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Realization  Theory o f Discrete-Time Nonlinear 
Systems: Part I - The  Bounded Case 

EDUARDO D. SONTAG 

Abstmct-A statespace realization theory is presented for a wide class 
of diwete time input/output behaviors. Although ill many ways restricted, 
thJst!JassdaeeJncJudeasparucuJarcssestbo¶etreatedhtthelJterature 
(bear, multilinear, internally biiear, homogeneous), as Well as certain 
nonanalytic nonlhearities. The thry is conceptually simple, and matrix- 
tJleorelk! algDrlthms are stmlgJltforward Finite-reaBzablllty of these be- 
haviors by state&k systems is shown to be equivalent both to the 
existence of high-order input/output equations and to realizability by 
more general types of systems. 

INTRODUCTION 

T HIS WORK deals with some aspects of realization 
theory of deterministic nonlinear discrete-time sys- 

tems. The  realization theory of linear systems is by now a  
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successful part of system theory, which has resulted in a  
deep  understanding of behavior and  has permitted the 
application of state-space methods of analysis and  synthe- 
sis. It may be  reasonable to expect, then, that a  corre- 
sponding theory will eventually derive analogous benefits 
for nonlinear systems. 

For the most part, this paper  presents a  “lineaxized” 
realization theory via systems which are linear in state 
variables -but arbitrarily nonlinear in inputs, state-uffine 
systems. Wh ile such systems are highly restrictive vis a  vis 
general  nonlinear mode ls, they do  include those for which 
a  detailed realization theory has been  developed, in partic- 
ular, linear, internally bilinear, and  mu ltilinear systems. 
The  importance of S-A representations in the analysis of 
certain nuclear reactors, heat-transfer processes, and  
population mode ls, among  others, has been  made  explicit 
by various authors (see, for instance, [34]); other applica- 
tions being currently explored are in the areas of image 
processing and  in stochastic filtering. Moreover, in some 
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cases the canonical realization of a  given input/output 
.behavior admits a  S-A structure; this is the case with 
bounded polynomial responses, those whose output values 
at any given instant are arbitrary sums and  products of 
previous input values, subject only to the restriction that 
there is a  bound-hence the name-to the exponents to 
which each single input can be  raised in calculating out- 
puts. 

Bounded responses were originally defined in a  poly- 
nomial context, but the present work treats directly a  
more general  case, which has the advantage of including 
many types of nonanalytic nonlinearitites (piecewise poly- 
nomial, in particular). 

The  first part of this paper  deals with an  abstract 
realization theory, while the second presents a  concrete 
matrix realization algorithm which both general izes and  
unifies those known in the literature for the various 
classes of systems. These two parts result in particular in a  
self-contained realization methodology for S-A systems, 
and  serve also as an  introduction to a  more general  (and 
strictly nonlinear) realization theory. Part three provides 
further finiteness results, including a  generalization of the 
linear system fact that finite realizability is equivalent to 
the existence of a  (high-order) input/output difference 
equation, and  studying the relationship between state- 
affine realizability and  more general  realizability of a  
bounded response. The  paper  closes with some remarks in 
part four. 

When  U is a  subset of a  vector space k”, the notation uu) 
for the vector u  in U will mean  the ith coordinate of 
u-the notation z.+ being reserved for the ith element of a  
sequence of vectors. If A, B are sets, [A, B] will denote the 
set of all maps f: A +B. When  B is a  vector space, [A, B] 
will denote the corresponding vector space, with the 
pointwise operations: (f+ rg)(a): =f(a)+ rg(a). 

A. Response Maps 

An. “input/output map” sends input sequences into 
output sequences. When  such a  map  is causal, it can be  
equivalently specified by its associated “response map,” 
which describes how past inputs affect present outputs; 
this latter object is defined directly. 

Definition 1.1: A response is a  map  f : U + + Y. A 
strict& causal response has, for each t, ft(u,; * * ,u,) inde- 

input.” 

pendent  of z+; for a  memovless response, ft(u,,- * * ,u,) 
depends on& on u,,; an equilibrium response is one  for 
which there is some ii in U with f (iiw) = f (w) for all w in 
U+. A response is polynomial (resp. anaZytic) iff U is a  
subset of k “‘, Y = kP, and f, is a  polynomial function in mt 
variables (resp. k= R or C, U is an  analytic man ifold, 
Y = kp, and each f, is analytic), for all t > 1. 

The  interpretation of the above is that output values yt 
at time  t are functions of inputs ui, * * * ,u, at times 1, * * * , I, 
“strictly” causal mean ing that present inputs cannot affect 
present outputs. “Equilibrium” is equivalent to “shift in- 
variance” of the corresponding input/outp.ut map, where 
the “equilibrium input value” ii plays the role of a  “zero 

I. ABSTRACT REALIZATION THEORY 

This section develops a  realization theory which will 
give the theoretical basis for the algorithms presented 
later. The  following notational conventions will hold 
throughout this work. 

For any set S and  integer t > 0, S’ will be  the set of all 
sequences w = (wi, * - - , w,) of length t, wi in S; note So= 
set containing only the empty sequence e. The  set S* 
(resp. S+) is the union of all S’, t 2 0  (resp. t > 1); ]w] 
denotes the length of w. For notational convenience, a  
w= (w,, * * - J,,,) will be  also denoted as wiw2- - - wt. (This 
should not be  confused with the product of the wi, when 
such a  product would be  also defined.) The  expression a’ 
will, correspondingly, mean  a  - * - a  (t times). The  con- 
catenation of two sequences v = vi - * - v, and  w = w, - * * w, 
isvw:=v,---v,w,- * - wr of length s + t. For any function f 
defined on  S +, the restriction off to sequences in S’ isf,, 
while the maps vwf(wv) (w in U’) are denoted by f,, 
and the maps vwf (vw) are denoted by f”. 

An arbitrary field k will be  fixed throughout the discus- 
sion; “vector space” will mean  k-vector space, “linear” 
will mean  k-linear, etc. (Some.results will be  stated only 
for k = reals or complexes, but most are valid without any 
restrictions on  k.) Recall that uffine manifoZd= transate of 
a  subspace, and  affine map = linear + translation. Unless 
otherwise stated, U will denote an  arbitrary set (of input 
values) and  Y an  arbitrary vector space (of output values). 

When  U is Euclidean space R” (or an  open  set thereof), 
Y is just R, and each f, is a  real analytic map, it is 
customary to represent f by a  “Volterra series” 

(1.2) 
isO 

where Lti is a  homogeneous  degree i polynomial in the 
coordinates of (ui,. * - ,u,). O ther representations in this 
case are the “mu ltidimensional z-transform” [I] and  the 
“regular transfer function” [8]. Each of these alternative 
representations has its computational advantages depend-  
ing on  the problem to be  solved. Since they all give the 
same information about f, and since the passage between 
them is well understood, this paper  uses the more abstract 
definition in (l.l), which has the advantage of allowing 
for nonanalytic nonhnearit ies in f. 
B. Systems 

Definition 1.3: A system 2 =(X, P, Q,.?) is defined by a  
vector space X, maps P : X X U+X and Q  : X X U+ Y 
and an  X in X (called, respectively, the state space, next 
state, transition or control map, output or measurement 
map, and  the initial state). The dimension of Z  is the 
(possibly infinite) dimension of X; zero-dimensional sys- 
tems are called memo@ess.  A state-output system has Q  
independent of inputs U. When  there is an  U in U with 
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P(X,C)= X, Z has equilibrium initial state (EIS). When P 
and Q are affine in x, Z is a state-affine (S-A) system. 
When P and Q are linear, Z is state-linear. A polynomial 
(resp. analytic) system has X= k”, U a subset of some k”, 
Y= kP, and P, Q polynomial (resp. k= Iw or @, U a 
manifold, X = k”, Y= kp, P, and Q analytic). 

A system as defined above corresponds to a set of 
difference equations 

4 + 1= P(x,, 4 

with the initial condition xi= X. State-output systems, in 
whichy, is a function of x, alone, are the ones found most 
frequently in the control literature, and are called “Moore 
machines” in automata theory. In the state-affine case one 
has equations 

with P’(u), G(u) linear maps and G(u), I(u) vectors for 
each u in U. The notations F, G, H, I will be used freely 
instead of P, Q. The symbolic notation x’ = P(x, u), y = 
Q(x,u) (where the prime indicates a time-shift operator) 
will be used freely. 

The extended transition map P* : X X U*+X is defined 
recursively by P*(x, e): = x, P*(x, wu): = P(P*(x, w), u); P’ 
is the restriction to sequences of length t. With a slight 
abuse of notation, P* will be denoted also by-P. For any 
w=vu in U+, where v is in U* and u in U, one writes 
Q +(x, w) (or just Q(x,w)): = Q(P(x,v),u), and Qf for the 
restriction to X x U’. The reachability map of Z is g : U*+ 
X where g(w): = P(X, w); the reachable states are those in 
its image. Z is said to realize its responsefz : U++ Y: w+ 
Q<-C 4. 

Definition 1.6: Z is span-reachable iff X is the smallest 
affine manifold containing the reachable states, observable 
iff the functions Q(x, *) : U ++= Y, x in X, are all distinct, 
and span-canonical iff both span-reachable and observ- 
able. 

Definition 1.7: An (affine) system morphism T: Z,+& 
is an affine map T: X,+X, satisfying 75i = 5CZ and, for all 
x, u, T(P,(x, 4) = PA T(x), 4 and QI(x, 4 = Q2( T(x), 4. 

The above definitions are useful in the context of the 
S-A realization problem, but “span-reachability” and 
“affine system morphism” are of course too weak in a 
purely nonlinear context (see [42], [46]). When systems are 
normalized (by a translation) to have initial state X=0, 
span reachability is of course the same as requiring that X 
be the smallest subspace containing reachable states, and 
system morphisms become Iinear maps. Since a transla- 
tion is required when normalizing, it is clear that a defini- 
tion of morphism should include translations when the 
category of all S-A systems is considered; otherwise, no 
uniqueness can be expected (as with the internally bilinear 
counterexamples in [52]. 

Existance of a morphism Z,+Z, forces equality of 
responses; the following is a partial converse to this fact. 

Theorem 1.8: Let Z, and Z, be S-A systems having the 
same response map. Assume that Z, is span reachable and 
Z, is observable. Then there is a unique morphism 
T: 2,+&. Furthermore, T is onto if Z, is also span 
reachable, and one-to-one if Z, is observable. 

Proof By span reachability, any state x in X, can be 
written as Zrigi(wi), Zr,= 1, for some finite set of input 
sequences wj and scalars ri. Write T(x): =ZrigZ(wi). To see 
that this gives a well-defined map T: X,+X,, consider 
any other expression x = Zsigi(wi), Zs, = 1 (for the same set 
of wi’s, adding zeroes if necessary to the ri,si). Since 
Ql(*,w) is affine, ~riQ~(g,(Wi>,W)=~siQ,(g,(wi,w)), i.e., 
Zr,f(wiw)=Zs,f(wiw), for any w in U+. This implies that 
Q,(Zrig2(wi),w)= Q,(Zs,g,(w,), w) for all w in U+ and 
thus, by observability of Z,, that Zrig,(wi)=Zsig,(wi). 
Thus T is well defined, and it is clearly affine. Uniqueness 
is clear, since T( g,(w,)) = g2(wi) is forced by the definition 
of morphism. The last two statements follow by analogous 
arguments. 

Remark 1.9: If a given S-A system Z is not span reach- 
able, one may of course restrict P and Q to the affine 
span x of the reachable states (considered as a vector 
space in itself, once that an arbitrary x in x is choosen as 
origin), resulting in a span-reachable realization of the 
same response. If C is not observable, a dual construction 
gives an observable realization: it is sufficient to form the 
quotient of X by the subspace of all states indistinguish- 
able from zero (i.e., all x with Q(x, *)= Q(0, e)); P and Q 
naturally induce maps in the quotient. Thus existence of a 
single S-A realization of anf already implies existence of a 
span-canonical one. Such a realization is constructed be- 
low, for anyf. 

Definition 1.10: The image realization of the response f 
has X: =[ U+, Y], X: =f, P(b,u): = b,,, and Q(b,u): = b(u). 

The above realization is an S-A, in fact state-linear, 
system. This is clear from the definition of the vector 
space structure on X. Moreover, it is observable. Indeed, 
if Q(b, w) = b(w) is known for all w in U+, then b is 
determined uniquely, as an element of X. By Remark 
(1.9), a span-canonical S-A realization can be obtained by 
restriction to the affine span L, of the reachable set {f,, w 
in U’ }. Thus from (1.8) and (1.9) the following theorem 
results. 

Theorem I.1 I: Any response f has a span-canonical 
S-A realization Z,, unique up to isomorphism. 

Definition 1.12: f is S-A finite& realizable iff there ex- 
ists some finite-dimensional S-A system realizing f, a 
minimal realization is then one whose dimension is smal- 
lest among all possible S-A realizations off. 

From (1.8) and (1.11) the next theorem results. 
Theorem 1.13: Let f be S-A finitely realizable. Then a 

S-A realization off is minimal iff it is span-canonical. 
It is important to remark that the above minimality 

holds on& with respect to the class of S-A realizations. An 
extreme case of this is illustrated by the one-dimensional 
system &, with U = Y = k and equations x’ = x + u,y = xs 



WmA‘i: R&,,&5ATION THEORY OF DISCRETE-TIME SYSTEMS: PART’ 1 345 

(s = positive integer), X= 0. The  response f. of this system 
is also realizable by an  S-A system, since polynomial 
nonlinearities can be  replaced by equations in the powers 
of state variables. But it follows from latter results that f. 
admits no  S-A realizations of dimension less than s. (A 
fuller discussion of this issue, along with some more 
remarks on  the example Z,,, which is completely reachable 
and  observable, can be  found in [42].) 

A response f is strictly causal (resp. equilibrium) iff its 
span-canonical realization is state-output (resp. has EIS). 

Proposition 1.14: For any response f, the following 
statements are equivalent: a) f is strictly causal, b) f has a  
state-output realization, c) any span-reachable S-A reali- 
zation of f is state-output. Similarly, there is equivalence 
of: a’) f is an  equilibrium response, b’) f has a  realization 
with EIS, c’) any observable realization off has EIS. 

Proof: Both c) implies b) implies a), and  c’) implies b’) 
implies a’) are trivial. 

Assume now that f is strictly causal, so f(wu) = f (wv) 
for all w in U*, u, v in U. Thus Q( g(w), u) = Q( g(w), v) for 
all w in U*. Since Q  is affine, QQrig(wi), u) = 
Q(Xrig(wi),v) for all affine combinations of reachable 
states, i.e., for all states. So Q  is independent of inputs, 
i.e., a) implies c). 

If f is an  equilibrium response then, for any z realizing 
f, Q(Z,w)=f(w)=f(UW)= Q(Z,ilw)= Q(P(X,ii),w) for all 
w in U+. If Z  is observable, X= P(X, ii). So a’) implies c’). 

C. Bounded Responses and Finite-Type Systems 
For any set 6i,i=0,... ,s of functions from U into k, 

any w=u,-.* u, in U’, and any mu ltiindex (Y = (Y,. - . at, 
(each ai an  integer between 0  and  s,) 6,(w) denotes the 
product 4&,N&d~ . - 6&u,). The  “tensors” on  such a  
set give rise to bounded responses. 

Definition 1.15: A response f is bounded, of type J= 

{&* * * ,a,}, where the Si are functions U+k, iff for each 
t > 1  there are (finitely many)  vectors a, in Y with 

being a  set of possible monomials in the m input variables 
(for instance, J= all monomials of degree <d, for some 
d). Those classes of responses for which a  satisfactory 
realization theory is (at least partially) developed are all 
bounded.  They are as follows. a) Linear responses: U= 
k” and each f, : km’+ Y is linear; in particular, these are 
of type J,={&,;.. , S,} with 6, = 1  and  ai = ith projection 
km+ k = monomial uCi) b) Internally biaffine responses 
141, [ 111, [17], [18], [25]-[27], [50], [52]: U= k” and no  
inputs at any given instant appear  mu ltiplied among  
themselves in future outputs; alternatively, these are pre- 
cisely all those responses of type JL. c) Multilinear re- 
sponses [2], [3], [20], [21], [28], [29], [32], [38]: U= km and, 
indentifying U’ with (k ‘)” = set of m-vectors of length-t 
scalar sequences, the map  f, : (k’)“+ Y is a  m-linear for 
each t; alternatively, these are responses of type J,= 
<u(t)- - - u&,, ii = 0  or 1  } and  each monomial S,(w) in 
(1.16) for which a, #O has total degree exactly m . (More 
generally, one  may consider “vector” r-linear responses 
with u=6,x*- ~6,. and  each fii=kq, i=l;..,r, 
rn,+..* +m,= m; these result also in bounded re- 
sponses.) d) Homogeneous (degree-d) responses [8], [22], 
[42]: U= k” and each f, is a  homogeneous  polynomial of 
degree d; alternatively, these are the responses of type 
Jh,d={u&...~& j,+... +j,,, <d) such that 6,(w) has 
total degree exactly d whenever a, # 0. 

It should be  carefully noted that b) and  c) above give 
different, incomparable, classes of responses. 

Example 1.19: Another rich source of examples is pro- 
vided by bounded piecewise linear responses. A simple 
example is given by U= Y=R and JStep: ={6,=1,6,}, 
with 6, = the step function 6,(x)=0 for x < 0  and  1  for 
x > 0; then a  response like f with f (u, * * . u,) = 0 if all ui < 0  
and=2(u, + * * * +ut) otherwise, is of type J; indeed, 
f(u, - . . u,) equals 

2[w443(4~ * * 43(%) + %(u,P,(4* * * Uut) 

f(w) = W(w)a, (1.16) + * * * iS,(U,)~ * * tqu,)]. 

for all w in U’. 
Conventions 1.17: W ithout loss of generality it will be  A more interesting example has U= the interval [0, 11, 

always assumed that 6, is the unit constant function: Y = R, and, for r a positive integer, J, = { 6, = 
as(u)= 1  for all u  in U. This will greatly simplify nota- 1,6,; * * , S,- ,}, where Si: = characteristic function of 
tions. Furthermore, the family of functions J will be  [(i - 1)/r, i/r). Th  e responses of type J, are given, for 
assumed linearly independent (i.e., if there are scalars ri each t, by the step functions on  [0, l]‘, constant on  hyper- 
with Xr$$(u) = 0  identically on  U then all ri = 0); if this cubes with sides of length l/r. Even more interesting 
were not the case, a  maximal linearly independent set can types of responses appear  when adding monomials to the 
be  extracted from a  given J. For a  type J= {S,, . . . ,a,}, above: piecewise linear and, more generally, piecewise 
[J] denotes the set of integers (0,. . - J}. polynomial responses are obtained. 

An obvious and  trivial example of bounded  response is 
just any map  6, : U+ Y, inducing a  memoryless response 
f(uz* * * u,)=6()(uJ- * * a,( u, _  i) 6  i (u,). More interesting ex- 
amp les follow. 

Realizations of bounded  responses will have themselves 
a  special structure. 

Example 1.18: As explained in the introduction, the 
terminology “bounded” has its origins in the ma in (and 
motivating) example: polynomial bounded responses. This 

Definition 1.20: The S-A system Z is of finite type 
J= (8,. - - S,} iff there are affine maps Pi, Qi with P(x,u) 
=ZZG,(u)P,(x)*and Q(x,u)=~6,(u)Qi(x). 

In terms of linear maps and  translations, in the above 
case there are linear maps Fi :X+X, Hi :X+ Y, and  vec- 

case corresponds to U=a subset of k”, m  > 1, and  the Si tors G i in X, 4  in Y, such that system equations become 
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x’= 2 &(u)F,x+ 5 &(u)G, than in (1.7). Adding zero matrices and vectors if neces- 
i=O i=O sary, it may be assumed that both systems are of the same 

y= i 6,(u)H,x+ 2 Si(u)Ii. 
type J. It is easy to verify then that an affine map 

i=o i=O 
T= A,x + b mapping X int_o X induce: a mfiorphism from x 
into 2 iff T”= i, Aci = FiA, AG, =,G, +,.F;,b for i#O, and 

Example 1.21: a) A linear system has type JL (cf., 
AGo=Go+Fob-b, HiA=Hi, andZi+Hib=Zi. 

( 1.18a)) and equations 
Notation 1.26: For each multiindex (Y = (I. - . (Y~ in [J]* 

(J = type of Z), G, in X is defined by 
x’=G,(u)Fx+ 2 ai(u)Gi G a:= Fq. . . F,,Ga,. 

~=&~(u)Hx+ 2 6,(u)I, The vectors W,, (Y in [J]*, are defined by W,: = G, if 

with X= 0; usually one assumes all 4 = 0. b) An 
a,#O, (Y in [J]+, W,: =0, and W,: = Go, + W, otherwise. 

internally biaffine system is any system of type JL; (these 
Finally, the vectors V,, (Y = cu,. . 1 (pi in [J]’ are defined as 

systems are sometimes called “internally bilinear” or just Va:=F+.. . F,,X+ W,. 
“bilinear” in the references in (l.l8b), especially in the 
EIS case; the latter terminology is misleading, since it is 

A straightforward induction gives 
Lemma Z.27: With the above notations, 

also used for the next example). c) A standard multilinear 
system is best described by a “wiring diagram” as in the du, * -ut)=~t3a(u1’-ut)v, 
references in (1.18~); in the bilinear (m = 2) case, these are 
state-affine systems with U = k2 and of type J = 

and 

U4(1)94(2)~ U(I)U(2)1 whose equations can be decomposed fh -*+ut)= ~6,(u,...u,)H,~~,...,_,+l(u,) 
into three blocks: (1.28) 

4 =AI,+ + U(I$I both sums over all (Y in [J]‘. 

x;=A,x,+ u(2)B, 
The following algebraic facts will be needed. 
Lemma Z.29: a) If {Si,i in [J]} is a linearly indepen- 

X;=A33X3+U(2)A31X1+U(1)A32X2+U(I)U(2)B3 dent set of functions U+k then, for each t> 1, the set 
y=cx, { 6,,a in [J]‘} of functions U’+k is also linearly indepen- 

dent. 
where the A,, B,,C are matrices and vectors of ap- b) Let &,,--a ,S, be a family of linearly independent 
propriate sizes. These systems are clearly of finite type. functions U+k and let X be a vector space, b,, . . . , br 

Example 1.22: Piecewise linear and step-function vectors in X. Consider Xi : = subspace generated by the bi, 
types are useful in modeling “logical” controls. For ins- and X2: = subspace generated by the vectors {Zai(u)bi, 
tance, a system with transitions x’ = Ax if u is positive but u in U}. Then X,=X,. 
x’ = Bx otherwise, is of type JStep : x’= 6,(u)(A - B)x + Proof: a) For t = 1 this is true by hypothesis. If true for 
G,(u)Bx. t but not for t + 1, there is some relation Zr,6, = 0, the (Y 

Remark 1.23: Every finite-dimensional S-A system is in [Jlt+‘. Then, for each w in U’ and u in U: 
obviously of finite type, when Y is finite dimensional. 
Indeed, it is only necessary to choose bases for X and Y, 2 ai(W)8i(U)=Q for all u in U 
if dim Xt n, dim Y=p this results in n2+ nm+ np+p 
functions 6,(u) as entries of the corresponding matrices with the a, in the subspace generated by the S,, (Y in [J]‘. 

F, G, H, I. Adding So = 1 if necessary, the given system is 
Independence of the Si forces a,(w)=0 for all i and all w 

clearly of finite type. 
in U’, so by induction all r, = 0. 

The connection between bounded responses and finite 
b) Clearly X2 is included in Xi. Let L: X+k be any 

type systems is given in the following theorem. 
linear functional such that L(X,)=O. Then, for any u in 

Theorem 1.24: A response f is bounded, of type J, iff U, 

its span-canonical realization 2, is of finite type J. 
Pro08 If f has any realization Z of type J, the defini- 

O= L( ~ 6,(u)bi)= ~ Gi(u)L(bi). 

tion of fx shows that f has type J. The converse statement By linear independence of the Si, all L(bi) = 0. Thus L(X,) 
will be immediate from the construction to be given in is also zero. So Xi is included in X2. 
(2.9). The following lemma permits checking span reachabil- 

D. Some Useful Formulas 
ity. A system with X#O can always be transformed by a 
translation into one with X=0. The original system is 

Explicit formulas can be given in the finite-type case for span-reachable iff the second one is. The advantage of 
reachability maps, responses, morphisms, etc; these will this normalization is that since X=0 is now always in the 
be used later. affine span of the reachable set, this span is a subspace 

Remark. 1.25: A morphism between two finite-type SYS- and span-reachability means X = subspace generated by 
terns Z,% can be described somewhat more explicitely g( U*>. 
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Proposition 1.30: W ith X=0, an  S-A system is span-re- 
achable iff 

span { G ,,cu in [J]‘} = 

span { Va,cu in [J]‘} =X. 

Proof Consider the affine man ifolds 

X,:=affinespanof { g(w),]w]<t}. 

Here these are just the subspaces generated by the 
g(w), (WI <t, since g(ii- - * iT)= X=0 is in every generat ing 
set. But the subspac. generated by X, is the sum of the Xi, 
i=();. . , t, where Xi: =subspace generated by g( U’). By 
(1.27) and  (1.29), each of the zi is generated by the V,, (Y 
in [J]‘. Since here V, = W , and by definition V, = G, if 
(r, #O and  V, = Go, + V,, the result follows. 

Since equality X, = X, + , clearly implies X, + i = X, +2 
=--*9 a  dimensionality argument gives the following 
corollary. 

Corollary 1.31: An n-dimensional system is span-reach- 
able iff X,, =X. If X= 0, this is equivalent to X = span of 
all G,, a  in J’, t <n. 

Since a  S-A system is observable iff there are not states 
x with Q(x, -)= Q(0, e), observability becomes also a  lin- 
ear condition. Denoting for a  in [J]+: 

H,: = H4Fq-, -F,,:X+Y 

This system is of type {S,,6,,6,} with &,(u)=u and  6,(u) 
=iL 2, and  with G ,=O, G ,=the above G ,, F,=O, Fi=the 
above Fi- ,, i = 1,2. So G ,, G ,, and  Gz2, span X, and  x2 is 
also span-reachable. F inally, consider Z3  with U,X as 
above, Z- (1 2  0)’ and  

an  argument analogous to the preceeding ones gives. 
Proposition 1.32: A S-A system is observable iff the 

intersection of the kernels of the H,, (Y in [J]+, is zero. 
When  the system is n-dimensional, it is sufficient to form 
the intersections of the ker H,, (Y in [JJ, t <n. 

Notational Conventions 1.33: A few normalizations will 
simplify notations considerably. F irst, it may be  assumed 
that, if a  response f, or a  system Z, is of type J= 
{hJ,* * * JJ, with U a subset of k”, then Si(O) =0 for all 
i I 1; * * ,s: if this were not the case, it is enough  to 
replace Si by 8:: = Si - r-6,, where r=&(O); the new J is 
again linearly independent and  the class of responses, and  
systems, of type J is unchanged.  (In the polynomial case, 
the Si are nonconstant monomials in the input variables 
for i#O, so S,(O) =0 is always satisfied.) When  f is an  
equilibrium response, or Z  has EIS, a  coordinate transla- 
tion can be  effected in the input space U resulting in U= 0. 
Similarly, a  translation in X gives X=0. These normaliza- 
tions will be  assumed when dealing then with the 
equilibrium case. 

Normalizing to X=0 by x+x - Z, x2 is obtained. So x3 is 
span reachable too. 

II. MATRIX M INIMAL RFXLIZATION lb3ORITHMS 
This part introduces a  general  matrix mathod for 

m inimal S-A realization of bounded  responses. A reduc- 
tion is first carried out, which allows restricting attention 
to the case of equilibrium responses without any loss of 
generality. Notations introduced in previous sections are 
freely utilized. 

The  set of all those mu ltiindexes (Y in [J]+ for which 
a, #  0  will be  denoted by [J], . Then,  f is an  equilibrium 
response iff aOcr = a, for all (Y in [J]+, and Z  has EIS iff 
Go= 0. Thus (1.30) simplifies to the following lemma. 

Lemma 1.34: An EIS system is span-reachable iff X= 
span {G,, a  in [J],}. 

Remark 1.35: The  given span reachability and  observ- 
ability conditions reduce to the well-known ones for linear 
and  internally biaffine systems. As in those examples,* 
these conditions result for EIS systems in a  “duality” 
between span reachability and  observability. It is as yet 

A. Reduction to the Equilibrium Case 

For any response f of type J=(6,, * - - , a,}, a new re- 
sponge f will be  derived from f as follows. The  new input 
set U will be  U X k, !to be  interpreted as “adding a  new 
input channel”) andf will be  of typej={~~,...,6,,$+,}, 
where &(u,v): =L$(u) for all (u,v) in Uxk, i=O; - * ,s, 
and &+ ,(t(, v): = v. Clearly, .? is linearly independent since 
J, was. Using the notation in (l-16), for (Y in [j]‘: 
1  a&: =$, for all cy in [j]’ 

&S+I)a:=ah-aa, if a  in [J]’ 
- .- ao. - a,, if (Y in [J]’ with a,#0 

(j .z() a* 3 if cu,#O but cu,=s+l forsome i=2;--,t. 

(2-l) 

unclear whether these dualities have any system-theoretic 
mean ing in the S-A case. 

Numerical Examples 1.36: Consider a  system Z  t with 
U = R, X = R3, X = 0, and  transitions 

x;=x2 if u<O, x,+x,+1 otherwise 
I- 

x2-x3 if u  < 0, x,+x, otherwise 

x3 ‘=x2-x3. 

This system is of type J,, (cf., (1.19)), where 

G,=[j F,,=[! p  -;] Fl=[; i i]. 

Since G ,,G ,,=(l 1  0)’ and  G ,,,=(l 0  1)’ span X, 
2, is span reachable. Similarly, consider Z2  with same 
U, X, X, and  transitions 

x; = u2x, + ux2 + u2 

x2 ' = u2x, + ux3 
x3 r=ux2-ux3. 
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For any w = ui * * - u, in U’, fi in fit is the sequence with 
&: = (ui, l>.‘. A straightforward calculation shows the 
following lemma. 

Lemma 2.2: f(w)=](G) for all w in U+. 
For-any system Z of Jype J having X = 0, a system 2 of 

tpe J tnd input set U can be derived as follows .(with 
2: =o, x: =X): 

e[resp.&,.,[]:=q[resp. Hi,Ii], if i=O; - - ,s 

: = zero, if i=s+l; 
&=Gi i= 1; * - ,s so:=0 &,:=G, 

(2.3) 
then 2 has EIS by definiticn. Since & = G, whenever (Y is 
ip [J]+ with (pi #O, s + 1, G,, iIn = Goa if (Y is in [J]‘, and 
G, = 0 otherwise, the following lemma follows from (1.30). 

Lemma 2.4: Z  is span-canonical iff 2 is. 
This result is in fact also a consequence of the following 

lemma. 
. Lemma 2.5: f has an S-A realization of dimension n . 
and type J iff f has an EIS S-A realization of dimension n 
and type j. 

Proof Given Z realizi?g f, fis realizes f Indeed, using 
the noiations_ in (‘&26), V, = Gok= G, = V, if ?1 ~0, s + 1, 
V,, = Go, + V, = V, (smce all Go, = O), and V(s+ I)a = G, 
= K& - V,; this implies the fo*mulas in (2.1). 

Conversely, if Z* realizes f, then a system Z can be 
defined setting u = 1, i.e., 4: = c for i = 1, - - * ,s, Fo: = I$ 
+F,+,, similarly for G, H, I. By (2.2), Z  realizes f. 

The conclusion from the above results is that it is 
enough to develop a minimal realization algorithm for 
equilibrium responses. If a given f is not such a response, 
then f^ can be constructed and-a m inimal realization off 
can be obtained from one for f. (System-theoretically, the 
addition of an input c@nnel corresponds to adding a 
“reset control”; in fact, U= U x (0, 1 } would have worked 
equally well.) 

Further &pl$cation 2.6: If 2 has EIS I= 0, clearly 
f=(u) = I(u) for all u in U. Given an equilibrium response 
f, the responsef’ with 

f(I.4,.** I+): =f(u,. . * ut>-f(ut) 

satisfies f(u) = 0. -A realization Z’ of f’ wilI thus have 
I’(u) =0, and will give rise to a realization Z  of f by 
adding Z(u): = f (u). It will therefore be assumed that f (u) = 
0 for all u in U. 

B. The Algorithm 

A bounded equilibrium response of type J = {So, * 1. , S,} 
will be fixed. For the explicit matrix calculations it will be 
assumed that Y = kP, some p > 1. 

Definition 2.7: The behavior (or generalized Hankel) 
matrix B(f) of f is the doubly infinite block matrix con- 
structed as follows. Rows of B(f) are indexed by [J]+ and 
columns are indexed by [J], . The ( p,a)th block entry of 
B(fi, /? in [J]+, a! in [J],, is the vector aola. The submatrix 
obtained by restricting to those rows with indexes I/3] <r 
and columns Ial <t is denoted by B(f),. The order of the 

rows and columns’of B(f) is irrelevant for the validity of 
the algorithm to be described; in fact different orderings 
may be useful for various purposes, as described later. It 
will be convenient however to assume that they are 
ordered lexicographically, i.e., (block) rows are ordered as. 
0,1,2,3,~~~,s,00,01;~~,0s,10;~~,ss,ooO;~~, etc., and 
columns are ordered as 1,2;--,s,10,11;~~,1s,20;~~,ss, 
100,101; * * ) etc. 

Realization AIgorithm 2.8: Assume that f is an S-A 
finitely realizable response or, equivalently, that B(f) has 
a finite rank n. Then B(f),, already has rank n. Pick a 
nonsingular n by n submatrix Q of B(f),,. Let Bu,, - . - , Bg, 
be the columns, and BB13il,. . * ,Bhpin the rows, defining @  
(BBvi means the ith entry in the block row of index /3). Let 
ai be the submatrix of Bn,n+ i defined by the same rows 
but with CO~UIIIIIS Bali, - - - , Bohi, i = 0, * . - ,s. Then 

Gi: =@-‘(ais,; - - ,a&‘, i= l;+*,s 

I;;::=(P-QDi, i=O;.+,s 

Hi:=(a,,,;--,a,,), i=O;-.,s (2.9) 

define a m inimal S-A realization off (of dimension n). 
Proof of Correctness: In general, a span-canonical reali- 

zation Z  of any bounded f can be constructed as follows. 
The state-space X is the linear span of the columns of 
B(f) (seen as infinite vectors), Gi is the ith column, 
i = I,* * - ,s, Fi is the linear map induced by the column 
shifts Ba+Bai, i=O; - - ,s, and Hi is the map X+ Y in- 
duced by ‘restricting a column to its ith row block, i= 
0,. * * ,s. The maps Fi are well defined, since any relation 
among columns Zr, B, = 0 (finite sum), r, in k, implies 
Zr,B,,. = 0 for all i in J. Indeed, the jth (block) row of 
Zr, Bai is Zr,a,,, which is also the ijth row of Zr,B,, 
hence zero. Let X= 0. 

Clearly, G, = B,, for every (Y in [J],, so Z is span-reach- 
able. For any x = Zr, B, in the intersection of all the ker 
HP, P in [Jl+, 

0= Hsx= x r,HBB,= x r,aa8 

is the /3th row of x. Thus x = 0, and Z is observable. 
It only remains to prove that X is indeed a realiza- 

tion of f. Pick t > 1, w in U’. By (1.27), fx(w)= 
Z&(w)H,F/, ,... q-, =ZUw)H,G, ,... +-,=SQ(w)a,=f(w), 
as wanted. 

Thus Z is a span-canonical realization of f, and the 
latter is S-A finitely realizable iff Z  is finite dimensional. 
Further, Z  is a m inimal S-A realization of f, and its 
dimension n is the dimension of X, i.e., the rank of B(f). 
By (1.31), (1.32), the rank of B(f),,, is also n, so the latter 
has a nonsingular $ as claimed. The explicit formulas are 
just the expressions of the Z$, Gi,Hi using the columns 
defining ip as a basis of X. 

Remarks 2.10: a) The above is a m inor variation of the 
-algorithm given by [41] for linear systems, and for repre- 
senting power series in noncommutative variables given 
by [ 151; the method of proof is analogous to the one given 
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by [39] for linear systems over rings. Alternatively, the 
algorithm for linear systems given by HO (see [30, ch. lo]) 
could be  also easily general ized-here one  factors B,,,, 
rather than finding a  full submatrix. It is as yet unclear 
which of the alternatives provides a  “better” algorithm. A 
theory of partial realizations can be  also derived from the 
above constructions, again by generalizing the linear case. 
In fact, this has already been  done  by [25] for the (EIS) 
internally biaffine case. It is interesting to remark that, 
since Z  in (2.9) is span canonical, it follows that the 
column space X is isomorphic to Lr (by (1. lo), (1.11)). 
Generalizations of behavior-l ike matrices to the non-  
bounded case, (such that finite rank be  equivalent to some 
sort of realizability), can be  found in [42], [46] where a  
Jacobian matrix of differentials off replaces B(f). 

b) When  restricting attention to a  particular class C of 
responses, it is to be  expected that many, if not most, 
columns of B(f) will be  zero-independently of the particu- 
lar f. Thus, for computational purposes one  orders col- 
umns in suitable ways, dropping those which are zero 
(examples below). 

c) The  application of the above algorithm to noisy data 
is a  problem which should be  more carefully studied, since 
(2.9) is numerically unstable .as given. It is, however, 
possible to mod ify the algorithm such as to achieve stabil- 
ity, at the cost of an  increase in its computational com- 
plexity; for the HO version of (2.9) (cf., Remark a)), this 
mod ification follows along the lines of the work (in the 
linear case) of [ 131. 

d) A serious practical question concerns the coefficients 
a, themselves (B,,,, involves those a, with Ial < 2n). In the 
polynomial case, a  least squares fitting of the polynomial 
fit may be  needed,  given a  bound  on  the dimension t of a  
S-A realization of f; alternatively, f, could be  obtained 
from the corresponding Volterra or other series, if such 
data is available. It is interesting to remark that fin is itself 
determined by a  restriction f2,, where r is the (usually 
much smaller) dimension of the reachable set of 2, ([48], 
theorem 6.1) in the EIS case; it would be  interesting to 
have an  algorithm which makes efficient use of this fact. 

Besides its generality, the above algorithm (and its 
variation ment ioned in a) above) serves to unify the 
literature. 

Example 2.21: For linear responses (l.l8a), the only 
nonzero colurnrrs of B(f) are those with indexes i@, with 
i = 1; - - ,m and  j > 0; the only nonzero rows are those 
with indexes O’, i > 1. Ordering the columns as 
1,2; * * ,m,10,20,~~~,m0,100;~~, and  the rows as 
0,00,ooo; * - ,B(f) is precisely the Hankel matrix (Ai+j), 
where the A, are the “impulse response” or “Markov” 
parameters A, = (al,-,,, - - - ,a&)‘. Then  (2.9) reduces to the 
algorithm of (411. 

Example 2.12: For internally biaffine responses 
(l.l8b), B(f) is essentially the “general ized Hankel 
matrix” given independently by [25] and  [16]. In particu- 
lar, the matrix given by Isidori [25] is B(f) with columns 
ordered lexiocographically but with rows ordered as 
follows: first, all rows of indexes in [J], then all those with 
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indexes in [J]‘, [J13, etc.; for each index length r, the rows 
are ordered as t,; - . , at, t =2’, where, if i has the binary 
expansion x$2’- ’ (j = 0, - * * ,r - l), then, ai is the binary 
expression of the integer 2’-‘(Z42-i). (I’he  above expres- 
sion for the q  can be  inductively proved from Isidori’s 
algorithm.) 

Example 2.13: For m-linear responses (l.l8c), the algo- 
rithm coincides with the one  given by [29]. For simplicity, 
let m=2. Thus f is of type J={6,= 1,6i=~~i),8~=u~~~,S~ 
= u~,~u~~)}. The  nonzero columns of B(f) can be  parti- 
t ioned into three sets: first, all those with indexes lo’; then 
all 20’; finally all 0’2o’lW, 0’10’20’ and  0’30’. The  nonzero 
rows are partitioned into three sets: all o’, all 0’ loi, and  all 
0’20’. Then  B(f) has the block structure 

0 0 42 

0 B2 0 
B, 0 0 

(2.14) 

where the indicated submatrices are those obtained in the 
above reference. Since F, and F2 shift columns in the first 
two blocks into the third, it follows that in a  suitable basis 
the equations of Zr have the standard bilinear form in 
(1.21c). 

C. State-Linear Models 

The  response of any S-A system Z  can be  also realized 
by a  state-linear system (P, Q l$ear). It is enough  for this 
to enlarge the state-space to X:=X X k a?d to add  a  
constant equat ion z(t + I)= z(t): defining P((x, z)‘, u): = 
(F(u)x + zG(u),z) and Q((x,z)‘, u) = H(u)x + zZ(u) with 
X: =(X, 1) gives a  state-linear Z  realizing f=. Moreover, Z  
is finite, dimensional or of finite type iff 2  is. The  realiza- 
tion theory of state-linear systems can be  of course devel- 
oped  independently from that of S-A systems. Defining 
L-span .reachable to mean  that X is the smallest subspace 
(rather than affine man ifold) generated by reachable 
states and  defining L-span canonical: = L-span reachable 
+ observable, L-morphism: = linear T  as in (1.7), the 
proofs in the previous sections can be  repeated with m inor 
mod ifications to yield the following theorem. 

Theorem 2.15: Any response f has a’ span-canonical 
state-linear realization, unique up  to isomorphism. If f is 
(S-A) finitely realizable, a  state-linear realization is 
m inimal (among all state-linear realizations) iff it is L- 
span canonical. 

Remark 2.16: A Hankel of Behavior matrix Bt(f) can 
be  defined in a  way suitable for constructing m inimal 
state-linear realizations, by letting (block) rows be  induced 
by [J]+, columns by [J]*, and writing aola in the (/?,a)-the 
position (thus B(f) is a  submatrix of BL(f) when f has 
EIS). A m inimal realization is now obtained letting X= 
column space of Bt(f), X: = column of index e  =empty 
word, and  Fi = shifts, Hi = restrictions, as before. Thus the 
rank of Bt(f) gives the dimension of a  m inimal state-lin- 
ear realization. (Since the affine span of reachable states 
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does not in general contain the origin-the normalization 
X: =0 destroys the state-linear form-this dimension is in 
general one more than the dimension of Z, the minimal 
S-A realization.) 

Definition 2.17: The exponent series +J of a bounded 
response f of type J= {a,,, * - - , S,} is a power series in 
noncommutative variables z,, . * * ,z,, defined by taking a,, 
(Y=(Y * . * cyt as the coefficient of the monomial z . . . z%. 

Fof instance, the first response in (1.19) has s&es 

2(z,+Zizo+Zez1+ziz;+Zaz*t0+Z~Z1+ * * * ). 

Recall that a power series is rational iff it can be expressed 
in terms of polynomials using a finite number of sums, 
products and inversions. 

Theorem 2.18: A bounded response f is S-A (or state- 
linear) finitely realizable iff C#J, is rational. 

Proo$ The Hankel matrix BL(fl is precisely the Hankel 
matrix of +,, as defined in [17]. Rationality is then equiv- 
alent to finite rank of B&n, by the results there. 

For example, the system of type J = { 1, u, u*} : 

x;=x,+2x,U-x2U* 

x;=x*24*+x* 

Y=xl 

has a response f with rational exponent series 

(1-z0-2Z1+(1-z0)-‘z2)-1. 
This is calculated easily using the methods in [14]. In 
general, automata-theoretic techniques (the “regular 
calculus”) result in a calculus for state-linear realizations. 
An application is given in (3.10) below. 

III. Ch-IER FNTENESS RINJLTS 

A. Compositions of Systems; Finite Responses 

Realizations of finite Volterra series, and of their non- 
analytic analogues, require introducing some new notions. 

Definition 3.1: The series composition or cascade of two 
systems Zi, Z2 with Y, = U, is the system Z: =Z,.Z2 with - - X:=X,xX,, u:=U,, Y:=Y2,x:=(xi,x2)and 

P((XlJ2)J4 =(P,( ~19 49Pz(x29 Q,(+ 4)) 

Q((+x2>94: = Q2b2, Q,<wd>- (3.2) 

It is easy to verify that series composition defines an 
associative operation on systems, the input/output map of 
Z,.Z2 being the composition of the corresponding in- 
put/output maps. 

Definition 3.3: z is a cascade of linear (resp. S-A, inter- 
nalll, biuffine) systems iff Z = &*Z i * * * Z,, where Za is 
memory-free and, for each i = 1,. . * ,r, Zi has Pi(x, u) 
linear in both x and u (resp. affine in x, affine in x and u). 
The cascade has polynomial interconnections iff the maps 
Qi are polynomial (and each Ui, Yi is a finite-dimensional 
vector space), and Z,, is polynomial. 

Definition 3.4: A bounded response f of type J= {So= 
l,S,,* * * ,a,} is finite iff there exists some integer K, which 
depends only on f, such that aa is zero whenever more 
than d of the entries ai are nonzero. 

For instance (cf. (1.18)), linear and multilinear re- 
sponses are always finite, while internally biaffine ones in 
general are not. The main result here is as follows. 

Theorem 3.5: The span-canonical S-A realization of a 
finite response f is (isomorphic to) a cascade of linear 
systems. Conversely, the response of a cascade of linear 
systems with polynomial interconnections is finite. 

Proof: Since the construction in (2.1) and (2.2) pre- 
serves finiteness, it is enough to treat the EIS case. In the 
proof of algorithm (2.8) let Xi be the subspace of X 
generated by all those columns B,, CY in [J],, for which j 
or more of the oi are nonzero. Then the shift F,, maps Xi 
into itself, while the shift Fi maps Xj into XJ+,, for 
i=l,.. . ,s. If K is as in (2.2), then X,, , =O. A basis 
Ul,’ * - ,u,, of X can be chosen by letting u,, . a a,,~,, be a 
basis of X,, completing this to a basis u,, . . . ,u,, . * . ,u, of 
XK-i, etc. This results in transition equations which can 
be arranged in blocks as follows: 

x;=A,x,+B,(u) 

x; = A,x, + B,(x,, u) 

y= 2 ci(u)xi+I(u) (3.6) 

where the Bi are affin.e in the xi and of type J in the u. 
Defining~ Z,, as the zero-dimensional map B,(u), Zi as 
x;=A,xl+u, y=(xI,B2(x1,u)), and in general Zi as xi= 
Aixi+Gi(u), yi=(xl,..~,xi,Bi+l(x,,---,xi,u)) with Gi= 
projection in last block entry of input, permits expressing 
(3.6) as in (3.3). 

The converse is an easy induction. 
In the polynomial case a degree d(a) is well defined for 

each S,, cu in [J]+, and a response of type J is bounded if 
and only if there is some d such that all monomials 8, of 
degree greater than d appear with zero coefficient in f. In 
terms of the Volterra representation (2.1), this amounts to 
Lti = 0 for i >d. Thus one says that “f has a finite Volterra 
series;” this is in fact the motivation for the terminology. 
(It should be noted that “finite” is relative to the type off; 
for example, every memory-free response is finite as a 
response of type f(u), so for instance yr = exp (r.4,) is finite 
in this sense although it gives rise to an “infinite Volterra 
series” in the classical sense.) In the polynomial case, 
then, the proof of (3.5) can be repeated but letting now Xj 
be instead the span of the columns B, with d(a)=j. Then 
I;b, maps Xi into Xi++), and the equations (3.6) can be 
simplified even further. For example, if m = 1 and J= 

2 . . . r./}, the span-canonical realization of a finite 
: ‘df?$e J can be written in the following .block form: 

I 



SONTAG: REALEATION THEORY OF DISCRETE-TIME SYSTEMS: PART I 351 

x’ = F*,‘x + uG 101 *,I 

+u’-‘Ft’:,x,+uG, I+*** +I&,, 

d d-l 

y= x Hojxj+u 2  Hljxj+-* +Ud-‘HdqX,. 
j-1 j=I 

(3.7) 

When  f is, further, homogeneous  of degree d (cf. (l.l8d)), 
the above equations have 

Gij = 0, if i#j F:j=O, if i+j#t 

and Hij =O, if i+j#d. (3.8) 

Definition 3.9: The dth truncation of the polynomial 
response f is the finite response fed) obtained by dropping 
all terms a, with d(a) > d. 

Proposition 3.10: If f is an  S-A finitely realizable 
bounded polynomial response, then f (d) is also S-A finitely 
realizable, for each d. 

Proof: By (2.18), +f is rational. Let S, be  the power 
series in zo,. f . , z, which has a, = 1  when d(a) <d and  
a, =0 otherwise; S, is easily seen to be  rational. For 
example, if J= {So= 1, 8, = u} then S, is 

But the exponent  series of fed) is the coefficientwise or 
“Hadamard” product of +, and  S& By the results of [ 151  it 
is itself rational, being a  Hadamard product of rational 
series. Thus fd) is finitely realizable. 

Corollary 3.11: If k = R or C and  f is realizable by an  
analytic system with EIS, then fed) is S-A finitely realiz- 
able. 

Proof: Let Z  be  an  analytic realization off, and  assume 
without loss of generality that X= 0, U= 0. Introducing if 
necessary new state variables for the monomials in state 
variables with total degree <d, it may be  assumed that all 
terms in the power series expansions of P, Q are either 
line:r_in x (or constant) or of total degree greater than d. 
If P, Q are obtained from P and Q  by dropping $1  terms 
of total degree greater than d, an S-A system Z  is ob- 
tained whose (necessarily bounded)  response f^ coincides 
with f on all terms of degree <d (the EIS hypothesis is 
crucial here, since it implies that P has no  constant term 
and  hence that no  term of degree more than d in state 
variables can contribute a  term of degree <d when iterat- 
ing-P). Thenfd)=Fd) is S-A realizable by (3.10) applied 
tof. 

Remark 3.12: Corollary (3.11) is false without the EIS 
assumption. For instance, the finite (d= 1) response with 
f(u) = 1  and  f (u, . . . u,) = 2*(‘-*)24~, is realizable by the 
(analytic but not S-A) system 

x; = x*u 

x;=x; 

Y=X, (3.13) 

with X= (1 2)‘. But p’) = f has exponent  series +,= 
(Z~*&$Z,, which is not rational. Thus f admits no  finite- 
dimensional S-A realization. (Note that (3.13) could be  
interpreted, however, as a  “time  varying” S-A system, 
with the x,-coordinate corresponding to. time  evolution.) 

Although cascades of linear systems with polynomial 
interconnections give rise to reasonably wel l-behaved 
maps, it should be  remarked that a  simple cascade of a  
linear and  an  internally biaffine system, with linear inter- 
connections, already may give rise to rather complicated 
responses. For example, if Z, and  Z2  are systems with 
X=U=Y:=k,Z=O,and&hasx’=x+u,y=x,Z:,has 
x’= xu+ x+ u, y =x, the response of Z1*Z2 does not 
admit any polynomial realization with desirable observa- 
bility properties (see [46, example (18.1)]). In general, 
cascades of polynomial S-A systems with polynomial in- 
terconnections give rise to responses for which the degree 
off, in each fixed ui, 1  <i < t, grows polynomially in t. (So, 
for example, the response of x’=x%, X= 1, y = x, cannot 
be  realized in that way.) Cascades of S-A systems can be  
characterized slightly more abstractly introducing some 
further concepts. 

Definition 3.14: The graph G(Z) of a  system Z  with 
X = k” and equations xi = Pi(x, u), y = Q(x, u), has n nodes 
{l;** ,n} and an  arc from i into j iff Pj is a  nonconstant 
function of xi. The system Z has no nonlinear feedback iff 
the following condition holds for each i = 1, + . . , n: if 
j,, - - * ,j, are the nodes which can be  reached from i by a  
path in G(Z), then Pi is (jointly) affine in +,,m . . ,+,. 

Proposition 3.15: The  following statements are equiv- 
alent for a  response f: a) f is realizable by a  cascade of 
(finite-dimensional) state-affine systems, b) f is realizable 
by a  cascade of (finite-dimensional) internally biaffine 
systems, and  c) f is realizable by a  system with no  nonlin- 
ear feedback. 

Proof It is trivial to prove that b) implies a) implies c). 
To  prove that a) implies b), note that any type-J state 
affine x’=ZGi(u)Pi(x), y =Z6,(u)Qi(x) can be  written 
as a  cascade of a  memory-free system Q(0, u) = 
(&(u), * * - ,8,(u)) and  the internally biaffine system x’= 
Zz+)Pi(x), y =ZuoQi(x). To  prove that c) implies a), 
assume that f is realizable by Z  as in (2.31) and  define an  
equivalence relation on  { 1,. . * , n} by: i equivalent to j iff 
both i is reachable in G(Z) from j and  vice versa. Let “ < ” 
be  the partial order induced on  equivalence classes by: 
Ci < Cj iff nodes in Cj can be  reached from the ones in Ci. 
Extend < to a  total order, and  relabeling classes if 
necessary, suppose C, < C, < * . * . Letting Xi: = subset of 

. 
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variables with indexes in Ci, it follows that 1) Pi is 
constant in the variables in Xj, j>i, and 2) Pi is affine on 
the variables in Xi. A permutation of the variables gives 
then the required decomposition. 

B. Non-S-A Realizability of Bounded Responses 

It is conceivable that an analytic bounded response f 
not be S-A finitely realizable but that there may exist a 
more general, for instance analytic, system E realizing f. 
In fact, this may happen even for a linear response, as in 
(3.12). It is clear from (3.11) however, that for a poly- 
nomial finite f, Z analytic and EIS, f is S-A finitely 
realizable. Although the method of proof utilized in (3.11) 
does not generalize to the bounded nonfinite case, the 
result will still be true, as proved below. 

Definition 3.16: For each w in U + the corresponding 
obseruuble r is the map f”‘(u): =f(uw). The observation 
space Lr of f is the affine span of {f”, w in U*} in 
IV’, Yl. 

The observation space is an object dual to the span- 
canonical state space Lr gecerated by the f, (recall f,(u)= 
f(wu)). More precisely, if Lr (resp. if) is the subspace of 
[U+, Y] generated by the f, (resp. f”) then the nondegen- 
erate bilinear map 

L,xif-Y (3.17) 

defined on generators by 

induces one-to-one linear maps if+,?) and i’-(if) 
(where M’ = space of all linear M+ Y). Thus if Y is 
finite dimensional (so that M’ is finite dimensional for 
any finite dimensional M), i/ is finite dimensional iff J? 
is. Since Lr (resp. Lf) has fete dimension iff J$ (resp. if) 
does (e.g., dim L, < dim L,< dimLf+ l), the following 
lemma is concluded. 

Lemma 3.18: The response f, with Y= kP, is S-A 
finitely realizable iff Lf, or equivalently if, is finite 
dimensional. 

The restriction if, t = 1,2; * . is the subspace of [U’, Y] 
generated by { f;“, ~inU*}.InotherwordsifR,:[U+~Y] 
+[ U’, Y] is the restriction operator bbb’, then L{= 
R,(@. When f is a bounded response of type J= 
{&,- * * ,a,} all if are finite dimensional, since Lf is in- 
cluded in the space generated by all S,, (Y in [J]‘. Thus if 
some R, is one-to-one on J?, the latter is finite dimen- 
sional. The kernels K’ of the R’l ir give subspaces Kl 2 K, 
>*** the intersection of all of which is zero. 

Lernm 3.19: Lf is finite dimensional iff there is some t 
with K’=K,+,. 

Proof: If L* is finite dimensional, the chain of sub- 
spaces K,, K,, . * * must be finite. 

Conversely, it is enough to prove that K’ = K’, , implies 
K t+1 = K,+z; an inductive argument will then give that all 
Ki, i > t are equal to K’ and hence K’ is their intersection, 
i.e., zero, so R’ is one-to-one on L*. Let then xrifv/ be in 

K ,+1. Thus Zrfl(u)=O for all u in U’+‘. So Erp(w)= 
ZQP(UW)=O for all u in U and w in U+. Thus Zrif”’ is 
in K,, and hence also in K,+l, for all u in U. So zrp(u$) 
=Zr=($=O for all u in U and w in U’+‘, i.e., zrp is 
also in K’+*, as wanted. 

Theorem 3.20: Assume that f is a bounded response 
having an EIS realization Z such that either a) Z is 
analytic and U is connected, or b) Z is polynomial and U 
is an irreducible algebraic set (i.e., a subset of k”, defined 
by polynomial equations, which cannot be written as a 
union of two proper such sets; for instance 6 = R, U= 
R”); then f is S-A finitely realizable. 

Prooj Both cases will be proved by using Lemma 
(3.19). To prove a), consider the t-step reachability maps 
g,: U’+X. The rank r’ of g, will mean the maximal 
possible value of the differential dg’ of g at all ‘possible 
points w in U’. Since all g(U’)Cg(U’+‘), it follows that 
r, <‘r+1 for all t. Thus there is some t <n = dim Z with 
‘r=‘r+1 = r. Let w in U’ be such that rank dg,(w)= r. 
Since g, is the composition of g,, i and the map U’+ 
u,+’ : UHiiU (U- -equilibrium input), it follows that rank 
dg’,, ,(Gv) = r. It follows from the rank theorem (see, e.g., 
[ 12, ch. 81) that there is an open neighborhood V = Vl x V, 
of (ri,w) in uf+‘, and an r-dimensional submanifold M of 
X such that g,+,(V)= M. Since g,( VJCM and rank 
dg’(w) = r, by the inverse function theorem V, contains an 
open neighborhood V, of w with g3( V3) open in M. It 
follows that V4: = g,;i( V,)) is an open subset of V, and 
hence of U’+‘. 

Now let Zrd”‘t be in K’. Then, for each u in V,,g’+,(u) 
= g,(S) for some $ in U’; thus ZrJ”‘i(u) = 
ZriQ(g,+,(u), Wi) = ZriQ(g,<G), Wi) = Zrifwi(*) = 0. This 
means that Zrp is zero in the open subset V, of the 
connected set U*+‘. Since this map is analytic, it must be 
zero on all of UC+‘, as wanted. 

In the polynomial case, it follows from [48, prop. 5.41 
that g,,( U”) and g,,, i( U*+ I) have the same closure in the 
Zariski topology of X. Thus Zrfl = 0 implies that 
Z ri Q( *, wi) is zero on g,( U”) and hence, by continuity, on 
its closure, which includes g, + i( Un+‘). Thus Zrfli, = 0, 
as before. 

It is clear that a stronger version of a) above is valid: if 
Z is only assumed to have P,Q differentiable, but f is 
assumed analytic, then f is again S-A finitely realizable. 

C. Input/ Output Equations 

A fundamental result in linear system theory states that 
a linear response is finitely realizable iff its transfer matrix 
is rational. In other words, finite realizability is equivalent 
to inputs and outputs being related by a (high-order) 
difference equation. This result can be generalized to 
bounded maps. For simplicity, only polynomial maps will 
be treated, and Y= k will be assumed. The input set U 
will be taken to be an irreducible algebraic set (cf. 3.20 b). 

Definition 3.21: An (output-affine) difference equation 
(of order r) for the response f is an equation 
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E(y,,- * * ,Y,--r,ut,* * * ,u,-,) 

= 2 b’(u,,...,ut_r)yf-i+br+,(u,,“.,u’-r)=O (3.22) 
i-0 

with the bi polynomial in u’, * - . , u’-~, b,#O, which is 
understood to hold for all input/output Pairs (u( ),Y( )) 
withy,=f(u,;~* , u,), t >r. The equation is output linear iff 
b r+l =o. 

Numerical Example 3.23: Let U= k and f the response 
of the system 

x’=x+u, x=0 

y=x*. 
For any state x,=x and  any input sequence ulu2u3 the 
resulting outputs are yi = x2, y2 = (x + ui)*, y3 =(x + ui + 
uz)*. This gives a  relation between u,, u2, yl,y2,y3 in which 
no  x appears. Indeed, 

and  
2u,u,x=u,y,-u,y,-u:u, 

y3=y2+2xlu2+2uIu*+u; 

imply the second order difference equation 
- u2y3+2u2y2-u2yl-u~u2+2u,u;+u~-u2=o. 

(3.24) 

It should be  observed that for the f in this example (as in 
general  for nonlinear responses) there exists no  possible 
“regression” y, = R(u,-,, . * . , u,,y’-,, * . . ,y’- ,): if there 
would exist such an  R, application of w = u, . * * u,, i with 
u1* *=1,ui:=Ofori=2,~~~,r,y+,:=1,andapplicationof 
w’= u;u** * * ur+, with u;:= - 1, results in a  contradiction 
in calculating y, + i . Furthermore, note that (3.24) does not 
uniquely determine f, since the response obtained by 
beginning in any other initial state also satisfies (3.24). 

Theorem 3.25: A polynomial response satisfies an  out- 
put-affine equation iff it is S-A finitely realizable. If this is 
the case, f satisfies also an  output-linear equation. 

(“On ly if”): For an  n-dimensional S-A system E there 
arefunctionsQ,‘:U’+Y,i=O;..,n, t=1,2;.* suchthat 

Q’(x, w) = Q;(w) + Q;(w)x, + - . - + Q,f(w)x,, (3.26) 

for all x in X and  w in U’. By abuse of notation, 
Q i’(u,- - - us) will mean  Q ,‘(u,. . . u,) if t <s. When  Z  is 
polynomial, the Q ,’ are all polynomial. Denoting Q ,: = 
<Q;, * * - , QJ), the n  + 2  vectors Q ,, . . * , Q ,,+* all belong to 
the (n + I)-dimensional vector space K”+’ over the field K 
of rational functions on  Un+* (irreducibility of U implies 
that K is well defined). Thus there exists a  relation among  
these vectors, or componentwise: 

n-k2 
2 bj(w)Q”‘+‘-j=O, i=O; . . ,n 

j-0 
(3.27) 

with the b,(w) rational and  not all bi =O. W ithout loss of 
generality, b,#O. Multiplying by a  common denominator, 
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the b,(w) may be  assumed polynomials. From (3.26) and  
(3.=X 

n+2 

2  bj(W)Q n+*-j(x,W) =o (3.28) , 
j-0 

for all x in X and w in U’+*. Let r: = n +2. Then  if 
u, - * * u, is any input sequence with t > r, yj = 
Qqx,u,- - ’ u,)=~(P(X,u,~~~u,-,-J,u,-l~~~u,) for j- 
t-r;..,r. SO (3.28) becomes ZL$U,-;** ut)y,-j ~0, 
an output-linear equation as wanted. 

(“If”): Assume that f satisfies an  output-affine equation. 
In terms of the observables f”, (3.22) translates into the 
statement 

r-l 

bo(W)f”‘= 2  b,-i(W)f”l”.‘+b,+l(W) 
i-0 

(3.29) 

for all w=ui.*. u, in U’. Let V be the subset of all w in 
U’ with b,(w)#O and S the subspace of [ U +, Y] gener-  
ated by all {J”‘, 1  W I <r} and the constant function 1. The  
space S is finite dimensional. To  see this, it is sufficient to 
prove that each subspace S’ generated by those f” with w 
in U’ is finite dimensional, for all t. Indeed, for each fixed 
tanduinU+, w in U’, p(u) = f(uw) is a  polynomial in 
the variables w (because, by induction on  (3.22), 

fr(%“’ u’) has a  degree in u’ _  j bounded  independently of 
j,) so there are functions d, : U++ Y with 

f” = x 6,(w)d, (finite sum) (3.30) 

for linearly independent monomials 8,. Then  the d, gener-  
ate S,. 

To  complete the proof, it will be  enough  to show that S, 
is included in S, since then an  inductive argument gives 
that Sr+,, Sr+2,. -a are all in S, hence that Lf in included 
in S and  is therefore finite dimensional. But (3.29) says 
that j”’ is in S whenever u  is in V. Thus it will be  enough  
to prove that the span of the {f”, w in V} is all of S,. Let 
d,,6, be as in (3.30), for t = r. Then  the span of the {f”,w 
in V} already includes all the d,: if this were not the case, 
there is an  cue and  a  linear T: [ U+, Y]+k with T(d@J#O 
but T(f’“) =0 for all w in V. So 

o- T( x s,(w)d,) = 2 &x(w) T(d,) (3.3 1) 

for all w in the open  dense set V. By continuity (Weyl’s 
principle), (3.31) holds for all w in U’. But this contradicts 
the linear independence of the S,, since T(dJ#O. 

Numerical Example 3.23: Applying the above proce- 
dure in (3.23) results in an  output-linear equation 

boy, + b, y3 + by2 = 0 

where bo=(u,+yJ2-(ul+uZ), bl=ul(u,+u2+u3)-(u,+ 
u2+u3)2,+nd b2=b,-b,. 

Remark 3.33: It is easy to general ize (3.25) to the case 
Y= kp. Then  finitely realizability becomes equivalent to 
the existence of an  equation as in (3.22) with all bi being 
now p by p matrices, i = 0,. . * , r, and b,, , a  p-vector, 
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det b,#O. It is also possible to give generalizations to the 
analytic case (U connected, K=field of meromorphic 
functions) and to the case of algebraic input/output dif- 
ference equations which are not output-affine (see [42, 
section 161, [46]). 

IV. DISCUSSION 

The abstract realization theory in the first part of this 
paper, including the construction of the span-canonical 
state-space Lr, is mostly a rather immediate adaptation of 
standard automata-theoretic constructions, as found for 
instance in Padulo and Arbib [36, ch. 81. Although the 
terminology “state-affine system” was apparently first 
used in Sontag and Rouchaleau [48], these models had 
already appeared in the literature under the name “vari- 
able structure systems.” The notion of bounded response 
and the terminology “span-canonical” were introduced in 
[43] and [44] but the latter concept-and its importance 
for uniqueness-was well known (see Brockett’s paper 
[4]). The uniqueness part of (1.11) was proved in [48, 
corollary 8.41 as a corollaiy of a more general uniqueness 
result (statements are made there in the general context of 
EIS, but this hypothesis is not needed in proving them 
(see [42] and [45]). 

Mathematically, the state-linear realization problem has 
the same structure as the question of representing power 
series in noncommuting variables. This notion was in- 
troduced by Schutzenberger [40] as a generalization of 
automaton-theoretic ideas, and has been rediscovered 
since by many authors, notably in the context of 
stochastic automata. Representations are called sequential 
systems by Turakainen [53], generalized linear automata by 
Mu&n& [35], and automata with multiplicities by Eilen- 
berg [14]. The Hankel matrix results for noncommutative 
power series were obtained by Fliess [ 151 and [ 171 as a 
generalization of well-known linear-system results. As an 
application of his own results on representations, Much- 
nik [35] seems to mention in passing internally bilinear 
systems, but does not develop his ideas further. Indepen- 
dently, Fliess [ 161, [ 181, and [ 191 discovered, and carried 
out in detail, this application to internally bilinear sys- 
tems. Simultaneous with this, Isidori [25] arrived at a 
similar algorithm for internally bilinear systems. The 
matrix procedure given here should be regarded as a 
generalization of the last two references. The reduction to 
the equilibrium case allowed reducing the complexity of 
this generalization, but it is clear that a matrix procedure 
could be also given directly; the formulas then resemble 
those given by Tam and Nonoyama [52] for internally bi- 
affine systems. 

The results in Section III (except (3.10), (3.11)) were 
announced in Sontag [43] and [44] and proved in Sontag 
[42]. A (weaker) analytic case of Theorem (3.5), and 
Corollary (3.1 l), can be obtained also as immediate con- 
sequences of the work done independently by Gilbert [22], 

I 

[24], who uses a totally different approach, based on 
variations off, which results in a non-S-A cascade. The 
statement of (3.11) was suggested by an analogue in 
continuous-time proved by Brockett [5]; the proof in 
continuous-time is based upon factorizations (of Volterra 
kernels) whose existance is due to reversibility properties 
of differential (as opposed to difference) equations. 

Various questions can be raised regarding the suitability 
of a S-A realization theory, even in the bounded case. 
Although for equilibrium responses, bounded implies 
(3.20) S-A realizability, it was already remarked that lower 
dimensional representations will in general result when 
more general classes of systems are considered; a tradeoff 
between dimensionality and complexity of transition and 
output maps is often involved. S-A realizations have an 
obvious advantage from an analysis viewpoint-the more 
general polynomial theory in [42], for example, lacks the 
straightforward algorithms found here. From a control- 
theoretic viewpoint, on the other hand, S-A realizations 
do not have desirable controllability properties. It is inter- 
esting to speculate on the impact of m icroprocessor tech- 
nology, which may very well render attractive the concept 
of a high-order realization where each component (state- 
variable) computes a relatively simple functibn, as with 
S-A systems. 

Regarding alternative system configurations, it should 
be pointed out that the “naive” definitions of analytic and 
polynomial systems should be in general refined in order 
to account for state-space constraints (e.g., X=manifold, 
algebraic variety, etc.). An interesting question regarding 
such realizations is that of constructing m inimal ones 
(with respect to those classes). Although an abstract treat- 
ment of this problem can be given, only in a few very 
special cases are there cons@uctions of m inimal poly- 
nomial realizations: the linear case, the bilinear case (Kal- 
man [28], [29] and Pearlman [38]), and the degree two 
homogeneous case (Gilbert [23]). (By contrast, in the 
continuous-time, finite Volterra series case, the recent work 
of Crouch [ lo]-proving that the canonical realizations of 
Sussman [51] are Euclidean-may eventually provide 
effective m inimal realization procedures.) 

There are many open problems suggested by this work. 
No topological considerations have been made except at 
various technical points. Certain statements can be proved 
easily (e.g., if U is a topological space, K= R or C, and 
each f, is continuous, then the image realization has P, Q 
separately continuous), but deeper issues still await a 
careful study. Somewhat related are questions of ap- 
proximation. It follows from the Stone-Weirstrass theo- 
rem that, if each f, is continuous and U is compact, there 
are S-A finitely realizable responses arbitrarily approxi- 
mating f on finite-time intervals, in fact, a linear system 
cascaded with a memory-free one suffice for this purpose 
(this is, via the bilinearization of Brockett [4], the gist of 
the continuous-time results of Fliess [18] and Sussmann 
[50]). For the more important case of infinite-interval 
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approximations, however, it appears that results like (3.11) 
will be  more relevant. We  conjecture (see [46], for ins- 
tance, that truncations of a  finitely realizable response f 
can be  themselves “realized approximately” (in some pre- 
cise sense) by systems of dimension n  + 1, where n  is’ the 
dimension of the canonical realization off. 

It is interesting to note that in the case k =finite field 
any response with U= km is polynomial, and  in fact 
bounded.  This brings up  the possibility of applying the 
results above to the state-assignment problem for au- 
tomata; the research here remains to be  done. A possible 
generalization deals with k = ring (e.g., the integers); some 
preliminary results are given in F liess [ 171  and  Sontag and  
Rouchaleau [49] which are applicable to the internally bi- 
linear case. 

The  results on  realization may be  extended to the 
consideration of S-A systems in which P, Q depend ex- 
plicitly of time; with was done  by F liess [ 181  for intem- 
ally bilinear systems. A deeper  understanding will have to 
make explicit consideration of the al lowed time-variations. 

Another set of open  problems deals with “real-time” 
identification and  realization, when no  “resetting” to ini- 
tial states is needed;  some work in this direction can be  
found in Sontag [47]. 

Applications of results and  methods of (a previous 
version of) this paper  can be  found in Marcus [33] and  
Kamen [3 11. 
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Planar Reflex Isomorphs of Ten&ado’s 
Mirror-Antisymmetrical Constant-Resistance 

Networks 

BASIL R. MYERS 

Abstract-The selfdual one-terminal-pair cmstmt-resistsme networks 
obtained by Tea&ado’s mirror-an&ymmebical disectbn of twodimen- 
siomll region9 of resjstan~ are shown to helong to the planar reflex 
suhchws of the class of se&dual maps pioneered by Smith and Tutte. 

I. INTRoDU~~N 

Ten&ado [I] ‘recently showed how to construct constant-resis- 
tance self-dual one-terminal-pair networks by  astute “mirror-an- 
tisymmetrical” and  “four-fold rotationally antisymmetrical” dis- 
ections of two-dimensional resistance regions. His technique 
yielded some new configurations [I, figs. 5-71 as  welI as  some 
well-known classical networks [2, figs. 2-41. The  new configura- 
tions are illustrative of a  new and  large class of constant-resis- 
tance networks which can now be  synthesized, thus significantly 
extending the work of earlier contributions (such as  [2], [3]). 

Manuscript received July 6, 1978. 
The author is with the Naval Postgraduate School, Monterey, CA 93940 on  

leave from the University of Maine at Orono, Orono, ME 04473.  

Lette rs to the Edito r 

Of the new .configurations, we have  no  further comment  on  
those which he  obtained by  a  four-fold rotationally antisynunet- 
rical disection (typified by  the network of [l, fig. 5D. Regarding 
those which he  obtained by  mirror antisymmetrical disections [ 1, 
figs. 6  and  71, however,  we thought it worthwhile to report that 
we have  observed that this particular subclass of networks actu- 
ally belongs to the planar reflex subclass of the class of self-dual 
structures revealed almost three decades  ago  by  Smith and  Tutte 
in a  classic article on  self-dual maps  [4], subsequent ly  investi- 
gated further by  Benedict and  Roe [5], [6], as  follows. 

II. PLANAR REFLEXES 

Tutte has  commented [7] that his approach in investigating 
self-dual structures was to assume that a  self-dual network could 
be  transformed into its dual by  one  of the symmetries of the 
sphere.  W e  borrow verbatim from Smith and  Tutte’s [4] iIhr.stra- 
tion of the particular symmetry which is a  planar reflex. Fig. 1  
(which is [4, fig. 2, p. 1951)  shows a  planar reflex as  seen from 
above  the “north pole” of the sphere.  The  solid lines in the 
figure represent the part of the planar reflex in the northern 
hemisphere, the broken. lines the part in the southern hemi- 
sphere.  W e  observe that a  planar reflex is thus a  self-duahty- 
preserving reflection about  the equatorial p lane of the sphere.  

A simple example of a  planar reflex is the wheel  graph of 
order 4, Fig. 2(a), which is the graph of the familiar Wheats tone 
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