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Summary. A result is presented showing the existence of inputs universal for ob-
servability, uniformly with respect to the class of all continuous-time analytic sys-
tems. This represents an ultimate generalization of a 1977 theorem, for bilinear
systems, due to Alberto Isidori and Osvaldo Grasselli.

1 Introduction

One of the key concepts in control theory is that of a universal input for
observability and parameter identification. Informally stated, an input u0 is
universal (for a given system) provided that the following property holds: if
two internal states x1 and x2 are in principle distinguishable by any possi-
ble input/output experiment, then x1 and x2 can be distinguished by forcing
the system with this particular input u0 (and observing the corresponding
output function). Universal input theorem(s) for distinguishability show that
such inputs indeed do exist, and, furthermore, show that “generic” (in an
appropriate technical sense) inputs have this property. Viewing unknown pa-
rameters as constant states, one may re-interpret the universal input property
as one regarding parameter identifiability instead of observability.

In the seminal 1977 paper [5], Alberto Isidori (together with Osvaldo Gras-
selli) provided the first general result on existence of universal inputs for a wide
class of nonlinear systems (bilinear systems). Motivated by this work [8] pro-
vided analogous results for discrete time systems as well as continuous-time
analytic systems with compact state spaces, and this was extended to arbi-
trary continuous-time analytic systems in [14]. (See also the related work in [7]
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for linear automata.) A different proof of the result in [14] was given in [21],
where implications to the study of a nonlinear analog of “transfer functions”
were discussed as well.

In the present paper, we provide an ultimate extension of the theorems
for analytic continuous-time systems, showing that there are inputs that are
universal with respect to all finite dimensional analytic systems, and, more-
over, the set of such inputs is generic. A preliminary version of our result
was presented at the 1994 IEEE Conference on Decision and Control [20] (see
also [11]).

Besides their intrinsic theoretical appeal, universal input theorems help
provide a rationale for systems identification when using information pro-
vided by “random” or unknown inputs. For example, in [16] universal inputs
were used to justify the “dependent input” approach to the identification of
molecular-biological systems, for which high complexity and the lack of suf-
ficient quantitative measurements prevent the use of arbitrary test signals.
The approach in [16], applied to measurements of nitrogen uptake fluxes in
baker’s yeast (Saccharomyces cerevisiae), was to view unmodeled dynamics
(possibly due to mutations in the yeast strains being used) as generating fic-
titious “dependent inputs”. In another direction, universal input theorems
provide a basis for certain numerical methods for path planning in nonlinear
systems, see for example [11, 10, 12].

2 Analytic Input/Output Operators

We first review some standard notions regarding analytic input/output oper-
ators. Let m be a fixed nonnegative integer. By an input we mean a Lebesgue
measurable, essentially bounded function u : [0, T ]→ R

m for some T > 0.
Consider a set Θ = {X0, X1, . . . , Xm}, whose elements will be thought

as m + 1 non-commuting variables. We use Θ∗ to denote the free monoid
generated by Θ, where the neutral element of Θ∗ is the empty word, and the
product is concatenation. We define R[Θ] to be the R-algebra generated by
Θ∗, that is, the set of all polynomials in the Xi’s. By a power series in the
variables X0, X1, . . . , Xm we mean a formal power series:

c =
∑

w∈Θ∗
〈c, w〉w ,

where 〈c, w〉 ∈ R for each w ∈ Θ∗. We use R[[Θ]] to denote the set of all
power series in the Xi’s. This is a vector space with “+” defined coefficient-
wise. There is a linear duality between R[[Θ]] and R[Θ] provided by:

〈c, d〉 =
∑

w∈Θ∗
〈c, w〉〈d, w〉 (1)

for any c ∈ R[[Θ]] and d ∈ R[Θ].
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A series c ∈ R[[Θ]] is a convergent series if there is a positive (radius of
convergence) ρ and a constant M such that

|〈c, w〉| ≤ Mρll!, ∀|w| = l , (2)

where |w| denotes the length of w, i.e., |w| = l if w = Xi1Xi2 · · ·Xil .
Let Lm

e,∞ denote the set of measurable, locally essentially bounded func-
tions u : [0, ∞) → R

m. For each u ∈ Lm
e,∞ and S0 ∈ R[[Θ]], consider the

initial value problem

Ṡ(t) =

(

X0 +
m∑

i=1

Xiui

)

S(t), S(0) = S0 (3)

seen as a differential equation over R[[Θ]]. A solution is an absolutely con-
tinuous curve, where derivative is understood coefficient-wise. For any locally
essentially bounded u( · ), by the Peano-Baker formula, there is always a so-
lution in R[[Θ]] whose coefficients are iterated integrals of u. Furthermore,
one can prove the uniqueness of the solutions successively by induction. In
particular, the solution C[u] with C[u](0) = S0 = 1 defines the generating (or
“Chen-Fliess”) series of u (cf. [1, 2, 14]). Explicitly, For each u, the generating
series C[u] is given by

C[u](t) =
∑

w

Vw[u](t)w ,

where Vw[u] is given recursively by Vφ[u](t) = 1, and

VXiw[u](t) =
∫ t

0

ui(s)Vw[u](s) ds , ∀w ∈ Θ∗ , (4)

where u0 ≡ 1. We say that a pair (T, r) of positive real numbers with r ≥ 1 is
admissible for a convergent series c if for some M and ρ as in (2) the following
inequality holds:

Trρ(m+ 1) < 1.

For each pair (T, r) (where r ≥ 1) that is admissible for a convergent series c,
the series c defines an i/o operator FT,r

c on the set

VT (r) := {u| u : [0, T ]→ R
m, ‖u‖∞ ≤ r}

by means of the following formula:

Fc[u](t) = 〈c, C[u](t)〉 =
∑

w

〈c, w〉Vw [u](t) . (5)

It is known (c.f. [6]) that the series in (5) converges uniformly on [0, T ].
Note that, for every convergent series c, and for every two pairs (T1, r1)

and (T2, r2) that are admissible for c, the functions FT1,r1
c and FT2,r2

c coincide
on Vr(T ), where T = min{T1, T2} and r = min{r1, r2}. Therefore, one may
define a mapping Fc on the union of the sets VT (r) for all pairs (T, r) that are
admissible for c, as an extension of the maps FT,r

c . Such operators defined by
convergent series have been extensively studied, c.f. [3, 6, 18, 19].
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3 Uniformly Universal Inputs

In this section we study the distinguishability of operators by analytic input
functions.

Let c and d be two convergent series. We say that c and d are distinguishable
by an input function u : [0, T0] → R

m, denoted by c �∼u d, if for every T ∈
(0, T0] for which (T,max{‖u‖∞ , 1}) is admissible for both c and d, it holds
that

Fc[u] �= Fd[u]

as functions defined on [0, T ]. Note here that “c �∼u d” is stronger than merely
requiring Fc[u](t) �= Fd[u](t) as functions over some interval. In our context,
we require that Fc[u] �= Fd[u] as functions over every interval [0, T ] for which
(T,max{‖u‖∞ , 1}) is admissible for both c and d.

An input u is called a uniformly universal input if c �∼u d for any con-
vergent series c and d such that c �= d. Note that an input u is a uniformly
universal input if and only if u distinguishes c from 0 whenever c �= 0.

For each T > 0, we consider C∞[0, T ], the set of all smooth functions
from [0, T ] to R

m, a topological space endowed with the Whitney topology.
We will say that a subset S of a topological space is generic if S contains
a countable intersection of open dense sets. Since C∞[0, T ] is a Baire space
(cf.[4]), a generic subset of C∞[0, T ] is dense.

Let ΩT denote the set of all uniformly universal inputs defined on [0, T ].
The following is the main result.

Theorem 1. For any fixed T > 0, the set ΩT of uniformly universal inputs
is a generic subset of C∞[0, T ].

Theorem 1 asserts the existence of smooth uniformly universal inputs (and
their genericity); however, there is no analytic uniformly universal input. To
illustrate this fact, consider the following example.

Example 1. Take any fixed analytic function α : [0, ∞)→ R. For this function,
consider the state space system:

ẋ1 = 1 , ẋ2 = 0 , ẋ3 = (α(x1)− u)x2 , y = x3 . (6)

When writing the system as

ẋ = g0(x) + g1(x)u , y = h(x) ,

one has, in the standard coordinates of R
3, g0(x) = (1, 0, α(x1)x2)τ , g1(x) =

(0, 0, −x2)τ and h(x) = x3, where the superscript “τ” denotes the transpose.
For each x ∈ R

3, let cx be the generating series induced by the system
with the initial state x, that is, cx is given by

〈cx, Xi1Xi2 · · ·Xir〉 = Lgir
· · ·Lgi2

Lgi1
h(x) ,
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for all multi-indices i1i2 . . . ir, and all r ≥ 0. Then cx is a convergent series,
and for any initial state p, and each u, the corresponding output of (6) is given
by the “Fliess fundamental formula” ([6]):

y(t) = Fcp [u](t) .

Observe that for system (6), the two particular initial states p = (0, 0, 0)
and q = (0, 1, 0) can always be distinguished by some input, i.e., cp �= cq.
(Indeed, whenever p �= q are two states such that p1 = q1, the input u(t) =
α(p1 + t) − 1 distinguishes these initial states.) But the pair (p, q) cannot be
distinguished by u, i.e., Fcp [u] = Fcq [u], if u(t) = α(t). Hence, cp and cq cannot
be distinguished by α( · ). This shows that for any analytic function α( · ), one
can always find a pair (cp, cq) which α cannot distinguish but cp �= cq. This
shows that there is no uniformly universal input which is analytic. �

3.1 Universal Input Jets

For each k ≥ 1, consider the polynomial dk(μ) in μ = (μ
0
, μ

1
, . . . , μ

k−1
) given

by

dk(μ) =
dk

dtk

∣
∣
∣
∣
t=0

C[u](t) , (7)

where u is any input such that u(i)(0) = μ
i
. Then one has the following

formula for k ≥ 1:

dk

dtk
Fc[u](0) = 〈c, dk(u(0), u′(0), . . . , u(k−1)(0))〉 . (8)

Let d0 = 1. Then if μ = (μ
0
, μ

1
, . . .) is such that 〈c, dk(μk)〉 �= 0 for some

k ≥ 0, then c �∼u 0, for any T > 0 and any u ∈ C∞[0, T ] such that u(i)(0) = μ
i

for 0 ≤ i ≤ k − 1, where μk ∈ R
mk is given by μk

i = μ
i

for 0 ≤ i ≤ k − 1.
Let IRm,∞ =

∏∞
i=1 R

m be endowed with the product topology whose basis
of open sets consists of all sets of the form

∏∞
i=1 Ui, where each Ui is an open

subset of R
m, and only finitely many of them are proper subsets of R

m. Note
that IRm,∞ is a Baire space, and hence, any generic subset of IRm,∞ is a dense
set. For each μ ∈ IRm,∞ and a series c, we let 〈c, d(μ)〉 denote the sequence

〈c, d0〉, 〈c, d1(μ0
)〉, 〈c, d2(μ0

, μ
1
)〉, 〈c, d3(μ0

, μ
1
, μ

2
)〉, . . . .

Let J be the subset of IRm,∞ defined by

J = {μ : 〈d, d(μ)〉 �= 0, ∀d ∈ C, d �= 0} , (9)

where C stands for the set of all convergent series. Take μ ∈ J . It is easy to
see from (8) that for any u ∈ C∞ with u(i)(0) = μ

i
for all i, u is a uniformly

universal input. We call the elements in J universal input jets.

Theorem 2. The set J of universal input jets is a generic subset of IRm,∞.
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4 Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we need to study some topological properties of
the set C of convergent series. This set can be identified with R

N, the set of
all maps from N to R, once the elements of Θ∗ are linearly ordered; we again
adopt the product topology on this set. With this topology, that a sequence
{cj} converges to c means

lim
j→∞
〈cj , w〉 = 〈c, w〉

for each w ∈ Θ∗. Observe that a subset S of R[[Θ]] is compact (in the product
topology) if and only if S is closed, and for each w, there exists Mw > 0 such
that for all d ∈ S,

|〈d, w〉| ≤ Mw.

4.1 Equi-Convergent Families

A family S of convergent series is said to be equi-convergent if there exist
ρ, M > 0 such that

|〈d, w〉| ≤ Mρll! , ∀|w| = l (10)

holds for every d ∈ S. Clearly, every closed equi-convergent family is compact,
and if S is equi-convergent, there exists some pair (T, r) that is admissible for
every element of S. For such (T, r), we say that (T, r) is admissible for S.

For any convergent series c and μ ∈ R
mk, we let 〈c, dk(μ)〉k denote the

k-vector (
〈c, d0〉, 〈c, d1(μ0)〉 , . . . , 〈c, dk(μ0 , . . . , μk−1

)〉
)
.

For a set S of convergent series, we let

J k
S = {μ ∈ R

mk : 〈d, dk(μ)〉k �= 0, ∀d ∈ S}

(which maybe an empty set, e.g., in the case when S contains the zero series.)
Let μ ∈ R

mk. We say that ν is a finite extension of μ if ν ∈ R
ml for some

l ≥ k such that ν
i

= μ
i

for 0 ≤ i ≤ k − 1. For an equi-convergent family, we
have the following conclusion.

Lemma 1. Assume that S is compact and equi-convergent, and that J l
S �= ∅

for some l. Then for any k ≥ 1 and any μ ∈ R
mk, there exist K and a finite

extension ν of μ such that ν ∈ JK
S .

To prove Lemma 1, we first discuss some continuity properties of the operators
defined by the convergent series. Lemma 2.2 of [19] shows that if (T, r) is
admissible for c, then the map VT (r)→ C[0, T ], u �→ Fc[u] is continuous using
the L1 norm on VT (r) in the special case when r = 1. The same proof can be
used to prove the following result for equi-convergent families.



Uniformly Universal Inputs 15

Lemma 2. Assume that S is equi-convergent, and (T, r) is admissible for S.
Then the map

VT (r)→ C[0, T ], u �→ Fc[u]

is continuous with respect to the L1 norm on VT (r) and the C0 norm on
C[0, T ] uniformly for c ∈ S. �

This result can be strengthened further to the following, where the topology
on VT (r) is the L1-topology, and the topology on C[0, T ] is the C0 topology.

Lemma 3. Let S be an equi-convergent family. Then, for any r > 0, there
exists some T1 > 0 such that for any T < T1 the map

ψ : S × VT (r)→ C[0, T ], (c, u) �→ Fc[u]

is continuous.

Proof. Let S be compact and equi-convergent. Then there exists ρ such that

|〈d, w〉| ≤ Mρkk! ∀|w| = k , ∀d ∈ S . (11)

Let T1 = 1
rρ(m+1) . Fix T ∈ [0, T1). Then Fd is defined on VT (r) for each d ∈ S.

For any c, d ∈ S, u, v ∈ VT (r),

‖Fc[u]− Fd[v]‖∞ ≤ ‖Fc[u]− Fc[v]‖∞ + ‖Fc[v]− Fd[v]‖∞ .

Hence, by Lemma 2, it is enough to show that the map

S → C[0, T ], c �→ Fc[v] (12)

is equi-continuous for v ∈ VT (r), that is, for any c ∈ S, for any ε > 0, there
exists a neighborhood N of c such that

‖Fc[v]− Fd[v]‖∞ < ε

for all d ∈ N and all v ∈ VT (r).
First note that for each d ∈ S and v ∈ VT (r), one has

|Vw[v](t)| ≤ rktk

k!
∀ |w| = k, (13)

and therefore,
∣
∣
∣
∣
∣
∣

∑

|w|≥k

〈d, w〉Vw [v](t)

∣
∣
∣
∣
∣
∣
≤

∞∑

j=k

Mρjj! (m+ 1)j
rjT j

j!
≤M

∑

j≥k

T j

T j
1

(where we have used the fact that there are at most (m+1)j elements in Θj).
Since 0 < T < T1, it follows that for any ε > 0, there exists some k > 0 such
that
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|Fd[v](t) − Fdk
[v](t)| < ε ∀t ∈ [0, T ], (14)

for all v ∈ VT (r), all d ∈ S, where for each d, dk is the polynomial given by

dk =
∑

|w|≤k

〈c, w〉w .

Let c ∈ S and ε > 0 be given. Choose k such that (14) holds for all d ∈ S and
v ∈ VT (r) with ε replaced by ε/4. Then,

|Fc[v](t)− Fd[v](t)| ≤ |Fck
[v](t)− Fdk

[v](t)| + ε/2

= |Fck−dk
[v](t)|+ ε/2 ≤

∑

|w|≤k

|〈c− d, w〉Vw [v](t)| + ε/2.

Let

R = max
0≤j≤k

{
rjT j

j!

}

.

It follows from (13) that ‖Vw[v]‖∞ ≤ R for all v ∈ VT (r) and for all w
with |w| ≤ k. Hence, there exists some δ > 0 such that for any d satisfying
|〈d, w〉 − 〈c, w〉| < δ for all |w| ≤ k,

∑

|w|≤k

|〈c− d, w〉Vw [v](t)| < ε/2.

This means that there exists some neighborhood N of c such that for any
d ∈ N ,

|Fc[v](t) − Fd[v](t)| < ε.

This shows that the map given in (12) is equi-continuous. ��

Proof of Lemma 1. Let μ̃ = (μ̃0, . . . , μ̃l−1) ∈ J l
S , and let v ∈ C∞[0, 1] be given

by

v(t) =
l−1∑

i=0

μ̃i
ti

i!
, 0 ≤ t ≤ 1.

Let r = 2 ‖v‖∞. Without loss of generality, we assume that r ≥ 1. Choose
0 < T < 1 such that (T, r) is admissible for every d ∈ S.

By the assumption on μ̃, it follows that v ∈ ΩT
S , where

ΩT
S := {u ∈ C∞[0, T ] : d �∼u 0, ∀ d ∈ S}.

Hence, for any c ∈ S, there exists some tc ∈ [0, T ] such that

|Fc[v](tc)| = τc > 0.

By the continuity property (c.f. Lemma 2), there exists a neighborhood Nc of
c such that for any d ∈ Nc ∩ S,



Uniformly Universal Inputs 17

|Fd[v](tc)| ≥ τc/2 .

Since S is compact, there exist c1, c2, . . . , cn such that S ⊆
⋃n

i=1Nci . It then
follows that for any d ∈ S, there exists some 1 ≤ j ≤ n such that

|Fd[v](tj)| ≥ τcj/2 , (15)

where tj = tcj .
Let μ = (μ0, μ1, . . . , μk−1) ∈ R

mk be given. Let {ωj} be a sequence of
analytic functions defined on [0, T ] such that

• ω
(i)
j (0) = μi for 0 ≤ i ≤ k − 1, j ≥ 1;

• ωj → v in the L1 norm (as functions defined on [0, T ]); and
• for some M ≥ 1, ‖ωj‖∞ ≤M for all j ≥ 1.

(See Lemma A.3 in [21] for the existence of such sequences.) Reducing the
value of T if necessary, one may assume that (T,M) is admissible for all
d ∈ S.

Again, as it follows from the continuity property established in Lemma 2,
one sees that for some n0 large enough,

|Fd[ωn0 ](t)− Fd[v](t)| ≤ τ/4 ∀ t ∈ [0, T ], ∀ d ∈ S, (16)

where τ = min{τc1 , τc2 , . . . , τcn}. It follows from (15) and (16) that for each
d ∈ S, there exists some j > 0 such that

|Fd[ωn0 ](tj)| ≥ τ/4 > 0 ,

from which it follows that ωn0 ∈ ΩT
S . As ωn0 is analytic, it follows that Fd[ωn0 ]

is also analytic (see Lemma 2.3 of [19]). This then implies that for any d ∈ S,
there exists some jd ≥ 1 such that y(jd−1)

d (0) �= 0, where yd(t) = Fd[ωn0 ](t),
and hence,

〈d, djd
(ω(0), . . . , ω(jd−1)(0))〉jd

�= 0 ,

where for simplicity, we have replaced ωn0 by ω. Note then that this is equiv-
alent to

〈djd
, djd

(ω(0), . . . , ω(jd−1)(0))〉jd
�= 0 .

Thus, for any d ∈ S, there exists a neighborhood Wd of d such that for any
d̃ ∈ Wd,

〈d̃jd
, djd

(ω(0), . . . , ω(jd−1)(0))〉jd
�= 0 ,

and consequently,

〈d̃, djd
(ω(0), . . . , ω(jd−1)(0))〉jd

�= 0 .

Again, by compactness of S, there exists some K ≥ 1 such that

〈d, dK(ω(0), . . . , ω(K−1)(0))〉K �= 0 ,

for any d ∈ S. Without loss of generality, one may assume that K ≥ k. Let
ν ∈ R

mK be given by ν
i
= ω(i)(0). Then ν ∈ JK

S , and by the choice of {ωj},
ν is a finite extension of μ. ��
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4.2 Universal Jets for Equi-Convergent Families

For each element w0 ∈ Θ∗, and each integer k > 0, let Cw0,k be the set of all
series satisfying:

|〈c, w0〉| ≥
1
k
, (17)

and
|〈c, w〉| ≤ kn+1n! , ∀|w| = n . (18)

Clearly, each Cw,k is compact, equi-convergent, and d �= 0 for any d ∈ Cw,k.
Moreover, it is easy to see that

C \ {0} =
⋃

w∈Θ∗,k≥1

Cw,k . (19)

We now let, for each w, k, and T > 0,

ΩT
w,k = {u ∈ C∞[0, T ] : c �∼u 0, ∀c ∈ Cw,k} .

Then it follows from (19) that

ΩT =
⋂

w,k

ΩT
w,k .

For a set S of convergent series, we define

JS = {μ ∈ IRm,∞ : 〈d, d(μ)〉 �= 0, ∀d ∈ S} ,

and we denote JCw,k
by Jw,k. Again, by (19), we have

J =
⋂

w,k

Jw,k .

Thus, to prove Theorem 2, it is enough to show that Jw,k is open dense in
IRm,∞.

Lemma 4. Let S be an equi-convergent and compact family so that 0 �∈ S.
Then JS is open and dense in IRm,∞.

To prove Lemma 4, we first prove the following result which is stronger than
Lemma 1 in that it is no longer a prior requirement that J l

S �= ∅ for some l.

Lemma 5. Let S be an equi-convergent and compact family so that 0 �∈ S.
Then for any j ≥ 1 and μj = (μ0, . . . , μj−1) ∈ R

mj, there exists a finite
extension νk of μj such that νk ∈ J k

S .
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Proof. Let μj ∈ R
mj be given. Consider any fixed c ∈ S, c �= 0. According

to [17, Theorem 1] (see also Lemma A.4 in [21]), there are always some l ≥ j
and finite extension νc ∈ R

ml of μj such that

〈c, dl(νc)〉l �= 0 .

From here it follows that there exists some neighborhood Nc of c such that

〈d, dl(νc)〉l �= 0 ,

for all d ∈ Nc∩S. Since S is Hausdorff and compact, one may assume that Nc

is compact. Applying this argument for each c in S, and using compactness
of S, one concludes that there are finitely many c1, c2, . . . cn such that S is
covered by ∪n

i=1Nci . Write Nci ∩S as Ni. Then on each Ni, there exists some
finite extension νci ∈ R

mli of μj such that

〈d, dli(νci)〉li �= 0 ,

for all d ∈ Ni. In particular, note that, for each i, Ni is compact and J li
Ni
�= ∅,

so Lemma 1 can be applied to each such Ni. We do this next, inductively.
Start by defining s1 = l1 and σ1 as just νc1 . Then σ1 ∈ R

ms1 is a finite
extension of μj and σ1 ∈ J s1

N1
. Consider N2. By Lemma 1, there exists some

s2 ≥ s1 and some finite extension σ2 of σ1 such that σ2 ∈ J s2
N2

. Since σ2

is an extension of σ1, it follows that σ2 is also in J s2
N1

, and it is also a finite
extension of μj . Repeating finitely many times, one concludes that there exists
some finite extension σn ∈ R

msn of μj such that σn ∈ J sn

Ni
for all 1 ≤ i ≤ n.

Hence, σn ∈ J sn

S . ��

Proof of Lemma 4. Let S be an equi-convergent family so that 0 �∈ S. We
first prove the density property of JS . Pick up any μ = (μ0, μ1, . . .) ∈ IRm,∞.
Let W be a neighborhood of μ (in the product topology). Without loss of
generality, one may assume that

W = W0 ×W1 × · · · ×Wj−1 × R
m × R

m × · · · ,

where Wi is an open subset of R
m for 0 ≤ i ≤ j − 1. By Lemma 5, there

exists some finite extension νN of μj := (μ0, . . . , μj−1) such that νN ∈ JN
S .

Note that every extension ν of νN is in JS as well as in W since it is also an
extension of μj . Hence, W

⋂
JS �= ∅.

We now prove the openness property of JS . Pick μ = (μ0, μ1, . . .) ∈ JS .
Then for each c ∈ S, there exists some k ≥ 0 such that

〈c, dk(μ)〉k �= 0 . (20)

By compactness of S, one can assume that k does not depend on c. Note
that (20) involves only finitely many terms, so there are neighborhoods Nc of
c ∈ S and Uc,μk of μk in R

mk (where μk = (μ0, . . . , μk−1)) such that
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〈d, dk(ν)〉k �= 0

for all d ∈ Nc and all ν ∈ Uc,μk . Again, using compactness, one can show
that there are finitely many Uc1,μk , . . . , Ucn,μk , each of which is open, so that
S ⊆
⋃n

i=1Nci , and Uci,μk ⊆ J k
Nci

. Let

Uμk =
n⋂

i=1

Uci,μk .

Then Uμk is a neighborhood of μk in R
mk. Since Uμk ⊆ J k

Nci
for all 1 ≤ i ≤ n,

it follows that Uμk ⊆ J k
S . Finally, let U = Uμk × IRm,∞. Then U is an open

set containing μ. Furthermore, for any ν ∈ U , the restriction νk of ν is in Uμk ,
and therefore, ν ∈ JS . This shows that U ⊆ JS and μ is an interior point
of JS . ��

4.3 Universal Inputs for Equi-Convergent Families

As discussed in Section 4.2, to prove Theorem 1, it is enough to show the
following.

Lemma 6. Let S be an equi-convergent and compact family so that 0 �∈ S.
Then, for any T > 0, the set ΩT

S is open and dense in C∞[0, T ].

First of all, we make the following observation.

Remark 1. Suppose that ΩT0
S is open and dense in C∞[0, T0] for some T0, then

ΩT
S is open and dense in C∞[0, T ] for every T > T0. This can be shown in

details as follows.
For each subset U of C∞[0, T ], let UT0 = {vT0 : v ∈ U}, where for v ∈

C∞[0, T ], vT0 denotes the restriction of v to the interval [0, T0]. Suppose U is
open in C∞[0, T ], then UT0 is open in C∞[0, T0], and every u ∈ UT0 can be
smoothly extended to a function ũ ∈ U . Moreover, if u ∈ ΩT0

S , then ũ ∈ ΩT
S .

Hence, if ΩT0
S

⋂
UT0 �= ∅, then ΩT

S

⋂
U �= ∅. This shows the density property

of ΩT
S .

To show the openness property of ΩT
S , let u ∈ ΩT

S . By definition, for any
c ∈ S, there exists some tc ∈ [0, T0] such that Fc[u](tc) �= 0, so uT0

∈ ΩT0
S .

By openness of ΩT0
S , there is a neighborhood U of u

T0
in C∞[0, T0] such that

u
T0
∈ U ⊆ ΩT0

S . Let

Ũ = {v ∈ C∞[0, T ] : v
T0
∈ U}.

Then Ũ is a neighborhood of u in C∞[0, T ], and Ũ ⊆ ΩT
S . This shows that

every u in ΩT
S is an interior element of ΩT

S . �
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Proof of Lemma 6. Assume that S is equi-convergent and compact. Let T > 0
be given. We first prove the density property of ΩT

S . By Remark 1, one may
assume that T < 1/2. Let u ∈ C∞[0, T ], and pick a neighborhood W of u.
Again, without loss of generality, we may assume that

W =
{
v ∈ C∞[0, T ] :

∥
∥
∥v(i) − u(i)

∥
∥
∥
∞
< δ, 0 ≤ i ≤ j − 1

}

for some j ≥ 1 and some δ > 0. Let μ = (μ0, μ1, . . .) be given by μi = u(i)(0).
By Lemma 5, there exists someK > j and a finite extension νK of μj such that
νK ∈ JK

S . By Lemma A.4 in [21], one sees that there exists some analytic
function wj such that w(i)

j (0) = νj+i − μj+i for i = 0, . . . ,K − j − 1, and
‖wj‖L1

< δ. One then defines wl inductively for l = j − 1, . . . , 1, 0 by

wl(t) =
∫ t

0

wl+1(s) ds.

It then can be seen that wl+1(t) = w′
l(t), wl(0) = 0, and ‖wl‖∞ < δ for

0 ≤ l ≤ j−1. Consequently, w0 ∈ C∞[0, T ] is a function such that w(i)
0 (0) = 0

for 0 ≤ i ≤ j − 1, and w
(i)
0 (0) = νi − μi for j ≤ i ≤ K − 1, and

∥
∥
∥w

(i)
0

∥
∥
∥
∞
< δ

for all 0 ≤ i ≤ j − 1.
Let w(t) = u(t) + w0(t). Then w ∈ W . Also note that w(i)(0) = νi for

0 ≤ i ≤ K − 1. Since νK ∈ JK
S , it follows that w ∈ ΩT

S . This proves the
density property of ΩT

S .
Next we show the openness property of ΩT

S . Let u ∈ ΩT
S . Again, by Re-

mark 1, we may assume that (T, r) is admissible for every c ∈ S, where
r = max{‖u‖∞ , 1}, and that T < T1, where T1 is defined as in Lemma 3.
Since S is compact, there exists some δ > 0 such that ‖Fc[u]‖∞ ≥ δ for all
c ∈ S. Observe that Lemma 3 still holds when VT (r) is endowed with the
Whitney topology. Hence, for each c ∈ S, there exist a neighborhood Nc of c
and a neighborhood Uc ⊆ VT (r) of u such that

‖Fc[v]‖∞ > δ/2

for all c ∈ Nc, v ∈ Uc. By compactness of S, there are finitely many
c1, c2, . . . , cL such that S ⊆

⋃L
i=1Nci . Let U =

⋂L
i=1 Uci . Then U is a neigh-

borhood of u, and for each v ∈ U , ‖Fc[v]‖∞ > δ/2 for all c ∈ S. It follows
that U ⊆ ΩT

S . ��

5 State Space Systems

Consider an analytic system

Σ :

⎧
⎪⎨

⎪⎩

x′(t) = g0(x(t)) +
m∑

i=1

gi(x(t))ui(t) ,

y(t) = h(x(t)) ,
(21)



22 E.D. Sontag and Y. Wang

where for each t, x(t) ∈M, which is an analytic (second countable) manifold
of dimension n, h : M −→ R is an analytic function, and g0, g1, . . . , gm
are analytic vector fields defined on M. Inputs are measurable essentially
bounded maps u : [0, T ] −→ R

m defined on [0, T ] for suitable choices of
T > 0. In general, ϕ(t, x, u) denotes the state trajectory of (21) corresponding
to an input u and initial state x, defined at least for small t.

Fix any two states p, q ∈M and take an input u. We say p and q are distin-
guished by u, denoted by p �∼u q, if h(ϕ( · , p, u)) �= h(ϕ( · , q, u)) (considered
as functions defined on the common domain of ϕ( · , p, u) and ϕ( · , q, u));
otherwise we say p and q cannot be distinguished by u, denoted by p ∼u q.
If p and q cannot be distinguished by any input u, then we say p and q are
indistinguishable, denoted by p ∼ q. If for any two states, p ∼ q implies p = q,
then we say that system (21) is observable. (See [6] and [13].) See also [9] for
other related notions as well as detailed concept of generic local observability.

For a given continuous time system Σ, let F be the subspace of func-
tions M −→ R spanned by the Lie derivatives of h in the directions of
g0, g1, . . . , gm, i.e.,

F := spanR

{
Lgi1

Lgi2
· · ·Lgil

h : l ≥ 0, 0 ≤ ij ≤ m
}
. (22)

This is the observation space associated to (21); see e.g. [13, Remark 5.4.2].
Now for any μ = (μ

0
, μ

1
, . . .) in IRm,∞, we define

ψi(x, μ) =
di

dti

∣
∣
∣
∣
t=0

h(ϕ(t, x, u)) (23)

for i ≥ 0, where u is any C∞ input with initial values u(j)(0) = μ
j
. The

functions ψi(x, μ) can be expressed, – applying repeatedly the chain rule, –
as polynomials in the μ

j
= (μ

1j
, . . . , μ

mj
) whose coefficients are analytic

functions.
For each fixed μ ∈ IRm,∞, let Fμ be the subspace of functions fromM to

R defined by

Fμ = span
R
{ψ0( · , μ), ψ1( · , μ), ψ2( · , μ), . . .} , (24)

and let Fμ(x) be the space obtained by evaluating the elements of Fμ at x
for each x ∈ M.

For system (21), we consider the series cp, for each p ∈M, defined by

〈cp, Xi1Xi2 · · ·Xil〉 = Lgil
· · ·Lgi2

Lgi1
h(p) . (25)

According to [15, Lemma 4.2], this is always a convergent series. Note then
that p �∼ q if and only if cp �= cq (see [6, 17]). Also, for each i ≥ 0, it holds
that

ψ
i
(p, μ) = 〈cp, di(μ0 , . . . , μi−1

)〉,
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where di is still the same as defined in (7). For each μ ∈ IRm,∞, we denote

Ψμ(p) = (ψ0(p, μ), ψ1(p, μ), ψ2(p, μ), . . .) , p ∈M .

Consider the set

JΣ := {μ ∈ IRm,∞ : Ψμ(p) �= Ψμ(q), ∀p �∼ q},

and the set
J :=

⋂

Σ

JΣ ,

where the intersection is taken over the collection of all analytic systems with
m inputs as in (21). Clearly, J ⊇ J , and hence, the following is an immediate
consequence of Theorem 2.

Corollary 1. The set J is a generic subset of IRm,∞.

Using Corollary 1, one recovers the existence of universal inputs for analytic
systems previously established in [14], but in a stronger form, uniformly on
all state space systems of all dimensions with input functions taking values
in R

m.
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