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Abstract

The fundamental property of strongly monotone systems, and strongly cooperative systems
in particular, is the limit set dichotomy due to Hirsch: if x < y, then either �(x) < �(y), or
�(x) = �(y) and both sets consist of equilibria. We provide here a counterexample showing
that this property need not hold for (non-strongly) cooperative systems.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The field of cooperative, and more generally monotone systems, provides one of the
most fruitful areas of theory as well as practical applications—particularly in biology—
of dynamical systems. For an excellent introduction, see the textbook by Smith [4] and
the recent exposition [3]. One of its central tools is a classical theorem of Hirsch [1,2],
the “limit set dichotomy” for strongly monotone (in particular, strongly cooperative)
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systems, see Theorem 1.16 in [3]. The limit set dichotomy states that if x < y, then
either �(x) < �(y), or �(x) = �(y) and both sets consist of equilibria.

According to the recent survey [3], the problem of deciding if there are any coop-
erative systems for which the dichotomy fails is still open. In [3], Example 1.24, one
finds a system which is monotone but not strongly monotone, for which the dichotomy
fails. The order in this example is the “ice cream cone” order, and the authors explic-
itly state that it is unknown whether a polyhedral cone example exists. A cooperative
system is one defined by a set of ordinary differential equations ẋ = f (x), where
f = (f1, . . . , fn)

′, with the property that �fi

�xj
(x)�0 for all i �= j and all x. Coopera-

tive systems are monotone with respect to a polyhedral cone, namely the main orthant
in Rn. Thus, a counterexample using cooperative systems provides an answer to this
open question. We provide such a counterexample here.

To be precise, we construct here two differentiable functions

f, g : R → R

such that f (0) = g(0) = 0, xf (x) < 0 and yg(y) < 0 for all x, y �= 0, and consider
essentially the following system:

ẋ = f (x),

ẏ = g(y),

ż = x + y.

This system is cooperative. Note that solutions of the x and y equations converge to
zero as t → ∞. Moreover, for this system, and for any � > 0, the following property
holds:

There is a solution X with initial condition (x(0), y(0), z(0))′ such that |x(0)| < �
and |y(0)| < � so that the omega-limit set �(X) is compact and it contains the set

{(0, 0, �) | z(0) − 1
2 ���z(0) + 1

2 }.
The limit set dichotomy states would imply that, for any initial conditions

(x(0), y(0), z(0))′ and (x̂(0), ŷ(0), ẑ(0))′

for which x(0)� x̂(0), y(0)� ŷ(0), and z(0)� ẑ(0), and with at least one of the in-
equalities being strict, the corresponding solutions X, X̂ have the property that either
�(X) = �(X̂) or �(X) < �(X̂). This last property implies in particular that �(X)

and �(X̂) are disjoint. Now, for our example, clearly �(X) �= �(X̂) as long as z(0) �=
ẑ(0) (since the z-components of solutions are translates by z(0) of the solutions with
z(0) = 0), but the omega-sets intersect as long as the x and y initial conditions are as
discussed above, ẑ(0)�z(0), and

z(0) − 1
2 < ẑ(0) + 1

2 ,
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i.e.

0�z(0) − ẑ(0)�1 .

Thus we contradict the limit set dichotomy.
Let us comment briefly on the significance of our counterexample, and on a problem

still left open. Our example shows that the limit set dichotomy does not generally hold
for cooperative systems, i.e. monotone systems with respect to the standard positive
orthant, providing a counterexample to the limit set dichotomy question, and also to
the nonordering of limit sets [3]. On the other hand, the limit set dichotomy is one
of the key tools in showing that the generic orbit of a strongly cooperative system (or
more generally, strongly order preserving semiflow) is quasiconvergent, i.e., its omega
limit set consists only of equilibria. For non-strongly cooperative systems, it is still
an open question whether generic quasiconvergence holds, because, in our example,
every solution is quasiconvergent. In other words, although the limit set dichotomy
fails, generic quasiconvergence, which is one of the reasons for desiring the limit set
dichotomy in the first place, does indeed hold. (In addition, our system has a degeneracy
in that its equilibrium set, the z-axis, is not normally hyperbolic since it consists of
points whose Jacobian matrix has three zero eigenvalues.) On the other hand, our
example provides a continuously differentiable vector field, and for strongly monotone
such vector fields (whose linearized systems are also strongly monotone), there is also
a result on generic convergence to equilibria, not merely quasiconvergence, see [4,
Chapter 2, Theorem 4.7]. The question of finding a cooperative system for which the
generic quasiconvergence theorem holds, is still open, but we have provided cooperative
counterexamples to the dichotomy and nonordering results, as well as (see Remark 2.6)
to Theorem 4.7 in [4], for non-strongly monotone systems.

2. The example

To present an example as discussed before, we first consider the following result:

Lemma 2.1. For any � > 0, there exist two C1 functions p, q :→ [−1, ∞) → [0, ∞)

such that the following hold:

(1) both p and q are strictly decreasing functions;
(2) p(0) < �, q(0) < �;
(3) p(t) → 0 and q(t) → 0;
(4) for any a, b ∈ (−1, 1), the function Ha,b defined by

Ha,b(T ) =
∫ T

0
(p(t + a) − q(t + b)) dt

is bounded; and
(5) for any a, b ∈ (−1, 1),

lim
T →∞

Ha,b(T ) > 0, lim
T →∞

Ha,b(T ) < 0;
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and

lim
T →∞

Ha,b(T ) − lim
T →∞

Ha,b(T )�1.

We will prove the lemma in Section 3.1 by showing that the two functions can be
chosen as

p(t) = 1√
t + c0

, (1)

q(t) = 1√
t + c0

+ sin[(t + c0)
1/4]

(t + c0)3/4 , (2)

where c0 can be any number in [�, ∞) for some � to be chosen later.
Below we show that, for some C1 maps f and g, for a ∈ (−1, 1), p(t + a) is an

solution of ẋ = f (x); q(t + a) and −q(t + a) are solutions of ẏ = g(y).
It can be seen readily that, for |a| < 1, p(t + a) is the solution of the initial value

problem

ẋ = −x3

2
, x(0) = 1√

c0 + a
.

Let � : (−1, ∞) → (−∞, 0) be defined by �(t) = d
dt

q(t), and � : (0, �) → (−1, ∞)

be defined by �(r) = q−1(r), where � = q(−1)�q(t) for all t > −1. Let g(r) =
� ◦ �(r) for r �= 0, and g(0) = 0.

Lemma 2.2. The function g : [0, �) → (−∞, 0) is of class C1.

Extend g from [0, �) to [0, ∞) as a C1 function, and then extend g to R by letting
g(−r) = −g(r) for r < 0. Still denote the newly extended function by g. Then g is a
C1 function. Let f (x) = −x3/2.

Lemma 2.3. For any a, b ∈ (−1, 1), (xa(t), yb(t))
′ defined by

xa(t) = p(t + a), yb(t) = −q(t + b)

for a, b ∈ (−1, 1) is the solution to the initial value problem

ẋ = f (x), xa(0) = 1√
c0 + a

,

ẏ = g(y), yb(0) = −q(c0 + b). (3)
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To get a system as discussed in Section 1, we would like to cascade system (3) with
the one-dimensional system ż = x + y. To obtain a system for which all trajectories
are bounded, we choose a C1 function � : R → R with the property such that

• �(r) = 0 for all |r| �1 + M , where M = sup{∣∣Ha,b(t)
∣∣ : |a| �1, |b| �1, t �0};

• r�(r) > 0 for all |r| > M + 1; and
• � is proper.

Consider the system

ẋ = f (x),

ẏ = g(y),

ż = x + y − �(z). (4)

It is clear that system (4) is cooperative.

Lemma 2.4. Consider system (4):

(1) the (x, y) subsystem is globally asymptotically stable; and
(2) every trajectory of system (4) has a compact closure.

Below we present our final result. We use X(t) = (x(t), y(t), z(t))T to denote a
solution of system (4).

Proposition 2.5. Consider the cooperative system (4). For any � > 0, there exist two
trajectories X1(t) and X2(t) with X1(0) < X2(0) and |X1(0)| < �, |X2(0)| < � such
that �(X1) �= �(X2) and �(X1)��(X2) fails.

Remark 2.6. In fact, we have obtained a system for which the statement of Proposition
2.5 can be made generic in the following sense. For any given �0 > 0, there exists
|X0| < � and some �1 > 0 such that for any pair of trajectories X1, X2 of system
(4) satisfying |X1(0) − X0| < �1, |X2(0) − X0| < �1, and z1(0) �= z2(0), it holds that
�(X1) �= �(X2) and �(X1)��(X2) fails.

Proof of Proposition 2.5. Assume that � > 0 is given. Choose c0 as in (1)–(2) large
enough so that 1√

c0−1
< � and q(c0 − 1) < �. Then, for any trajectory of the system

ẋ = f (x), ẏ = g(y)

with

1√
c0 + 1

< x(0) <
1√

c0 − 1
, −q(−1) < y(0) < −q(1), (5)
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one has x(t) = p(t + a), y(t) = −q(t + b) for some a, b ∈ (−1, 1), and hence,

lim
t→∞

∫ t

0
(x(s) + y(s)) ds − lim

t→∞

∫ t

0
(x(s) + y(s)) ds

= lim
t→∞

Ha,b(t) − lim
t→∞

Ha,b(t)�1. (6)

Let x0 = 1/
√

c0, y0 = q(0), and

�1 = min

{
1√

c0 − 1
− 1√

c0
,

1√
c0

− 1√
c0 + 1

, q(−1) − q(0), q(0) − 1(1)

}
.

Then (6) holds for any trajectory (x(t), y(t))T of (5) with |x(0) − x0| < �1, |y(0) − y0|
< �1. Take any |z0| < 1,

∣∣∣∣z0 +
∫ t

0
(x(s) + y(s)) ds

∣∣∣∣ = ∣∣z0 + Ha,b(t)
∣∣ < M + 1,

and therefore, z0 + ∫ t

0 (x(s) + y(s)) ds is the solution of the z-subsystem of (4) with
the initial value z(0) = z0 (note that �(s) = 0 when |s| �M + 1). It then follows from
statement (v) of Lemma 2.1 that for any x(0), y(0) satisfying (5), it holds that

lim
t→∞

(z(t) − z(0)) > 0, lim
t→∞

(z(t) − z(0)) < 0,

and

[
lim
t→∞

(z(t) − z(0))
]

−
[

lim
t→∞

(z(t) − z(0))

]
> 1.

Observe that for any trajectory X(t) of system (4),

�(X) ⊇
{
(0, 0, �) : lim

t→∞
z(t) < � < lim

t→∞
z(t)

}
.

For any two solutions X1(t) := (x(t), y(t), ẑ(t)) and X2(t) := (x(t), y(t), ẑ(t)), where
x(0) and y(0) satisfy (5), and ẑ(0) �= z(0), the sets of �-limit points of {z(t) : t �0} and
{ẑ(t) : t �0} are different (since z(t)− ẑ(t) ≡ z(0)− ẑ(0)). Moreover, with ẑ(0) < z(0),

lim
t→∞

ẑ(t) − lim
t→∞

z(t) =
[

lim
t→∞

(ẑ(t) − ẑ(0))
]

−
[

lim
t→∞

(z(t) − z(0))

]

−(z(0) − ẑ(0))�1 − (z(0) − ẑ(0)) > 0

if 0 < z(0) − ẑ(0) < 1. Hence, �(X̂)��(X) fails. �
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3. Proofs of the lemmas

In this section, we provide proofs of the results.

3.1. Proof of Lemma 2.1

First we let

p0(t) = 1√
t
, q0(t) = 1√

t
+ 1

t3/4 sin t1/4 t �1. (7)

To show that q0 is decreasing, we consider q ′
0(t):

q ′
0(t) = − 1

2t3/2 − 3

4t7/4 sin t1/4 + 1

t3/4 · 1

4t3/4 cos t1/4

= − 1

2t3/2 − 3

4t7/4 sin t1/4 + 1

4t3/2 cos t1/4

� − 1

4t3/2 + 3

4t7/4 . (8)

So, q ′
0(t)�0 when 1

t3/2 − 3
t7/4 �0. This is the same as t3/2 � t7/4/3, or t1/4 �3, that is,

t �81.
Let p(t) = p0(t + c0), q(t) = q0(t + c0), where c0 �81 will be chosen later on.

Now both p and q are differentiable on [0, ∞) and monotonically decrease to 0. For
a ∈ (−1, 1) and b ∈ (−1, 1), let Ha,b(T ) be as defined as in Lemma 2.1. Then

Ha,b(T ) =
∫ T

0
(p(t + a) − q(t + b) dt

=
∫ T

0

1√
t + c0 + a

− 1√
t + c0 + b

− 1

(t + c0 + b)3/4 sin(t + c0 + b)1/4 dt

=
∫ T

0

√
t+c0+b−√

t+c0+a√
t+c0+a

√
t+c0+b

− 1

(t+c0+b)3/4 sin(t + c0 + b)1/4 dt. (9)

Now, for the first term in (9), we have

∣∣∣∣
√

t + c0 + b − √
t + c0 + a√

t + c0 + a
√

t + c0 + b

∣∣∣∣
= b − a√

t + c0 + a
√

t + c0 + b(
√

t + c0 + b + √
t + c0 + a)

� |b − a|
2(t + c0 − 1)3/2 ∀ |a| < 1, |b| < 1,
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and hence, the integral

∫ ∞

0

√
t + c0 + b − √

t + c0 + a√
t + c0 + a

√
t + c0 + b

dt

is convergent, and for |a| < 1, |b| < 1,

∣∣∣∣
∫ T

0

√
t + c0 + b − √

t + c0 + a√
t + c0 + a

√
t + c0 + b

dt

∣∣∣∣ � 2√
c0

∀ T > 0. (10)

For the second term in (9), using u = (t + c0 + b)1/4, one has

∫ T

0

1

(t + c0 + b)3/4 sin(t + c0 + b)1/4 dt =
∫ (T +c0+b)1/4

(c0+b)1/4
sin u du

= − cos(T + c0 + b)1/4 + cos(c0 + b)1/4.

Combining this with (10), one sees that, for any |a| < 1, |b| < 1, Ha,b(t) is bounded
on [0, ∞).

Let c0 �82 be of the form (2k	 + 	/2)4. For |b| < 1,

d

db
(c0 + b)1/4 = 1

4(c0 + b)3/4 � 1

4
� 	

6
.

Consequently,

c
1/4
0 − 	

6
�(c0 + b)1/4 �c

1/4
0 + 	

6
∀ |b| < 1.

This implies that

− 1
2 � cos(c0 + b)1/4 � 1

2 ∀ |b| < 1.

Thus,

lim
T →∞

∫ T

0

1

(t + c0 + b)3/4 sin(t + c0 + b)1/4 dt = 1 − cos(c0 + b)1/4 � 1

2
,

lim
T →∞

∫ T

0

1

(t + c0 + b)3/4 sin(t + c0 + b)1/4 dt = −1 − cos(c0 + b)1/4 � − 1

2
.
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Finally, we let c0 = (2k	 + 	/2)4 with k large enough so that

• c0 �82; and
• 2√

c0
< 1/4.

This way, we get for all |a| < 1, |b| < 1,

lim
T →∞

Ha,b(T ) = lim
T →∞

∫ T

0

(
1√

t + c0 + a
− 1√

t + c0 + b

)
dt

− lim
T →∞

∫ T

0

1

(t + c0 + b)3/4 sin(t + c0 + b)1/4 dt

� la,b + 1
2 ,

where la,b = ∫ ∞
0

(
1√

t+c0+a
− 1√

t+c0+b

)
dt ; and

lim
T →∞

Ha,b(T ) = lim
T →∞

∫ T

0

(
1√

t + c0 + a
− 1√

t + c0 + b

)
dt

− lim
T →

∫ T

0

1

(t + c0 + b)3/4 sin(t + c0 + b)1/4 dt

� la,b − 1
2 ,

which implies that

lim
t→∞

Ha,b(t) − lim
t→∞

Ha,b(t)�1.

Since c0 was chosen so that
∣∣la,b

∣∣ < 1/4, one has

lim
T →∞

Ha,b(T ) < −1/4, lim
T →∞

Ha,b(T ) > 1/4.

3.2. Proof of Lemma 2.2

First of all, it can be calculated (see also (8)) that, for t large enough

|�(t)| =
∣∣∣∣ d

dt
q0(t + c0)

∣∣∣∣ � M

t3/2 (11)

for some M �0, where q0 is defined as in (7). Let � : (0, �) → (−1, ∞) be defined
by �(r) = q−1(r), where � = q(−1)�q(t) for all t > −1. Note that

lim
r→0

�(r) = ∞.
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Let g(r) = � ◦ �(r) for r �= 0, and g(0) = 0. Then g is continuous on [0, �), and
of C1 on (0, �). Observe that g(r) < 0 for all r ∈ (0, �). Below we show that g is
differentiable at 0.

Fact 1. There exist some �0 > 0 and some L0 > 0 such that

�(r)� L0

r2 ∀ r ∈ (0, �0). (12)

To prove Fact 1, write t = q−1(r). Then r = q(t), and

r � 1√
t + c0

− 1

(t + c0)3/4 � L0√
t

∀ t �T0 (13)

for some L0 > 0 and some T0 �0. Since q(t) decreases to 0 as t → ∞, it follows
that for some �0 > 0, it holds that t � L0

r2 for all r ∈ (0, �0), this is, (12) holds.

Fact 2. g′(0) = 0.

Fact 2 follows from Fact 1 combined with (11):

|�(�(r))| � M

[�(r)]3/2 �M

[
L0

r2

]−3/2

�M̃r3

for all r > 0 in a neighborhood of 0, where M̃ > 0 is some constant. This shows that
g is differentiable at 0, and g′(0) = 0.

Fact 3. q ′(r) is continuous at r = 0.

To prove this fact, we first get an estimate on �′(t) for t large enough.

�′(t − c0) = q ′′
0 (t) = 3

4t5/2
+ 21

16t11/4 sin t1/4

− 3

16t10/4 cos t1/4 − 3

8t5/2
cos t1/4 − 1

16t9/4 sin t1/4.

Hence, for some T1 > 0 and some L1 �0,

∣∣∣∣ d

dt
�(t)

∣∣∣∣ � L1

t9/4 ∀ t �T1.
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This implies that, for some �1 > 0,

∣∣�′(�(r))
∣∣ � L1

[�(r)]9/4 ∀ r ∈ (0, �1). (14)

We also need the following estimate on �′(r) near 0:

∣∣∣∣ d

dt
q(t − c0)

∣∣∣∣ =
∣∣∣∣ d

dt
q0(t)

∣∣∣∣ � 1

2t3/2 − 3

4t7/4 − 1

4t3/2

= 1

4t3/2 − 3

4t7/4 ∀ t �c0.

It then can be seen that for some T2 > 0 and some L2 > 0, one has

∣∣q ′(t)
∣∣ � L2

t3/2 ∀ t �T2,

which implies that for some �2 > 0,

∣∣q ′(�(r))
∣∣ � L2

[�(r)]3/2 ∀ r ∈ (0, �2).

Finally,

∣∣g′(r)
∣∣ = ∣∣�′(�(r))�′(r)

∣∣ =
∣∣∣∣�′(�(r))

1

G′(�(r))

∣∣∣∣
� L1

[�(r)]9/4 · 1
L2

[�(r)]3/2

= L1

L2[�(r)]3/4 → 0 as r → 0.

Hence, g′(r) is continuous at r = 0. With this we conclude that g is of C1 on [0, �).

3.3. Proof of Lemma 2.3

The statement about xa(t) is certainly clear.
To treat the part about yb(t), first observe that q ′(t) can be written as q ′(�(q(t))).

Also note that for any |b| < 1, 0�q(t+b)�q(−1) for all t �0, that is, q(t+b) ∈ (0, �)

for all t �0. Hence, we have

d

dt
q(t) = g(q(t)),
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that is, q(t) is a solution of the differential equation ẏ = q(y). Let q̃(t) = −q(t). Then

dq̃(t)

dt
= −dq

dt
= −g(q(t)) = −g(−q̃(t)) = g(q̃(t)).

This shows that −q(t) is also a solution of the equation ẏ = g(y).

3.4. Proof of Lemma 2.4

Since for xf (x) < 0 and yg(y) < 0 for all x �= 0, y �= 0, both the x- and the
y-subsystems are globally asymptotically stable.

To complete the proof, it is enough to note that every trajectory of the system

ż = −�(z) + h(t)

is bounded for any choice of bounded function h(t).
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