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LINEAR SYSTEMS OVER COMMUTATIVE RINGS: A SURVEY

E. D. SonTAG

Abstract. An elementary presentation is given of some of the main moti-
vations and known results on linear systems over rings, including questions of
realization and conirol. The analogies and differences with the more standard
case of systems over fields are cmphasized throughout.

Introduction.

The theory of both discrete and continuous-time finite-dimensional
constant linear systems with real or complex coeflicients

x ()=Fx ()+Gu (), y ()=Hx () *
and

x(t+D)=Fx )+ Gu (), y(()=Hx (1), **)

has been thoroughly explored in the last 15 years.

A conceptually important step was the realization that most of
the «structural » properties of (*) as well as of (**) depend only on
the triple of matrices (F, G, H). Moreover, most algebraic results turned
out to depend only on the fact that the entries of the matrices involved
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2 E. D. SONTAG

are « numbers » in a field. [The definitions of fields and other algebraic
notions are reviewed in AppENDIX 2 at the end of this paper]. This
set the stage for a more abstract study of linear systems, where all
« numbers » appearing in the specification of (F, G, H) are taken from
a fixed but arbitrary field (Karman, FALB and ArBiB [1968, Ch. 10]).
Thus systems over the binary ficld, and in general over finite fields,
became part of linear system theory. This provided a connection with
the theory of linear sequential circuits and with coding theory; the
BERLEKAMP - MASSEY decoding algorithm for BCH codes and FORNEY’S
study of convolution codes became a natural part of linear system
theory.

The next step was to further generalize the concept of a linear system,
to include the case in which coeflicients belong to a ring. In a ring,
addition and multiplication are defined, but (as opposed to a field)
division is impossible in general. Examples of rings are the integers
Z or the polynomials in one or more variables, with their usual addi-
tion and multiplication. The work of RoucHALEAU [1972] and
ROUCHALEAU, WYMAN, and Karnsian [1972] constituted the first in-
depth research into the properties of systems over rings. Many appli-
cation areas (see Part 1 below) require working with systems over
a ring.

Independently of the many examples discussed later, it should
be clear that a strong motivation for the study of systems over rings
lies in the hope of a better understanding of the meaning of « linea-
rity » in system theory.

Our goal in writing this survey has been to stress the methods and
to point out the difficulties. We leave many mathematical details aside;
these can be found in the papers referenced at the appropriate points
of the discussion. As much as possible, especially in Section 3, refe-
rences are given to EILENBERG [1974, Chapter 16], where many pro-
perties of discrete-time systems are treated in detail. Open problems
are mentioned as they appear, although undoubtedly many more will
be easily raised by the reader.

We hope that the treatment is sufficiently intuitive, so that a
superficial knowledge of the definitions (with a good knowledge of
classical linear algebra) is enough to follow the main ideas. We shall
always assume that all rings are commutative. (Systems over noncommu-
tative rings have begun to be studied in general, but since the problems
and methods are very different from those of the commutative case,
they are not an appropriate topic for this paper).
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This paper is divided into five parts. In the first part we give
examples of the types of problems which have motivated much of the
rescarch in systems over rings. In the next part we abstract from the
examples and define the systems to be studied. We then turn to the
problem of realization of an input / output map; this is the problem
which has attracted the largest research efforts until now. We give
in part 4 a detailed illustration of the possible applications in control
theory of some of the results and methods developed. We review there
the topic of feedback control of systems over rings, and in particular,
delay-differential systems. In the final section we briefly mention other
areas which have been studied.

We would like to close this introduction with a few general
comments. While systems over rings appear naturally in studying,
say, systems over the integers, there are application areas, like delay-
differential systems, where the theory discussed here is just ome of
the possible tools to be applied. In these latter areas, other methods
have in fact been traditionally involved. Systems over rings, or any
other algebraic approaches, have the advantage of leading in most
cases to practical procedures for solving the given problems, instead
of giving abstract existence proofs. Such abstract results are of course
an indispensable part of any theory, but they will probably have
limited practical impact until integrated with more algebraic methods.

ACKNOWLEDGEMENT: The author wishes to thank R. E. KALMAN,
M. L. J. HAutus and E. KAMEN for constructive suggestions during the
preparation of this paper, and to Y. RoucHALEAU for the many
{ruitful discussions on the topic of systems over rings.

1. Some examples,

A. DELAY - DIFFERENTIAL SYSTEMS.

A (retarded, lineér, constant) delay-differential system, or here-
ditary system, is a system described by equations of the type

. a B
x()= Z Fix(t—a)+ Z Gju(t—b;),
j=1

) *)

Y
y(t)= X Hix (t—c),
k=1
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where ai, b, ¢ are nonnegative real numbers, and where x (f) as
well as the inputs u (f) and outputs y (¢) are real vectors. The matrices
F., G;, H. have real entries. Such systems appear naturally in many
engineering applications and in fact in any situation in which transmis-
sion delays cannot be ignored.

A great deal of research is being carried on today on delay-
differential systems. We shall now discuss a procedure which allows
the study of certain kinds of problems (e. g., structural questions,
like those dealing with the existence of representations as in (*)) in
the context of systems over appropriate rings.

Consider for example a system defined by

X (O)=2x (t—D+x (O +x O+u®),
X (=% (t—D)—=3x (¢—=5) +u{—1), (a)
y (@) =xi ()—x:(t—1).
If we introduce the delay operator o defined by
o(x) (8): =x (1),

we can rewrite (a) in matrix form as

X1 20'+1 1 X1 1
= u
X2 o —30°|| x2 o
—1— |
y=[1-0] XJ.

We see then that (a) can be expressed in a form very similar to
the ordinary finite-dimensional constant linear systems of control theory,
the only difference being that the matrices (F, G, H) now have polyno-
mial instead of real valued entries. When all the delays ai, b;, cx in
(*) are integral multiples of a fixed delay A, we can apply the same pro-
cedure as above, taking now for o a shift of 1 seconds. If, instead,
the delays in (*) are not commensurable, we need to define a finite set
of delay operators o, ..., 0, and then consider systems whose matrices
have entries in the set of polynomials in 6y, ..., 0,. This set is denoted
by R oy, ..,0].

As in the case of the integers, the set of polynomials R[ay, ..., o/]
is not a field, although it is a ring if we define the addition and mul-
tiplication of polynomials in the usual way. Some authors (e. g
ANSELL [1964], NEwcoms [1966], Youra [1968]) introduce then
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the field of rational functions in o, ..., 0, in order to study networks
with transmission lines, i. e. delay-diffcrential systems. These methods
have the disadvantage of introducing «ideal predictors», i. e. ope-
rators of the type

o' (x) (H=x(t+1),

which are not physically rcalizable. A more natural approach to the
problem, that of applying the thcory of systems over rings of poly-
nomials, was first introduced by Kamen [1975].

There is an important conceptual difference between the example
of delay-differential systems and systems over an abstract ring, say,
the intcgers. In the case of delay-differential systems only the entries
of the matrices defining the systems belong to the ring in question; in
the case of systems over the integers, the states, inputs and outputs are
also in the corresponding ring. This difference will turn out to be ir-
relevant in the study of those problems whose solution depends only
on the form of the defining matrices.

B. OTHER EXAMPLES AND MOTIVATIONS.

When the theory of linear systems is applied in coding theory,
the relevant systems have their coeflicients in a finite field. It was shown
by JounstoN [1973] that a larger class of codes, generalizing BCH
codes, can be generated by considering instead abelian group systems,
i. e. systems over the integers Z (or over residue rings Z,). Systems
over Z, were also studied by MaTtLUk and GiLL [1971], in the con-
text of automata theory. Abelian group systems are also an important
special case of the systems studied by BRocKETT and WILLsKY [1972].

The study of systems obtained from lumped approximations to
linear partial differential equations can also be approached via systems
over rings. The idea is in a sense to introduce an operator ¢ for each

where 7; is a space variable. In fact, one studies in practice
[+ £

spatial discretizations of the above kind of equation, and ¢ becomes
a shift operator. For instance, consider a heat equation

dx 0%x
Etﬁ(t, '() =Er—2(t, T) + u(t, T)"ZER.
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If we now discretize this equation by letting x:, u; denote temperatures

at the integer point i, an approximation is given for example by the
system

X()y=(e—2+a ") x () +u (), (*)

where x, u are infinite column vectors with entries x;, u;, and where
(6 X)i: =xi,1. Therefore a system over the ring R [s,67'] is obtained.
For a wave equation, a second derivative of x would appear, and the
system would be higher dimensional. If (*) is written in matrix form

x=Fx+u, the infinite matrix F is of the Toeplitz type. Similarly, an
equation evolving on the circle will induce a system whose matrices
are circulant, or equivalently, a system over a group algebra R[Z.].
In general, the rings appearing in this context will be group algebras
(or suitable completions). [A group algebra is the set of all finite linear
combinations X a; g; with all ¢; in a field, say the reals or the complexes,
and with the g taken out of a given group G (here G corresponds to
the possible shift operators). The ring addition is coordinatewise (for
each g add the a;) and thc multiplication is the linear extension of
the group multiplication among the gi]. The same framework applies
to the study of (linear) cellular automata, i. e. an interconnection of
equal subsystems operating in parallel. Different aspects of the above
systems were studied in BRrRockeTrT and WILLEMS [1971, 1974],
JounsTON [1973] and Sontac [1976]. An application to transport
systems was given by WILLEMs [1971].

A general type of distributed (i. e., infinite-dimensional) systems
which are « finitary » in the sense of being specifiable by finitely many
parameters, like delay-differenttal or partial difference systems, can be
fruitfully studied in many aspects via systems over appropriate rings
of operators. The particular case of systems defined via rings of distri-
butions is analyzed in Kamen [1975], while a general approach can
be found in SontAG [1976, Part D].

There are problems which share the mathematical structure of
systems over rings, whose interpretation is completely different from
the above. The outstanding example of this situation is the study of
multiplicities or « ambiguities » in the generation of languages by
grammars or, equivalently, in the recognition of languages by automata.
Such a study was begun by ScHUTZENBERGER [1961], part of whose
work is related to realization for systems over the integers Z. An
extended literature exists on these problems, and an excellent expo-
sition can be found in the textbook by EILENBERG [1974]. Since in
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language theory it is more natural to work with semirings rather than
rings (subtraction is not allowed), and since other generalizations are
made (alphabets of morc than one letter), the questions posed are
usually different from those asked about systems over rings. Exceptions
are the FATOU - type problems (see Section 3 below) which appear
also in this context; see for instance FriEss [1972, 1974], SONTAG
[1975] and SonTAG and RoucHALEAU [1976]. These results can be
interpreted through bilinear systems over rings, via the method of
Friess [1973].

The study of time-varying control systems in the style of KAMEN
[1976] is in many ways analogous and uses concepts similar to the
study of constant systems over certain (noncommutative) rings. Reali-
zations of multidimensional filters can also be obtained using tools of
systems over rings, as in SoNTAG [1976]. Even some areas of pure
mathematics (the study of rational power series) are intimately related
to our topic, beginning with the work of Fatou [1906]; we shall
return to this later.

2. Systems and input/output maps.

We shall give a preliminary definition of the systems to be studied.
The main illustrations will be: in the discrete-time case, systems over
Z; in the continuous-time case, delay-differential systems. We shall
see later (Section 3. E) that a larger class of systems must be considered
in order to obtain a satisfactory theory.

Throughout this chapter, R denotes an arbitrary but fixed commu-
tative ring. Notations are as explained in Appendix 2.

A. A PRELIMINARY DEFINITION.

(2.1) DEFINITION. A (free) system X is given by a triple of matrices
(F, G, H), where FER"™", GeR"*™ and HeRPX" for some integers
n,m, p. n is called the rank of 2. A scalar system X is a system for
which m=p=1,

The above definition of systems may seem in principle too ab-
stract, since no explicit mention is made of dynamics, states, input
and output functions. However, since we are interested in the simulta-
neous study of hoth discrete and continuous-time systems at an ele-
mentary level, we shall be content with informal interpretations. The
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interested reader can find more complete definitions in SonTAG [1976,
Part D], but this is not at all necessary in order to follow the reaso-
nings in the present paper.

The main too! in the study of systems will be the discrete-time
interpretation. Under this interpretation, (2.1) defines a system evolving
according to:

X+ D=Fx@®)+Gu ),
2.2)
vy ()=Hx (1),

where t=0,1,2, ..., and where the « states » x (f)€R", the «inputs »
u()eR™ and the «outputs » v (£)eR” for all £. We also assume an
initial state x (0)=0.

Given an input sequence u (0), u (1), u (2), ..., we can solve (2.2)
by recursion beginning with x(0) == 0. We then obtain sequences

x (0}, x (1), ... and y (0), y (1), .... It is easy to show that y (0)=0 and
for t=1

t—1
y()= 2 HF-*'Gu ().

1=

We see therefore that the input/output map fs: (u (0),u(1),..) =
— (y(0), y (1), ..) is completely deterniined by the sequence of matrices
(A), 4;,..), where A: =HF' 'GeR¥>¥™. (In fact, it is not difficult to
verify that any map which sends sequences u (0), u (1), ... to sequences
y(0),y(1),.. and which satisfics natural « linearity », « causality »
and « shift-invariance » conditions is determincd by a suitable abstract
sequence {A;} so that the « convolution » formula y ()=2 A,_: u (i)
holds).

Another interpretation of (2.1), valid when R is a ring of real
polynomials R[oy, ..., 5.], is in terms of hereditary systems. For sim-
plicity, take r=1; thc general casc is analogous. We shall interpret
o=o; as a delay of one second (the actual length of the delay is
immaterial in this context; the important matter is to fix it throughout
the reasoning). Then (2.1) corresponds to the system described by:

x(O=F (@) x (N +G (o) u (),
(2.3)
y()=H (o) x (1),

where the functions x (), u (-),y (-) are defined for te R with values
in vector spaces R", R™, R?. The matrices F = F(d), G = G (o),
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H=H (o) are matrices over R= R[c], i. e. matrices of polynomials,
and the interpretation of F (¢) x, G (¢) u, H (o) x is that one given in
Section 1.B. We shall not give here explicit spaces of time-functions
for u (), x(-), y(-), although we shall make the restriction that all
admissible functions are zero in the past, i. e. for each such function
a there exists a f, (which depends on a) such that a (f)=0 for all
t<t. With such a restriction, given u (-), (2.3) has a unique solution
x(-),y () (assuming the appropriate smoothness conditions on u (-)
are satisfied). There is no need to specify an initial state, since our
restriction on admissible functions amounts to implicitly taking a zero
initial state.

Let ’J(s) denote the Laplace transform of a time function v (f).

- ~
Since o v=e ‘v and v=sv, (2.3) becomes, in terms of Laplace trans-
forms,

s¥()=F (e ) x (5)+ G (e ) u (s),

Y©=H @)X,
for a suitable class of transformable input functions. It follows that
Y©)=H () (s—F )" G (™) i (5),
=W (s, e™) 1 (5).

Therefore, the input/output map fx: u(-)r>y(-) of the system X
given by (2.3) is determined by the transfer matrix of X, a matrix
W (s, e™*) rational in s, 7%, It is easy to see that W admits a (unique)
expansion

Ws, e )= ; Ai(e ) st
=1

1=

The sequence {A; (e~*)} is obtained via the substitution ¢~ e~ 1rom
a corresponding sequence of polynomial matrices {A;}, wherc
Ai=Ai(0)eR [o]#*™, In fact, A;=HF'G for all i. (It is possible
to give a more direct characterization of those input/output maps
u(-)—y(-) corresponding to delay-differential systems, via sets of
operator equations, The characterization follows either from general
facts about «finitary» systems or via systems defined by convolution equa-
tions as in KAMEN [1975]).
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B. STATEMENT OF THE REALIZATION PROBLEM.

The above considerations suggest the following abstract definition,
for a fixed ring R:

(2.4) DEFINITION. An input/output map f is given by a sequence
(A1, A, ...) where A;€RP<™ for all i. A system X realizes f iff Ai=
=HF'G for i=1,2,....

The justification for (2.4) lies in the fact that in both of the
above interpretations {(and in fact, in general) the sequence {HF' G}
completely characterizes the input/output behavior of X. In particular
interpretations, the realization problem might be initially given in terms
of different but equivalent data (kernels, operator equations, etc.); we
shall assume here that a reduction to the present form has already
been made.

The study of existence, and the construction, of realizations are
mathematically nontrivial. This difficulty, added to the basic system-
theoretic significance of these problems, accounts for the fact that
realization theory is the most developed area of system theory over
rings at present.

The problem of realization is a purely algebraic one of finding
factorizations A;=HF'-'G of a given sequence of matrices. We are
free, however, to use our intuition via an interpretation of our choice.
In particular, we shall use discrete-time systems (2.2) over the ring R.

3. Realization of am input/output map.
As in Section 2, R is again an arbitrary but fixed commutative ring.

A. AN ABSTRACT GENERAL CRITERION.

Let f=(Ai, Az, ..) be an input/output map. The first question
which arises is: What finiteness conditions must be imposed upon f
so that | is realizable (i. e., so that there exists a system X which
realizes f) ?

We can casily see that some condition is needed. Indeed, assume
that f is realizable, A;=HF'"'G, for all i. By the Cayley-Hamilton
Theorem (valid over all commutative rings), there exist ap, ..., a1 in
R so that

n—]
Fr= % o Fi.

=0
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Therefore, F***= X g; F*** for all k>0. It follows that f is recurrent,
1. e. there exists a recursion

n—1

A,Hk:_E a: Airx, for all k=0. (3.1)

=y

Somewhat less trivial is the fact that recurrency is sufficient for
realizability:

(3.2) THEOREM. (KALMAN, FALB and ARBIB [1969, Chapter 10,
Lemma 11.7]) An input [output map f is realizable if and only if it is
recurrent.

Indecd, if f satisfies (3.1) for some «o, ..., o, 1 then the system
Z=(F, G, H) realizes {, where

{6 0 0---0 aol
I 000 al [
0 I 0.0 ol 0
F= . ) G= , H=1Ay, A, ..., Al
0 0 0---0 anal 0
00 0---1 auil

(All block matrices above are riz X m).

An alternative way of viewing recurrence is via the use of formal
power series. To each input/output map f we can naturally associate
a formal matrix power series W (z7))=A1z7'4+ A,z 2+ ... in the symbol
z"', Since each A; is a p X m matrix, the above series can be also
rcpresented as a matrix (wy (z7Y)), i=1,..,p, j=1,..,m, where
cach wy; (z7') is a power series in z! with scalar coefficients. A series
with scalar coefficients is called rational whenever it is the expansion
in powers of z7' of a quotient p(z)/q(z), where p(2), g (z) are
polynomials on z with coeflicients in R and where g (z) has leading
coefficient equal to one and degree greater than that of p(z). An
arbitrary series W (z7!) is rational if all wy; (z7!) are rational (in other
words, when W (z') is the expansion of a suitable rational matrix).
A proof of the following result can be found in EiLENBERG [1974,
Ch. 16, Prop. 3.2 and Prop. 9.1].

(3.3) PROPOSITION. f is recurrent if und only if its associated power
series W is rational.
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B. A MORE CONCRETE CRITERION.

We have seen in (3.2) that realizability is equivalent to recurrency.
An important problem, however, is to give « computable » criteria
allowing to decide whether a given f is recurrent.

Given a (possibly infinite) matrix M, define the rank of M as
the smallest ! such that all minors of M of order greater than [ are
zero, In particular, M has infinite rank when there exist nonzero mi-
nors of arbitrary order. The Hankel or behavior matrix of an input/
output map f is the doubly infinite matrix given by, in block form,

A, A, Az .-

A Ay Ay ---
B(f): = : .

In the case of systems over fields, a well-known criterion (see KALMAN
[1968, Chapter 8]) is:

(3.4) f is realizable if and only if B (f) has finite rank.

Thus (3.4) is a natural candidate for generalization. We first make a
technical restriction on R. For the rest of this section and until Section E,
R will be an integral domain (see APpENDIX 2). This does rule out
some rings of interest, but still allows the consideration of systems
over integers or delay-differential systems. Moreover, many of the
results easily generalize to a larger class of rings (see Section F below).
The advantage in restricting R to be an integral domain lies in the
existence of the quotient field Q=Q (R).

Let f=(Ay, A2, ...) be an input/output map. Since R is a subset
of Q, the sequence (Ai, A, ..) can also be viewed as a sequence of
matrices over Q, i. e. as an input/output map over the field Q. As
(3.4) is true for ficlds, the statement « B (f) regarded as a matrix over
Q has finite rank » is equivalent to « f is realizable over Q ». Thus,
for a domain R, (3.4) can be expressed equivalently by the conclusion
of the following (conjectured)

(3.4. a) THEOREM. | is realizable over R if and only if f is rea-
lizable over Q.

A realization over R is also a realization over Q, so (3.4.a)
reduces to: « If the sequence of R-matrices { A;} factors as A,=HF!' G,
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where F, G, H are matrices with entries in Q, then there exist R-matrices

F, G, H (possibly of higher dimensions) such that Ai:/ﬁ;‘\i—l é\». Re-
calling the discussion at the end of Section A, (3.4) can be expressed
in still another way, in the scalar case:

(34b) If w(z)=ZXZa,z"%, ai€R, is the expansion of p(2)/q(2)
wtil p (z), q(2) polynomials with coefficients in Q, there exist ;J\(Z),
q (2) polynomials over R such that :]\(z) has leading coefficient equal
to 1 and w(z"‘):;;\(z)/c;\(z).

In the general case, (3.4.b) is still the relevant criterion since a
matrix is rational iff all its entries are rational.

The problem of finding domain R over which (3.4.b) holds true
is associated with the name of FATou, who in 1906 proved that the

ring of integers Z is such a domain. In a system-theoretic context,
RoucHALEAU, WYMAN and KaLmAN [1972] were the first to prove
that every Noetherian integral domain (sce APPENDIX 2) satisfies (3.4. a).
(See also EILENBERG [1974], Chapter 16, Theorem 12.1] and
JounsTON [1973], Section 6.2]1). We give in Appendix 1 of this paper
a new proof of this result. A complete characterization of domains
satisfying the equivalent statements (3.4.a) - (3.4.b), implying in
particular that not every R satisfies them, was found by CAHEN and
CHABERT [1972].

An interesting interpretation of (3.4.a) in terms of a generalized
notion of stability of systems was given by ROUCHALEAU and WYMAN
[1974].

Realization questions aside, results like (3.4.a) are clearly highly
significant from a system-theoretic viewpoint, in that they allow the
reduction of many problems on systems over rings to corresponding
problems in the better-known areca of systems over fields.

C. CONSTRUCTING REALIZATIONS.

The criterion stated in (3.4) is essentially an existential argument
and does not provide an efficient method of finding an explicit reali-
zation, or, equivalently, finding a recurrence. For a more restricted
class of integral domains, the problem can be again reduced to the
study of systems over fields. This reduction will obviously be achieved
if the following statement holds true:
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(3.5) Let f be an input/output map over R. Assume that f=
=(Ay, Ay, ...) is realizable over Q and that ay, ..., an.1 is a recursion
over Q with n minimal. Then o;€R for all i.

Observe the strength of (3.5): it claims that, no matter what cal-
culations are carried out over the field Q in order to obtain a minimal
recursion, the coefficients will belong to R. It is then surprising that
(3.5) turns out to be true for a large class of integral domains, including
in particular 74 and R{oy, ..., s,]. It is not diflicult to prove that it is
enough to study (3.5) for scalar input/output maps, so the problem
can be stated in terms of rational power series. In the latter form, the
ring of integers was shown to satisfy (3.5) by Fatou [1906]. A direct
proof of (3.5) was given by RoUCHALEAU, WYMAN, and KALMAN [1972]
for Noetherian domains which are integrally closed (see Appendix 2).
In Appendix 1 we indicate how (3.4.a) plus the assumption R= inte-
grally closed imply (3.5). An abstract characterization of rings which
satisfy (3.5) was given by CuaBert [1972]; see EILENBERG [1974,
Chapter 16, Theorem 12.2]. The class of rings which satisfy (3.5) is a
proper subclass of those rings for which (3.4) is true. For many
system-theoretic purposes it is enough to know that R is integrally
closed whenever R is a unique factorization domain (rings for which

every element can be factored in an essentially unique way as a
product of irreducibles).

D. MINIMALITY.

Knowledge of a recurrence, even a minimal one, is not in general
enough to construct a realization £=(F, G, H) of minimal rank, since
the construction in (3.2) has a high degree of redundancy. An impor-
tant special case, however, is that in which m=1 [or p=1]. In that
situation, the realization in (3.2) [or a suitable dual] has rank n,
where n is the rank of B(f), and is therefore minimal (because it is
minimal as a realization over Q, as follows from well-known results
over fields). ’

If the restrictions on m and p are removed, the statement
(3.6) Assume that rank B(f)=n. Then { has a realization of rank n.

is true for principal-ideal domains, hence for Z, R[] (see Appendix 1).

Noetherian integral domains which satisfy (3.6) for all input/output
maps f are completely characterized in ROUCHALEAU and SONTAG
[1976]. In this paper, the problem of deciding for which (Noetherian)
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domains (3.6) holds is shown equivalent to one of the most important
questions in commutative algebra and algebraic geometry. In particular,
a resut of SHESHADRI translates into « (3.6) holds for all input/output
maps over polynomial rings k [o1,0:], k any field ». On the other
hand, the input/output map f over R, 52, 03] given by (with m=3,
p=2)

o1 03 0
A= |0 0 —of, A=Ay =...:=0,
0 — 02 — 01

is shown to have no realizations of rank 2= dim B (f). These results
and example serve to finally clarify the questions with respect to
synthesis of networks posed in NEwcomp [1966].

The question of classifying realizations of minimal rank is very
difficult. Under the natural notion of isomorphism (natural at least
under the discrete-time interpretation), two systems Xi, Z; of rank m, n2
are isomorphic if and only if ny=n,=n and there exists T€R™™ such
that TGy =G,, F,T=TF,, H,T=H,, and T 'eR™X*. If R is not a
field, it is false that all minimal realizations of the same input/output
map are necessarily isomorphic. Indeed, if a€R, a+0, and a'¢R,
then Zi: =(1,a,1) and X =(1, 1,a) are nonisomorphic minimal reali-
zations of f=(a,a,a,..). In fact, there may exist infinitely many mu-
tually nonisomorphic minimal realizations: if R=R [¢], then for each
real number A the system

10
! o])’

= (10

is a minimal realization of f=(c¢ 1,051, ..), and Z; is not isomorphic to
Z . if Ap.

However, over R = principal-ideal domain, a characterization can
be given of the set of isomorphism classes of minimal realizations of
a given input/output map in terms of a lattice of submodules of a
finitely generated torsion R-module (SoNTAG [1977 a]). So, in particular,
for systems over the integers Z there can exist only finitely many
nonisomorphic minimal realizations of a fixed map.

E. REACHABLE, OBSERVABLE AND CANONICAL SYSTEMS.

When discussing realizations of minimal rank we mentioned the
problem of redundancy. The question arises then as to whether there
exist realizations that contain no information which is not implied
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frore. the input/output behavior of the systems under consideration.
I'rom a general system-theoretic viewpoint, such realizations are cha-
racterized by properties of « reachability » and « observability ». These
properties also appear naturally in relation to problems of controlla-
biluny, filtering, etc.

The present setup, because of its generality, is not the appro-
priate one in which to define such concepts with such precision and
generality that they will specialize to meaningful notions of reachabi-
lity and observability under all possible interpretations. For instance,
function-space reachability will be different from ring reachability for
delay-differential systems. We shall therefore make all definitions using
as a model the discrete-time case. The reader interested primarily in
other types of systems (e. g., delay-diffcrential) can view these notions
simply as (very useful) fools in the study of systems over rings. We
again let R denote an arbitrary commutative ring.

A discrete-time R-system X, described as in (2.2), is reachable, or
uccessible (from the zero state), when for each xeR" there exist
t=0 and u(0),..,u(t—1) such that, solving (2.2), x (t)=x. The
sys‘em X is observable, or reduced, if no two different states produce
the sume input/output map when considered as initial states for X.
It can be proved that, as in the case of systems over fields,

(3.7) 2 is reachable if and only if every xe€R" is an R-linear
combination of the columns of G,FG,..,F*'G;

(3.8) X is observable if and only if there exists no x€R" such
that Hx=HFx=..=HF"'x=0 and x30.

Based on the above discrete-time intuition, we shall call an
(abstract) system X =(F, G, H) reachable if (3.7) is valid, and observable
it (3.8) holds. X is canonical when it is both reachable and observable.

Assume that the discrete-time system X is observable but not
reachable. The natural choice for a canonical realization is then the
« subsystem » X, of Z, obtained by restricting the state space to the
set of reachable states X,. In order to define X, as a system, i. e. as
a triple of matrices, we need to find matrix representations for the
restrictions of the linear maps F, G, H to X,. This involves the pre-
vious step of naturally representing elements of X, as vectors in R®, for
some 5. This representation should be uniquely defined: otherwise
two vectors in R° which «code» the same state would introduce
unc hservability in ZX,.
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For example, if R=R [0}, 0:], Z=(1, (o1, 72), 1), then the reachable
states are given by all combinations o pi (61, 62)+ 62 p2 (61, 02), where
P, px are arbitrary polynomials in oy, 6. The obvious parametrization
by pairs (pi, p2) is redundant since, for instance, (o2, 01) and (2 o2, 0)
both stand for 20,0, It can be proved that in fact no « linear »
bijective coding exists.

The example is typical of the fundamental difficulty involved in
working with rings instead of fields: the nonexistence, in general, of
bases. Therefore the above procedure to find a canonical realization
via X, may fail to work. Actually, the problem is deeper, since in general
no canonical realizations exist (in the sense of Definition (2.1)). The
above reasoning, however, points to the possible solution: relax the
definition of system so that more general « linear » (but still in some
sense « finite ») objects than those of type R” are allowed as state-
spaces.

Algebra provides such general objects: R-modules, or, more preci-
sely, finitely generated R-modules, We then generalize:

(3.9) DEFINITION. A system X is given by (X, F, G, H), where X
is a finitely generated R-module and G: R"™—X,F: X—X, H: X—>R®
are R-linear maps. % realizes f=(A1, Ay, ..) if Ai=H o F-'o G, i=
=1,2,...

By « system » we shall refer henceforth to (3.9), and call the spe-
cial case of those in (2.1), for which X=R", « free » systems. If the
input/output map f of a system is defined via the sequence of linear
transformations (or matrices) {H o Fio G}, it is easy to prove that
f can also be realized by a free system. This means that the phrases
« realizable » and « realizable by a free system » are equivalent. Non-
free systems have an obvious discrete-time interpretation, but we shall
not attempt to give here a delay-differential interpretation.

Reachability and observability can be defined for systems again
via (3.7) and (3.8) (replace « columns of G » by G (&), ..., G (en), etc.).
In the larger class of systems (3.9) one can immediately generalize
KALMAN’s module approach to linear systems, and prove that (see
EILENBERG [1974, Ch. 16, Section 5], where « minimal» is used
for our « canonical »):

(3.10) THEOREM. Let f be a realizable input/output map. Then
there exists a canonical system X which realizes {. If X is another cano-

~~
nical realization of f, then X is isomorphic to Z, i. e. there exists an
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o~~~

invertible R -linear map T: X — X such that To G = G, FoT =

=T oF and HoT=H.

In general canonical realizations are not free. Exceptions are
principal-ideal domains, so that over Z or polynomial rings in one
variable R [o] there is no need in principle to consider nonfree sy-
stems.

If a canonical realization is free then it can be proven to be of
minimal rank among free realizations. The converse is not true. For
example (with R=17), f=(2,2,..) admits the minimal free realiza-
tion (1,2, 1) which is not canonical: indeed, (1,2, 1) is not reachable,
since (3.7) would require that every element of R' (i. e. every integer)
be an R-linear combination (i. e. an integer multiple) of 2. A canonical
realization of f is given instead by (1, 1, 2).

The canonical realization (unique up to isomorphism) can be de-
fined directly from the input/output map f. For this purpose, let
X;:=the R-module consisting of all R-linear combinations of the
columns of the Hankel matrix B (f), F: = the R-linear map induced in
X; by the shift of columns, G (ai,...,an)=aibi+...4+am b (where
b;: = i-th column of B(f)) and H is defined on columns by « reading
out » their first p rows. Then (X, F, G, H) is easily seen to be a canonical
realization. (This construction was used by RoucHALEAU [1972] and
FLiESs [1972, 1974] to obtain various realization results). It follows
from the Cayley-Hamilion Theorem that if X; has s generators then
X; is already equal to the R-module generated by the first s block
columns of B (f). In fact, by block symmetry, only first s block rows
need be considered. We shall use later a corollary of this construction:

(3.11) LEMMA. [ is realizable if and only if X; is a finitely gene-
rated R-module.

We remark that further generalizations of the concept of system
are possible by dropping the requirement that input and output spa-
ces be free; see EILENBERG's treatment of discrete-time systems.

F. « LocAL » METHODS.

When R is not an integral domain, the arguments in Sections B
to E break down, since no field containing R can exist. The standard
way to avoid such a limitation in commutative algebra is to look for
embeddings of R in suitable products of fields.
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For example, consider R: = R[s]/(6*—1), the ring of real poly-
nomials in ¢ of degree less than k added and multiplied subject to
the relation o*=1. The ring R is easily seen to be isomorphic to a
direct product of various copies of the fields R and C; there is one
copy of R for each real k-th root of unity and one copy of C for
cach pair of complex conjugate roots. Therefore systems over R can be
studied via the simultancous study of a set of real and complex systems.
In fact, R is the ring treated by BrRockETT and WIiLLEMSs [1971,1974],
and the above decomposition underlies their whole method.

In general, however, it is impossible to obtain a complete decom-
position of R into a product of fields, as in the above example. However,
under the hypothesis that R be a reduced ring, an inclusion in such a
product is possible. (A ring is reduced when it has no nonzero nilpo-
tents, i. e. no clements for which ¢"=0. For example Z, is reduced
but Z, is not, since 2°=0 modulo 4). Given an input/output map f
over R, let f, be the maps corresponding to the projections on the
different factors of the product in which R is embedded. Just as in
the case of integral domains (where the « product » had but one factor)
each f; can be considercd as a map over an appropriate field. The
analog of (3.4) can be studied in this context, where now each B (f))
is required to be of finite rank. For Noetherian reduced rings it is
immediate to prove (based on the integral domain case) that the
modified form of (3.4) is then true. Even the stronger statement (3.5)
casily generalizes for the appropriate types of reduced rings (see
RoucHALEAU [1972]).

Another useful tool in drawing conclusions on systems over rings
using the case of fields is the following, valid also (mutatis mutandis)
for nonfree systems:

(3.12) LEMMA, Let Z=(F, G, H) be a free system. For each max-
imal ideal M of R define the R/M-system X (M): =(F (M), G (M),
H (M)), where F (M), ... is obtained by applying the canonical projection
R — R/M to each eniry of F,.... Then, X is reachable if and only if
all £ (M) are reachable.

Proor. Reachability of X [resp. Z (M)] is equivalent to proving
that the map given by the matrix (G, FG, ..., F*"'G) [tesp. (G (M), ...
v s FAMY"™ G (M))] is surjective. The equivalence is then immediate
from Boursaki [Algébre Commutative, 11.3.3, Prop. 11]. a
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We shall see the above lemma used in Part 4. This lemma falls
into the category of «local methods » of commutative algebra. Note
that (3.12) is valid without any restrictions on R.

4. State-Feedback and Regulation.

The « separation property » of finite dimensional linear systems,
which permits regulation via the independent designs of a state-
feedback and a state estimator, extends immediately to systems over rings.
This motivates a study into the possibility of « pole-shifting » and
the existence of « observers » for systems over rings.

A. STATE - FEEDBACK.

One of the main algebraic results in the area of finite-dimensional
linear systems over ficlds deals with the possibility of arbitrarily modi-
fying the characteristic polyncmial of a reachable system. This was
proved for systems over infinite fields by WonNHAM [1967] and for
arbitrary fields by HEymMaNN [1968] and KALMAN [1968].

We now ask whether a similar result holds true for free systems
over rings. In other words, we want to characterize those pairs of
matrices (F,G), FER™<", GeR"™, which are coefficient-assignable
in the sense that

4.1) Given an arbitrary p(2)€ER[z] monic of degree n, there
exists KeR™ " such thai det (zI-F+ GK)=p (2).

Closely related is the problem of finding those (F, G) which are only
pole-assignable, 1. e.

(4.2) Given arbitrary a,, ... ,a.€R, there exists KeR™<" such that
det z[—-F+GK)=(z—a)) ... (z—a,).

Since in general a polynomial p(z)eR[z] does not have all its
roots in R, (4.1) is a stronger statement than (4.2) in which existence
of K is required for only some polynomials.

For example, consider a delay-differential system as in (2.3). The
characteristic polynomial yr (z)= det (zI—F (o)) can be viewed either
as a polynomial in z whose coefficients are polynomials in o, i. e.
xr€R[z] = (R[o]) [z], or equivalently, as a real polynomial in the
two variables z, o. It is well-known that stability properties of a delay
system are determined by the values of s which make xr, viewed as a
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polynomial in s, e”*=¢, vanish. In particular, stabilization with arbi-
trary convergence ratcs is closely related to both (4.1) and (4.2).
Observe the feedback law K is allowed to be a matrix of polynomials
in o.

B. REACHABILITY IS NECESSARY.

In the case of systems over fields, it is easy to verify that (4.2)
implies that (F, G) is reachable in the sense of (3.7) (H is not relevant
here). Indeed, it follows from the decomposition of the state-space of
2 into the reachable part and a complement, that for nonreachable
systems there exists a fixed polynomial of nonzero degree which divides
xr ok, for all K, and this clearly contradicts (4.2) (KALMAN [1968,
Corollary 5.91). This proof fails for rings, since as the example over
the integers (F, GY=(1, 2) shows, the reachable set does not in general
admit a complementary submodule. The following result, valid for
arbitrary R, shows the use of local methods:

(4.3) ProrosiTiON. If (F, G) is pole-assignable then (F, G) is rea-
chable.

ProOF. With the notations of (3.12), it is not difficult to verify
that if (F, G) satisfies (4.2) then for each M, (F (M), G (M)) is pole-
assignable over the field R/M. The previously mentioned result for
systems over fields implies that (F (M), G (M)) is reachable, for all M.
It follows from (3.12) that (F, G) must be reachable. O

C. THE CONVERSE.

It is much more difficult to prove the converse of (4.3), i. e. that
reachability implies (4.1), or at least (4.2). In fact, these problems
are still unsolved for arbitrary rings. In the particular case m=1,
however, the problem is tvivial, since reachability of (F, g) implies
that {g,...,F"~'g} is a basis of R". Therefore (F, g) can be transformed
into the « control canonical form » and the proof of (4.1) can be com-
pleted as in the case R= field (see, for instance, KALMAN [1968,
Corollary 5.9]). This suggests trying to reduce the general case to the
case m=1. In the case of fields this reduction is carried out for reachable
(F, G) using the following consequence of a lemma of HEYMANN [1968]:

(4.4) There exist ueR™ and KeR"™¥" such that (F—GK, Gu) is
reachable.
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Only under strong restrictions on R can (4.4) be generalized:

(4.5) THEOREM. Assume that R has only finitely many maximal
ideals. Then (4.4), and hence (4.1}, are true for arbitrary reachable
(F, G).

Proor. It follows from Boursaki [Algébre Commutative, II. 3.2,
Corollary 2] that it is enough to verify (4.4) for the ring R/rad R
where rad R is the radical of R. Since R/rad R is a product of fields,
the problem is reduced to the already solved case of fields. O

The above theorem applies to some rings of system - theoretic
interest. Every finite ring obviously satisfies (4.3), so that the result
kas been proved for the most general case of linear sequential circuits.
This generalizes the corresponding result for finite fields studied in some
detail in MiTTER and FOULKES [1971].

Another broad class of rings to which (4.5) can be applied are finite-
dimensional algebras over fields, in particular group algebras on finite
abelian groups. The result applies to classes of « cellular » or « partial
difference » systems, as in (1.C), when the original equation evolves
in a bounded space (so the group is finite). In this case, it can be
proved that ring-theoretic reachability is equivalent to reachability of
the equation. A K in R™X" is interpreted as a state-feedback law with
the same regularities (e. g., a circulant matrix) as the matrices in the
cquation. For u in R™, Gu corresponds to a regular combination of the
controls cbtained in a similar fashion. Thus (4.4) insures that a rea-
chable cellular system may be modified, through locally defined K and
u, so that control is possible with scalar inputs at each point. The
interpretations of (4.1) and (4.2) are somewhat more delicate, and
the reader is referred to BROCKETT and WILLEMS [1974] for a detailed
treatment of the case R=R[s]/(c*—1).

Unfortunately, (4.4) is not true in general. Call a ring R suitable
iff reachability of (F, G) implies (4.4). The following lemma will imply
that many innocent-looking R are not suitable:

(4.6) LEMMA. Assume thet R is a suitable principal-ideal domain.
Let a, b be two relatively prime elements of R. Then there exist a,
in R such that 8 is a unil and

bea’=fmoda.
ProoF. Define

efs Yoy 2l
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Clearly (F, G) is rcachable. because by assumption that (aq, b) are
rclatively prime, the identity is a lincar combination of @ and b.

Since R is suitable, there exists a 2% 2 matrix K and a vector u
such that (F—GK, Gu) is reachable. Then the matrix with columns
Gu, (F—GK) Gu must have a unit determinant f. Writing

K=Tlkjl, u= [a],
Y

this determinant becomes f=ah+ba?, where h= —a’ kn—2 ay kn+
+vya ki—a b k]Z« Cl

Now consider the particular case R: =R [x], a:=x'—1, b: =x.
If R is suitable, by the lemma there would exist polynomials #, a, and
a nonzero real number f such that

h (32— 1)=a® x—p.
Specializing ¥x=1 and x== -1 in the above cquality,
1.a?=(—1)-a*==+0.

This last equation gives a contradiction, since 1-a? and (—1)-a® are
both elements of R,

A similar negative result holds for R: =7, a: =5, b: =2; in this
case a check for =0, ... ,4 shows that 2o’= *+1 mod 5 is unsatisfiable
over 7 .

Therefore neither R{x] nor L are suitable rings. This answers
a question raised by Morsg [1974, Example in Section 3].

A direct approach to (4.1) might still be possible, but the problem
remains open. However, MorRsE [1974] gave a constructive proof of
the following result:

(4.7) THEOREM. Assume that R is the polynomial ring R{c]. Then
any reachable pair (F, G) satisfies (4.2).

The above result can be applied in the study of stabilization of
delay-differential systems. The main drawback in this application is
the fact that the requirement that (F, G) be reachable is very restrictive;
for instance, in the important special case m=1, (F, g) is reachable only
when det (g, Fg, ..., F"~' g) is a nonzero constant. Nonetheless it still
illustrates the power of the present method, since a condition like
(3.7) does not appear naturally in the study of delay systems while it
suggests itsclf immediately in the context of systems over rings.



24 E. D. SONTAG

We sketch now another approach to the stabilization of delay-
differential systems, based on systems over rings. Let R, o] denote
the set of those rational functions p(o)/q (o) in o, wih real coeffi-
cients, which satisfy the condition

g (0) has no zeroes in {ze C, |z] <1}.

It is casy to verify that R,[o] is a ring with the usual operations
on rational functions. Moreover, R,[s] is a principal ideal domain:

the g. c. d. of two elements p (¢)/g (o) and ;(a)//c]\ (o) can be found by

calculating the g. ¢. d. of p (o)-:]\(o) and ;(a)-q(a) and then dividing
the result by ¢ (a)-:]\(o).

The polynomial ring R[s] is a subring of R,[s]. Therefore a
given pair (F, G) of R [s]-matrices can be also viewed as a pair of
R,[o]-matrices. Tt is not difficult to see that (4.7) depends only eon
R[s] being a principal ideal domain. In fact, MORSE’s algorithm can
be easily extended to the case of R,[o]-matrices. Therefore if (F, G)
is a pair reachable over R,[s] there exists a matrix K, also over
R, [o], such that det(zI—F+GK)=p (0,z), where p (e”% s) has all
its zeroes with real part less than some negative number.

We now interpret the meaning of our construction. Since the
entries of K are rational functions p (2)/q(6) with q (0)==0, the
transformation &+ ¢~' and multiplication of p(6-!) and ¢ (c-") by
a suitable power of & lets us view K as a transfer function of a conti-
nuous-time lincar system built from delays rather than integrators. The
restriction on the zeroes of g translates into stability of the system
described by the transfer function K. Let

x(+D=Fx()+Gu (
*)
y()=Hx ()+]Ju (D

be a minimal realization of K. This system is stable because of mini-
mality and stability of K. Consider the closed-loop system obtained
by controlling (F, G) with (*), i. e. the system

X (O=(F (0)—G (3) ]) x ()~ G (5) Hv (t) .
v (t+1)=Fv () +Ox ().

Then (**) can be represented as a neutral delay-differential equation
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on x (-), with characteristic equation
A@B)=q ) ple™ys),

where g (o) is a common denominator for K=K (g). A zero of A (s)
is either a zero of g (e™*) or of p (e™*, s). Since q (¢) has no roots with
lo!<1, it follows that all roots of A (s) have real parts bounded from
above by a negative number. Therefore (**) is uniformly asymptotically
stable (1.

It is clear that the same reasoning would have applied if o re-
presented a delay of A==1 seconds. It is not difficult to prove that the
stabilization procedure we have just sketched is insensitive to small
variations in the plant and controller parameters.

The R, [o]-reachability condition under which the above algorithm
applies can be equivalently expressed as follows. Let

w, 0 -« 010 ...0
0 yy
0 0 -yt 0 U

be the Smith form of the polynomial matrix (G, FG, ..., F*! G). Then
(F, G) is reachable over R,[s] provided that the ¢; have no roots o
with jo|<1. By contrast, application of (4.7) would only be possible
if all ¢, are scalar. Note, however, that we have paid a price in wea-
kening the reachability criteria, in that the feedback law is more com-
plex than in the polynomial case. The necessity of including dynamic
compensation, in what from the viewpoint of systems over rings is a
state-feedback problem, is better understood once it is realized that
x (t) does not represent the true state of equation (2.3) but rather a
projection of the state. We are solving an output stabilization problem
in disguise.

Comparison with the conditions given by PanpoLF1 [1974] and

Buat and Koivo [1976] shows that R, [¢]-reachability is sufficient but
not necessary for stabilization. The comparison is immediate once we

(1) Professor R. E. KALMAN has pointed out to us the striking similarity
between our constructions using R, [g] and some aspects of Bopbe’s theory of
feedback amplifiers. This remains a topic for future investigation.
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observe that, over any ring R, reachability is equivalent to right-
invertibility of (zI—F, G). In particular, (F (9), G () is R, [o]-rea-
chable when

rank (uI—F (=), G (e™")=n

for all 4 with nonnegative real part and for all u. The necessary condi-
tions in the above references require only full rank for l=u. The
procedure discussed here, on the other hand, is completely algorithmic,
based on simple matrix calculations, and requires no functional-
analytic tools.

D. STATE - RECONSTRUCTION.

When the state variables are not directly available, the design of
regulators is achieved with the use of Kalman filters or « observers ».
In other words, a system must be designed which must estimate the
unknown state using the knowledge of inputs and outputs of the ori-
ginal system. When trying to apply this design method to the case of
delay systems (using observers which are themselves delay systems), the
arguments of the classical case are easily generalized and the condition
(F', H)Y= pole assignable appears naturally (see a discussion of the
case over the real field in Wonuam [1974, Chapter 3]). A similar
situation ‘holds for discrete-time systems over Z.

The above examples suggest the study in general of the problem
of finding conditions under which a given input/output map will
admit a free realization (F, G, H) for which both of the following condi-
tions hold: (i) (F, G) is reachable and (ii) (F’, H’) is reachable (. e.,
the «dual system» (F’, H’, G") is reachable). These realizations are called
split in SoNTAG [1977 b]. A particular case of a result proved there
is the following

(4.8) THEOREM. Let R be a principal-ideal domain. Suppose f is
an input/output map for which rank B(fy=n. Then the following
statements are equivalent:

(i) f admits a split realization.
(i) The greatest common divisor of all the n-minors of
Ay Ay

An L AZM-I
is a unit.
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For instance, if R=17, then f=(2,2,..) admits no split realiza-
tions. Indeed, the canonical realization (1, 1,2) does not satisfy
(1, 2) = reachable.

When m=p=1, condition (ii) in (4.7) can be easily expressed in
terms of the « transfer function» p/q of f, where g is the lowest
denominator of f over the quotient field Q. Let R (p, q) be the resultant
of p, g (see LANG [1965, p. 135]). Then

(4.9)  admits a split realization iff R(p,q) is a unit.

If an input/output map satisfies (4.8), the design of output com-
pensators proceeds just as in the case of ficlds.

6. Other Topies.

Although the problems in Sections 3 and 4, especially the former,
are those that have attracted most of the past research, results have
been obtained also in other areas. Some of these results are direct
generalizations (with essentially the same proofs) of facts known over
fields. In other cases, the results are known only for special rings, and
in fact may not even be expressed in terms of systems over rings. It is
of course not possible to review here all such topics. We shall limit
ourselves to making brief observations on three example: system
decomposition, optimal control, and generalizations of known algebraic
conditions.

Results on series or paraliel decompositions 2 la Krohn-Rhodes
correspond to decompositions of (state) modules, over R or R [z]
respectively, as explained in EiLENBERG [1974, Ch. 16, Section 7].
The laticr purely algebraic problems are in general very difficult,
except when very strong finiteness conditions are assumed on R (or
on the state modules). Under such restrictive conditions a rather good
theory exists and the results can be applied to the system-theoretic
problem, In particular, decompositions can be obtained when the
state-space is a finite abelian group (MATLUK and GiLL ([1971],
JOoHNSTON [1973]).

The related topic of obtaining « canonical forms» for system
matrices is essentially unexplored, except in the scalar case, as mentio-
ned in Section 4.C.

The quadratic optimization problem for discretized partial diffe-
rential equations was studied by BrockeTT and WILLEMS [1971,
1974], WiLLems [1971]. Their main result is that if the matrices
defining the criterion correspond to operators in the ring over which




28 E. D. SONTAG

the system is defined (i. e. are circulant or Toeplitz), then an optimal
feedback law can be implemented using operators on the same ring
(i. e. using a feedback matrix of the circulant or Toeplitz type).
Moreover, a spectral factorization solution can be obtained via a facto-
rization of polynomials with coeflicients on the ring.

Many algebraic criteria for finite-dimensional linear systems over
fields can be easily generalized, giving in some cases new results and,
in others, more concise expressions and elegant proofs of already known
facts. Consider for example the question of pointwise or « Euclidean »
reachability for delay-differential systems, i. e. the possibility of reaching
every value x (f)e R*, given zero initial conditions. The ring reacha
bility condition (3.7) is unrelated to this problem, as shown by the
trivial example 3c(t):u (t—1). This system is clearly pointwise rea
chable, but (F, G)=(0, 0) does not satisfy (3.7).

A more concrete definition of systems over rings is possible, howe-
ver (SoNTAG [1976, Section 7]). In this context a general result can
be proved, which implies in particular that a delay-differential system
x = Fx + Gu, where both F and G are matrices of polynomials in
o1, ..., 6, (the o; denoting noncommensurable delays), is pointwise rea-
chable if and only if

there exists no real constant vector V such that V' (G, FG, ...
v, FF 1 GY=0. (*)

’

Since a polynomial is zero if and only if each coefficient is, (*) can
also be expressed (in a very involved way) as a rank condition on
real matrices. In the latter form, some very special cases (r=1, only
one delay on F, etc.) of this result were known before; see KIRILLOVA

and CURAKOVA [1967]. By reading the various proofs (and noticing
the triviality of (*) once that the appropriate rings are introduced), the
advantages of working with systems over rings, at least for this pro-
blem, will be clear.

APPENDIX 1

We give here proofs of (3.4) for Noetherian integral domains, of
(3.6) for principal ideal domains. and of (3.5) for integrally closed
domains which satisfy (3.4).
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It is not too difficult to prove that if M is a finitely generated
R-module and R is Noetherian then every submodule of M is also fini-
tely generated. (Since an ideal of R is in particular a submodule of the
finitely generated R-module R, this last property is equivalent to the
definition of Noetherian integral domain). Similarly, if M admits a
system of n generators and R is a principal-ideal domain then every
submodule of M can be generated by at most n elements (see LANG
[1965, pages 144 and 3871).

Let L be an infinite matrix over R and let N be the R-module
consisting of all R-linear combinations of the columns of L (seen as
infinite vectors). Assume that rank L =n < 0. Then there exist columns
V1, ... , ¥, which generate the Q-vector space spanned by the columns of
L, where Q is the quotient field of R. Any other column v can then
be written as Z;(di/d) v;, where d is the determinant of an nXn
matrix of full rank obtained from the columns vy, ..., v, by a choice of
suitable rows, and where d; is the determinant of the matrix obtained
by replacing the column v; by the column v (Cramer’s rule). Observe
that by definition d;eR for all i.

1
Denote wi: =—v;, and let M be the R-module generated by

d
Wi, ..., Wo. The previous discussion shows that cvery column v is an
R-linear combination of wy, ..., w.. Therefore N is a submodule of M.

It follows that N is finitely generated if R is Noetherian, and N admits
a basis of n generators if R is a principal-ideal domain.

The above reasoning, along with (3.11), and applied to B(§),
proves (3.4) for Noetherian rings and (3.6) for principal-ideal domains.
Explicit algorithms for the principal-ideal domain case can be easily
given, based on algorithms for finding bases of modules. See for in-
stance ROUCHALEAU and SonTaG [1977] or KAMEN [1975].

Assume now that R is integrally closed and satisfies (3.4). We
outline a proof of (3.5) along the lines of RoucHaLEAU [1972]. Let f
be realizable over Q. By (3.4), there exists a realization (F, G, H) over
R. Consider the set I (f) of all those polynomials z"+4a, 12" '+..+a
in Q [z] for which ay, ... ,a..1 is a recursion for f. It is easily verified
that I (f) is a principal ideal, whose generator is the polynomial m (z)
corresponding to the minimal recursion for f. By the Cayley-Hamilton
theorem the characteristic polynomial xr (z) is in I (f). So m (z) divides
xr(2). By Boursaki [Algébre Commutative, V. 1, 3, Prop. 11],
m(z) is in R [z], as wanted.
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APPENDIX 2

We review here some clementary algebraic notions. The reader
may find details in any modern algebra book; for instance MACLANE
and BIRKHOFF [1967].

A ring R (with identily) is a set, together with two binary opera-
tions (x,y)— x4y and (x,y) > xy, and two distinguished elements
0, 1, such that:

a) (R, +,0) is an abelian group (i. e. addition is commutative,
associative, 0 is the neutral element and every element x has an addi-
tive inverse —x);

b) (xy)z=x(yz) for all x,y,z;
¢} lx=xl1=ux for all x;
d) x(y+z)=xy-+xz and (y+z) x=yx+zx for all x, v, Z.

Example: the integers Z with their usual addition and multipli
cation.

R is commutative when xy=yx for all x,y. All rings considered
in this paper are commutative. /CR is an ideal of R iff (i) I is closed
under addition, and (ii} for any rin R and g in I, ra is in I (e. g.,
the even integers form an idcal in 7).

A commutative ring R is

— an integral domain iff xy=0 implies x=0 or y=0 (e. g, Z
is an integral domain; instead, the ring of residues modulo 4 is not
an integral domain since 2 by 2=0 modulo 4, but 240);

— a field iff for each x#0 there exists a y in R such that xy=1
(then y is unique and is denoted x~);

— Noetherian iff every ideal I of R is finitely generated, i. e,
there exist ai,...,a, in I (n depending on I) such that every b in [
admits an expression b=r a;+...+rna, for some r; in R. (« Noethe-
rian » is a very weak restriction on commutative rings — but very
strong otherwise — ; in fact every commutative ring which has appea-
red until now in system theory is Noetherian);
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— a principal-ideal domain iff every ideal I is principal (n=1
above, for all I); this is equivalent to requiring Noetherian + every
pair of elements @i, @, has a greatest common divisor which can be
expressed as an R-combination of ai, aa.

Let R be an integral domain. Consider the set of all fractions
r/s,r,s in R, s%0, subject to the equivalence relation: r/s=r/s if
rsi=r1 5. When such fractions are added and multiplied in the obvious
way, one obtains a field Q (R), the quotient field of R, which contains
R when the latter is identified with the fractions r/1. For instance,
Q (%) = rational numbers; if R: =k [X, ...,X,] is the ring of all
polynomials in the indeterminates Xi, .., X, with coefficients in a
ficld k&, then Q (R) is the field of all rational functions in Xj, ..., X..

A map f: R— S between two rings R, S is a ring-homomorphism
iff f preserves addition and multiplication and f(1)=1. Let I be an
ideal of R; the residue ring R/I is the set of equivalence classes [r],
r in R, where [r] = [s] iff r — s belongs to I, with operations
[r]1 = [s]: =[r+s], and [0], [1] as neutral element and identity. The
canonical map R— R/I: r— [r] is a ring homomorphism. An ideal
is maximal iff R/I is a field.

The integral domain R is integrally closed iff any g in Q (R)
which satisfies an equation

2"y 2" 4 4 ae=0, all a; in R,

is already in R. Examples: Z , k [Xi, ..., X;] for any field k and inte-
ger s.

An R-module M is a vector space in which the scalars belong to
a ring. So M is an abelian group equipped with an operation R XM —
— M: (r, m) — rm which satisfies, for all r,r,r. in R and m, my, m;
in M,

a) 1m=m;

b) r(md-m)=rmy-+ro;
¢y (n+r)ym=rm+t-rm,
d) (nr)ym=r(rnm).

Example: an ideal of R is an R-module. The elements my, ..., m;
of M generate M iff every m in M can be expressed as m=rimi+...
w.trsm, for some 7; in R. If such my, ..., m; exist for some s, M is
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finitely generated. A (finitc) basis for M is a generating set my, ..., m;
such that, for each m, the r; are unique. M is (finitely generated) free

if M has a basis. A map L: M—->]t7 between two R-modules is (R)-linear
or an R-homomorphism ift L (rm+rym)=n L (m)+r, L (my) for all
riin R, m; in M. An invertible linear map is an isomorphism.

A free module M is always isomorphic to a module of the type
R’, where R°:= column vectors over R with coordinatewise addition
and with r(r, ..., 1) =(@rr, ...,rr). Let R'™  denote the set of
tXs matrices with entries in R. A linear map L: R°— R' can be
represented uniquely by a matrix L in R"¥* whose columns are given by
L (e), ..., L (e)), where e; is the vector whose only nonzero entry is a
1 in the ith position. Conversely, each matrix in R defines a
linear map R®—> R'. We shall therefore speak interchangeably about
linear maps R®—> R' and matrices in R*X*
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