Rp, with
coefficients Rjpi

to be determined by the global fractional changes
brought about by a perturbation D pi,

Rjpi
5 ~Di ln xj!system steady state, i, j 5 1, . . . , m. [6]

Here the derivatives, which were considered in Eq. 2, are
substituted by the finite changes (divided by the initial or the
mean value). However, the crucial distinction is that according
to Eq. 2, the parameter changes (Dpi) should be known, whereas
Eq. 6 merely considers the differences in intermediates xj after
and before perturbation to determine the global response matrix,
Rp. Using Eq. 6, one obtains exactly the same relationship (Eq.
5) that expresses the network interaction map in terms of the
measured changes in the levels of communicating intermediates
without requiring any knowledge about the values of parameter
changes. This technique enhances the applicability of the pro-
posed analysis in cases where it is difficult or impossible to
quantify the values of parameter perturbations.

Practical Application of the Proposed Methodology. We now outline
three steps of experimental applications for the proposed method.

i. Conceptually divide the network under consideration into in-
teracting modules and identify communicating intermediates.

ii. Use an inhibitor or other perturbation that affects a single
network module only, e.g., module 1, and measure the difference
in the steady-state levels of communicating intermediates before
[xj

(0)] and after [xj
(1)] the perturbation. Then, calculate the first

column of the matrix Rp by using, e.g., the central fractional
differences defined as the finite difference in the activities
divided by the mean value,

D1ln xj < 2~xj
~1! 2 xj

~0!!y~xj
~1! 1 xj

~0!! 5 2
~xj

~1!yxj
~0! 2 1!

~xj
~1!yxj

~0! 1 1!
. [7]

Repeat for remaining network modules (i 5 2, . . . , m) by using
a perturbation directly affecting that module only, and calculate
the remaining columns of the matrix Rp (Dilnx1, . . . , Dilnxm)T.

Fig. 3. Kinetic scheme of a four-gene network. Arrows correspond to
activation interactions, whereas lines with blunt ends represent inhibitions.
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The presentation in terms of the relative values given in Eq. 7 may
help where quantitation of the absolute activities is difficult, e.g.,
when Western blotting is used to quantify the relative amount of
a protein or determining the ratio of the fluorescence intensities
from gene arrays (14).
iii. Apply Eq. 5 to reveal and quantify the network interaction

map in terms of the matrix r of intermodular (local) response
coefficients.

Unraveling the MAPK Cascade Interaction Map: An Illustration.
MAPK cascades are widely involved in eukaryotic signal transduc-
tion, and these pathways are conserved from yeast to mammals
(20). Mammalian cells express at least four different MAPK
families including the ERK cascade (which is our primary example)
and the c-Jun N-terminal kinase (JNK) and p38 MAPK cascades.
In many cell types, MAPK cascades are regulated by multiple
feedbacks. For instance, in mammalian cells inhibitory phosphor-
ylation of the GDPyGTP exchange factor, SOS, by ERK provides
a mechanism for switching off Ras and, thereby, Raf-1 signaling,
creating a negative feedback as shown schematically in Fig. 2 (18).
In Xenopus oocytes, two MAPK pathways, the p42 MAPK and JNK
cascades, appear to be embedded in positive-feedback loops (21,
22). Some regulatory feedbacks are well documented, but the
complete interaction map of the MAPK pathways is unknown. For
example, it is not understood yet which interactions form positive
feedbacks in the JNK cascade (22). Also, both negative- and
positive-feedback interactions may differ in various cell types.

Our method may provide a universal tool to analyze the inter-
action map of MAPK pathways in various cells. To test and
illustrate the method, we retrieve the interaction map from com-
puter-generated responses of a kinetic model of the MAPK cascade
to perturbations, which simulate experimental interventions. The
first step is to identify modules and communicating intermediates
based on biological information. We define three MAPK cascade
modules that involve different phosphorylation forms of MKKK,
MKK, and MAPK, respectively, and the reactions converting these
forms (e.g., module 2 includes MKK, MKK-P, and MKK-PP and
reactions 5–8, Fig. 2). The bisphosphorylated forms (such as
MKK-PP) play the role of communicating intermediates (xi) influ-
encing other modules. Importantly, the concentration xi does not
determine the concentration of the remaining forms within a
module, because two of the three forms are independent variables
within a mechanistic description (17). Our method has the advan-
tage of monitoring only communicating intermediates to untangle
and quantify the web of intermodular interactions.

In the second step, we apply three different perturbations, each
affecting a single module. As a perturbation to the first module, we
inhibited the input signal by decreasing the Ras-GTP concentra-
tion. As relevant interventions to module 2, either the maximal
activities of the phosphatase, which dephosphorylates MKK-PP
and MKK-P, or the kinase that acts on MKK were inhibited. The
different perturbations were applied to illustrate that network
interactions to be detected with the method would not depend on
what particular molecular processes within a module are affected.
Module 3 was perturbed by inhibiting either the maximal activity of
the MAPK phosphatase or the kinase. After each perturbation, the
MAPK cascade was allowed to reach a new steady state, and the
global responses of communicating intermediates were calculated
according to Eq. 7. Fig. 4 presents the matrices Rp obtained for
inhibition values of 10 and 50%. It is convenient to multiply the
elements of Rp by 100, which would correspond to changes in xi
expressed as a percentage of the mean. As follows from Eq. 5, this
multiplication does not change the resulting interaction map, r. The
10% perturbation brought about (global) fractional changes of
communicating intermediates of less than 13%, whereas a 2-fold
inhibition (50%) resulted in up to 86% changes. Perturbations of
this magnitude are not justified mathematically, but the simulation
results show that our method can handle them well.

Four different matrices (Rp), displayed in Fig. 4, were substituted
into Eq. 5 to retrieve the network interaction map (r). Notably, both
different simulated inhibitors and perturbation values, which
brought about widely diverse global changes in communicating
intermediates (Fig. 4), resulted in four nearly identical ‘‘experimen-
tal’’ interaction maps (rounded to the nearest tenth, Fig. 5A).
Module 1 was found to affect directly module 2, which in turn
affects module 3. Both local interactions appear ‘‘ultrasensitive’’
with response coefficients r21 and r32 ranging from 1.8 to 1.9 and 1.9

Fig. 4. Global fractional responses obtained by simulating experimental per-
turbations to the MAPK cascade. Four global response matrices (Rpz100, desig-
nated by superscripts a–d) were generated by applying the following 12 param-
eter perturbations. a or b, 10 or 50% decrease, respectively, in: [Ras-GTP],
perturbation to module 1; the catalytic activities of steps 5 and 6 (k5

cat and k6
cat; see

Table 1, which is published as supporting information on the PNAS web site),
module 2; k9

cat and k10
cat, module 3. c or d, 10 or 50% decrease, respectively, in:

[Ras-GTP], module 1; the maximal activities of steps 7 and 8 (V7
max and V8

max; see
Table 1), module 2; V11

max and V12
max, module 3.

Fig. 5. Retrieved ‘‘experimental’’ interaction maps (A) and known ‘‘the-
oretical’’ interaction map (B). Four experimental local interaction matrices
(r) were retrieved from the data shown in Fig. 4. The response coefficients
marked by superscripts a–d correspond to perturbations indicated in the
legend to Fig. 4.

Fig. 6. Revealed interactions between MAPK cascade modules. Responses of
every module to perturbations to each single module were measured, and
intermodular connections were discovered and quantified by using Eqs. 8 and 10.
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to 2.0, respectively, for different perturbations used. The local
interactions, r12 and r31, which describe potential effects of modules
2 and 1 on modules 1 and 3, respectively, appear to be zero. Our
method unraveled and quantified negative feedbacks from module
3 to modules 1 and 2 (Fig. 6). The response coefficient, r13, ranged
from 21.0 to 21.2, and r23 was equal to 20.6 for all perturbations
used. It is instructive to compare the network interaction map
retrieved from ‘‘measured’’ global responses with the correct map,
which was calculated according to Eq. 1 for the model example,
where molecular interactions were known. As shown in Fig. 5 A and
B, both experimental and theoretical interaction maps appear
nearly identical.

Unraveling the Wiring of a Gene Network. Our approach can be
applied to untangle gene network interactions (wiring) by carrying
out specially designed gene microarray experiments. Gene net-
works are high-level conceptual representations of interactions
between genes (14). These interactions proceed through multiple
protein products (e.g., transcription factors) and metabolic inter-
mediates, which are not considered explicitly in the analysis, such
that the mRNAs themselves act as communicating intermediates.
Fig. 3 illustrates this for a four-gene network. Assuming that no
preliminary knowledge is available about gene interactions, we
performed two series of four different perturbations to the network
as required by the method. The transcription rate of each gene was
perturbed independently by decreasing the corresponding maximal
activity by 30% or by increasing it by 50%. After each perturbation,
the gene network relaxed to its new steady state, and mRNA
responses were calculated according to Eq. 7. The global response

matrices (Rp) obtained for perturbation values equal to either 30 or
50% are shown in Fig. 7.

The network interaction map was determined by taking the
inverse of Rp and substituting it into Eq. 5. Both simulated
perturbations, i.e., inhibition or activation, resulted in nearly iden-
tical experimental interaction matrices (rounded to the nearest
tenth; Fig. 8A). All the gene interactions shown in Fig. 2 were
retrieved successfully (Fig. 8). Importantly, for both examples
considered here, inevitable mistakes related to the substitution of
the infinitesimal changes by finite ones did not lead to erroneously
predicted interactions, e.g., absent in the network but found by the
proposed method. Fig. 8 demonstrates that experimentally ob-
tained network wiring and its quantitation nearly coincides with the
known (correct) interaction map for this model system. We con-
clude that the proposed method can be a powerful tool for
unraveling interactions in gene networks.

Discussion
Recently, high-throughput technologies have enabled the acquisi-
tion of data on the expression of thousands of genes and the
functional state of hundreds of proteins. However, there are no
methods capable of providing quantitative interpretations of
genomics and proteomics data sets in a manner that unravels the
wiring of cellular machinery. This paper proposed a powerful
quantitative method to unravel interactions in signaling and gene
networks. A dynamic connection between two network compo-
nents is quantified by the extent to which a small change in one
component affects the level or activity of the other, provided all
remaining interactions are kept unchanged. The resulting quantifier
is known as a response coefficient, which is a convenient and
unambiguous measure of the sensitivity of a particular component
to a local, direct effect by another component. A network compo-
nent may be a protein, a gene, or a module involving a number of
interacting proteins and genes when considered within a modular
framework (12, 13). The present paper demonstrates that moni-
toring of signaling and gene-expression responses to systematic
perturbations is sufficient to infer and quantify signal transduction
maps and gene connections.

A series of studies was concerned with the determination of
complex reaction mechanisms by experimental evaluation of the
Jacobian matrix elements from time-series analysis (23, 24). Meth-
ods for the deduction of chemical reaction pathways from mea-
surements of species concentrations were pioneered by Ross and
coworkers (25, 26). These studies used ranked time-lagged corre-
lation functions among pairs of chemical species coupled with a
multidimensional scaling analysis and heuristic algorithms to de-
duce a diagram describing the interactions between chemical
species. The method that we propose here exploits the modular
organization of signaling and gene networks and the absence of

Fig. 7. Global fractional responses obtained by simulating experimental per-
turbations to the gene network shown in Fig. 3. Two global response matrices
(Rpz100, designated by superscripts a and b) were generated by applying the
following eight parameter perturbations. a or b, 30% decrease or 50% increase,
respectively, in: the maximal activity of the transcription rate v1

synth (V 1
s ; see Table

2, which is published as supporting information on the PNAS web site), pertur-
bation to module 1; V 2

s , module 2; V 3
s , module 3; and V 4

s , module 4.

Fig. 8. Retrieved experimental interaction maps (A) and known theoretical interaction map (B). Two experimental local interaction matrices (r) were retrieved from
the data shown in Fig. 7. The response coefficients marked by superscript a and b correspond to perturbations indicated in the legend to Fig. 7.
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mass flow between modules (assuming proteins are not significantly
sequestered in intermodular interactions). We demonstrated that
steady-state measurements of only communicating intermediates
(the number of which is much smaller than the number of all
independent protein forms) are sufficient to quantify interactions
within a modular framework.

Our technique involves a matrix inversion (Eq. 5). This inversion
may give rise to numerical errors if the experimentally measured
matrix Rp is ill-conditioned. Various preconditioning methods
might be used to rescale data, but a singular-value decomposition
of Rp can avoid these potential errors by dropping the least
meaningful modes. In general, a matrix of lower rank will result,
which will constrain the estimates of the local response matrix r
(which is the normalized Jacobian matrix, see Appendix 2, which is
published as supporting information on the PNAS web site) to a
lower dimensional subspace. A similar approach is based on the
observation that a vector that quantifies dynamic connections
leading to a particular module (i.e., a row of the matrix r) is
orthogonal to the linear subspace (H) spanned by vectors composed
of measured network responses to perturbations influencing other
modules (columns of Rp) (27). If the rank of H decreases because
of ill conditioning, additional experiments should be performed by
applying different perturbations. Any perturbation directly affect-
ing a single module is appropriate. For instance, in signaling
networks one can inhibit or mutate enzymatic activities or change
the abundance of a protein operating within a single module. For
gene networks, suitable experimental interventions involve the
inhibition of a transcription rate or transfection with a plasmid
expressing a gene that results in an increase in the mRNA synthesis
rate. Applying such perturbations to a model gene network, all gene
interactions were unraveled and quantified (Fig. 3). By applying
perturbations to the MAPK pathway conceptually partitioned into
modules, we detected all existing interactions between modules
including the inhibition of module 2 by module 3 (Fig. 6). Mech-
anistically, this negative feedback occurred as the activation of an
enzyme within module 2 (MKK phosphatase) by a communicating
intermediate of module 3 (MAPK-PP, Fig. 2). Clearly, the molec-
ular mechanisms cannot be predicted by the method. However, any
manifestation of interaction detected by the method can be inves-
tigated further mechanistically to advance understanding in mo-
lecular terms.

Other biological applications of the method include systems in
which some components are unknown or uncharacterized. To
illustrate these applications, we revisit the example of a four-gene
network, assuming that only three genes (1, 2, and 3) are known (cf.
Figs. 1B and 3). If we were unaware of the existence of an additional
gene (number 4) or simply assumed that this gene did not interact
with the system under study, we would bring about perturbations to
only three genes and measure the global responses of only those
genes. As a result, we would obtain the global response matrix (Rp)
corresponding to the first three rows and columns of the matrices
presented in Fig. 7. Taking the inverse of this reduced matrix Rp and
substituting into Eq. 5, we obtain the network interaction map
shown in Figs. 9 and 10. We can see that the connections between
three known genes, which were identified previously by using
perturbations to all four genes (Figs. 3 and 8), also were retrieved
by using incomplete information. Importantly, new connections
were found for the system with only three identified genes. In the
four-gene network, gene 3 directly affected neither gene 1 nor gene
2. However, using incomplete information, we found that gene 3
affects both gene 1 and gene 2. This finding reflects interaction
paths from gene 3 through gene 4. The results of our previous work
(9) imply that the corresponding responses r13 and r23 determined
for this three-gene network are equal to the (mathematical) prod-
ucts r14zr43 and r24zr43, respectively, determined for a four-gene
network (cf. Figs. 8 and 10). If it were known that neither the protein
product of gene 3 nor proteins interacting with this product could
affect gene 1 or 2 directly, this would imply the existence of
unidentified gene(s) that perform those interactions. Therefore, the
proposed method is able to provide an unbiased analysis to indicate
the existence of unknown or uncharacterized components in the
system.
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Fig. 9. Retrieved wiring for a three-gene network. Because gene 4 was an
unknown component, (quasi)direct effects of gene 3 on genes 1 and 2 were
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perturbations indicated in the legend to Fig. 7.
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Appendix 1: Generalization of the Method for the Case of Several Communicating
Intermediates in a Module

Our method is readily generalized for the case when modules have more than one
communicating intermediate as the output. In this case, the number of independent
perturbations applied to a module should be more than one and equal to the number of
communicating intermediates in that module. The resulting expression for the network
interaction map becomes slightly more complicated. Instead of the diagonal matrix
[dg(Rp

–1)]–1, the block-diagonal matrix, B = [bldg(Rp
–1)]–1, is determined by using the

elements of the inverse matrix, Rp
–1. For a network with m modules, the matrix B has m

central minors (square blocks) with nonzero elements, whereas all other elements, which
do not enter these blocks, are equal to zero. The dimension of each block corresponds to
the number of communicating intermediates in the corresponding module. Assuming k
such intermediates in module i, the ith principal minor of the block-diagonal matrix B is
determined as follows:
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For the case a single communicating intermediate in each module, the matrix B is
identical to the diagonal matrix [dg(Rp

–1)]–1 in Eq. 8 of the main text. In the general case,
the network interaction map, r, can be obtained by using measured values of system
responses (matrix Rp) as follows:
 

r = –B⋅Rp
–1 . [2]

Note that the analysis also can be conducted in terms of nonnormalized responses
(∂xi/∂xj) defined as the quotients of absolute rather than fractional changes. 

In summary, we present an experimental strategy that provides a systematic approach to
analyzing functional interactions in complex signaling or gene network systems in a
quantitative manner.  It offers the potential of generating a complete description of the
relevant network interactions and can even identify the contribution of those components
that may have escaped identification thus far. It also offers the flexibility of being
applicable at different levels of organization by redefining the modules of which the
interactions are being explored. For instance, whereas the examples analyzed for
illustrative purposes were focused on intracellular signaling and gene expression
pathways, the method can be adapted to the analysis of cell–cell interactions (or beyond)
by taking whole cells or tissues as single modules and considering hormone and cytokine
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signals or similar mediators as communicating intermediates. Hence, it becomes possible
to generate a quantitative analysis of a complex biological system at progressively deeper
levels by applying the analysis at sequential levels of modular organization.
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Table 1. Rate equations and parameter values of the MAPK cascade model

     Concentrations and the Michaelis constants (Kij, i = 1, 3, 5, 7, 9, 11; j = 1, 2, 3; Kmp;
Ki) are given in nM. The catalytic rate constants (ki

cat , i = 1, 2, 5, 6, 9, 10) and maximal
enzyme rates (Vi

max, i = 3, 4, 7, 8, 11, 12) are expressed in s–1 and nM·s–1, respectively.
The kinetic equations and moiety conservations derived from the stoichiometry are the
following: d[MKKK-P]/dt = v1 – v2 + v3 – v4; d[MKKK-PP]/dt = v2 – v3; d[MKK-P]/dt =
v5 – v6 + v7 – v8; d[MKK-PP]/dt = v6 – v7; d[MAPK-P]/dt = v9 – v10 + v11 – v12; d[MAPK-
PP]/dt = v10 – v11; [MKKK]total = [MKKK] + [MKKK-P] + [MKKK-PP]; [MKK]total =
[MKK] + [MKK-P] + [MKK-PP]; [MAPK]total = [MAPK] + [MAPK-P] + [MAPK-PP].
MAPK, mitogen-activated protein kinase; MKK, MAPK kinase; MKKK, MKK kinase;
P, monophosphorylated form; PP, bisphosphorylated form.
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     Concentrations ([mRNAi], i = 1 – 4) and Michaelis constants (Ka
i, KI

i; Kd
i) are given in

nM. Maximal enzyme rates (Vs
i, Vd

i) are expressed in nM·s–1. Kinetic equations
comprising the model are: d[mRNAi]/dt = Vi

synth – Vi
degr.

Table 2. Rate equations and parameter values of the gene network model

Rate equation Parameter values
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Appendix 2: Mathematical Description

In this Appendix we provide an abstract mathematical derivation of the method presented
in the paper. This presentation uses the implicit function theorem and matrix notation. A
more general version that relaxes the assumption that perturbations considered affect only
single modules is published elsewhere (1).

The problem studied in this paper can be reformulated, in an abstract mathematical way,
as follows. We consider a dynamic system,

nn pppxxxpxfdtdx ,...,,,...,),,(/ 11 === , [1]

where the vector of variables x = (x1,…, xn) and the vector of parameters p = (p1,…, pm)
belong to open subsets of Euclidean spaces. It is assumed that the system has a stable
steady state (x0, p0),

0),( =pxf , [2]

where the Jacobian matrix, J, is nonsingular,

J = (∂f/∂x). [3]

According to the implicit function theorem, there is a unique vector x(p) solving the set of
Eq. 2 in some neighborhood of a particular value p0. One objective would be to determine
the Jacobian (J), assuming that one can determine the global response matrix (Rp)
experimentally given by Eq. 4 of the main text (hereafter nonnormalized derivatives are
used), 

Rp = (∂x/∂p). [4]

Unfortunately, such an objective is impossible to achieve: the equation f(x,p) = 0 is
equivalent to the equation 2f(x,p) = 0, and thus there will be no way to distinguish
between (∂f/∂x) and 2(∂f/∂x). Thus, we will restate our objective as that of finding the
matrix r of the local response coefficients (rij). Eq. 1 of the main text defines rij in terms
of the fractional changes in xi brought about by a change in xj, provided that all other
variables (xk, k ≠ i,j) remain unperturbed. The coefficients rij correspond to the elements
(∂fi/∂xj) of the Jacobian matrix (J) “normalized” by the diagonal elements, (∂fi/∂xi), i.e., rij
= ∂xi/∂xj = – (∂fi/∂xj)/(∂fi/∂xi), as calculated by the differentiation of the equation, fi(x, p) =
0. In matrix notations,

r = – (dgJ)–1⋅J . [5]
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Eq. 2 allows us to relate the global response matrix (Rp), the Jacobian matrix (J), and the
matrix of the partial derivatives of functions f with respect to the vector of parameter (p),

Rp = (∂x/∂p) = – (∂f/∂x)–1⋅(∂f/∂p) = – (J)–1⋅(∂f/∂p). [6]

It is assumed that the matrix (∂f/∂p) is nonsingular in the vicinity of the state (x0, p0). As
explained in the main text, we perturb specific parameters (pi) that affect only single
modules (i), which makes the matrix (∂f/∂p) diagonal, (∂f/∂p) = dgfp. It is related to the
local response matrix, dgrp, which is defined by Eq. 3 of the main text, as follows,

dgrp⋅= – (dgJ)–1⋅dgfp. [7]

[Eq. 7 is obtained by the differentiation of the equation, fi(x,p) = 0, with respect to pi
assuming that all other variables except xi (xk, k ≠ i) remain fixed]. Using Eqs. 5–7, we
find 

Rp = – (J)–1⋅dgfp = – (J)–1⋅(dgJ)⋅(dgJ)–1⋅dgfp  = – r–1⋅dgrp.  [8]

From Eq. 8, the matrix r is expressed as follows,

r = – dgrp⋅Rp
–1. [9]

Because all the diagonal elements of the matrix, r, are equal to –1 (see Eq. 5), we can
write 

I = dgrp⋅dg(Rp
–1), [10]

where I is the identity matrix, and dg(Rp
–1) is the diagonal matrix with diagonal elements

(Rp
–1)ii and all off-diagonal elements equal to zero. By expressing dgrp from this

equation, we obtain final Eq. 8 of the main text,

r = – [dg(Rp
–1)]–1⋅Rp

–1. [11]
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