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REMARKS ON PIECEWISE-LINEAR ALGEBRA

EDUARDO D. SONTAG

This note studies some of the basic properties of the
category whose objects are finite unions of (open and closed)
polyhedra and whose morphisms are (not necessarily continu-
ous) piecewise-linear maps.

Introduction* A function f: V —>W between real vector spaces
is piecewise-linear (PL) if there exists a partition of V into "open
polyhedra" X€ (i.e., relative interiors of polyhedra) such that / is
affine on each Xt. (As distinct to the case of PL-topology, no
continuity is required of /.) Images and preimages under PL-maps
give rise to finite unions of open polyhedra, or PL-seίs; conversely
PL functions can be characterized by the fact that their graphs
are PL-sets. This paper studies some basic algebraic properties
of the category PL, proving in particular that it is an exact
category, and in fact a pretopos. A classification is given for the
isomorphism classes of objects of PL, in terms of a two-generator
semiring.

The first section recalls without proof some facts from polyhedral
geometry needed in the paper. Except for the setting of a unified
notation and for minor generalizations, the material there is well
known. The second section defines PL maps and sets, and studies
the category. The main results (leading to the classification theorem)
are given in the last section.

1* Review of polyhedral geometry* The following conventions
and definitions hold throughout. All vector spaces are finite-
dimensional spaces over the reals R; a flat means an affine sub-
manifold of some such space V, and the closed half-spaces associated
to a linear /: V —> R and an r in R (or associated to the hyperplane
{x\f(x) = r},) are the sets {x\f(x) ^ r} and {x\f(x) ^ r}. The cor-
responding open half-spaces are obtained by using strict inequalities
in the above. A half-line (closed or open) is the intersection of a
line L in V with a (closed or open) half-space not containing L.

A (convex) closed polyhedron in V is by definition an intersection
of finitely many closed half-spaces. The dimension of a nonempty
polyhedron P is the dimension of afϊ (P), the smallest flat containing
P; the relative interior ri (P) is the interior of P relative to the
usual topology on aff (P). An open polyhedron P is by definition
the relative interior of some closed polyhedron c/(P) {c/ denoting
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usual topological closure); this is equivalent to P being an intersec-
tion of finitely many flats and open half-spaces. A (closed or open)
poly tope is a polyhedron which is bounded ( = contains no half-lines).
The relative boundary rb (P) is the set-theoretic difference c/(P)\ri (P).

We review now a few other notions and results which are
needed later; for proofs the reader is referred to Rockaffelar [7],
especially §§8, 9, 17, 18, and 19, and to Grunbaum [5]. (The
terminology "polyhedron" is usually reserved for closed ones and
results are stated for these; results for "open polyhedra" are implicit
in results about relative interiors. In our case, open polyhedra will
be more relevant.)

A proper ("exposed") face of a closed polyhedron P (or, more
generally, of a convex set,) is the intersection of P with a nontrivial
supporting hyperplane H (i.e., an H such that H intersects P and
P is contained entirely in one of the half-spaces associated to H).
A face of P is either P itself, the empty set, or a proper face. A
zero-dimensional, one-dimensional, or maximal proper face is called
respectively a vertex (or extreme point), edge, or facet. An extreme
direction (or "extreme point at infinity") is the direction of a half-
line contained in some edge (by direction one means a translation-
equivalence class of half-lines άiτ(y) = family of sets {x + Xy, λ ^ 0},
x in V, for a nonzero vector y).

If P is an irredundant intersection of half-spaces each associated
to a hyperplane Hif the facets of P are precisely the intersections
of P with the various Ht. The facets of facets of P are intersections
of facets of P, and every face of P is an intersection of facets.
The set F(P) of faces of P, ordered by inclusion, is a complete lat-
tice, the meet being the intersection. The following result (see
e.g., Rockaffelar [7, Theorem 18.2]) will be useful.

THEOREM 1.1. The family of relative interiors ri (F), F in F{P),
gives a partition of P.

Note that the ri (F) for F proper give a partition of rb (P).
A face of an open polyhedron P is by definition the same thing

as a face of c/(P).
A (closed or open) polyhedron P recedes in direction d = dir (y)

if x + Xy is in P whenever x is in P and λ is nonnegative. This
is equivalent to requiring that there exist at least one x in P with
{x + Xy, X ^ 0} contained in P. The recession cone 0+P is the set
consisting of zero and of all vectors y such that dir (y) is a direction
of recession of P, or equivalently, the set of y with P + y £ P.
(Here C + y, or more generally A + B, indicates as usual the set
of all sums.) For any P, it holds that 0+P = 0+(ri (P)).
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The (closed) convex hull conv (S) of a finite subset S of V is the
smallest convex subset of V containing S; it is the closed polyhedron
consisting of all convex combinations Σ \sif Σ \ — 1» λ< ̂  0, of
elements of S. The opβw convex hull opconv (S) is obtained by re-
stricting to Xi > 0 in the above; this is the same as ri (conv (S)). If
D is a set of directions of V, ray (D) is the union of zero and the
set of all vectors y whose directions belong to 25. For a finite set
of points S and directions D, conv (S, 25) is the smallest convex set
containing S and receding in all directions of D, i.e., conv (S+ray (25)).
The latter is also equal to conv (S) + cone (25), where cone (25) =
conv (ray (25)); thus conv (S, 25) is the set of all sums Σ ^ Λ + Σ f t 2/i>
where the xt are in S, the ys are arbitrary vectors with directions
in 25, and the xi9 μά are nonnegative with Σ^« = l The correspond-
ing open convex hull opconv (S, D) = ri (conv (S, 25)) is obtained by
restricting the λ,, μs to be strictly positive. One of the basic results
on polyhedra, due to Minkowski and Weyl, can now be stated (see
Rockaffelar [7, Theorem 19.1]):

THEOREM 1.2. The following are equivalent:
(a) P is a (closed) polyhedron;
(b) P is a closed convex set with finitely many faces;
(c) P is finitely generated, i.e., P = conv (S, 25) for some finite

S, D.
Further, if P is a line-free polyhedron, then S above [resp , D] can
be chosen as the set of extreme points [resp., extreme directions,] of
P.

Polyhedral sets are preserved by images and preimages under
linear transformations; this is clear from (c) above. But the larger
class of projective transformations is also compatible with the poly-
hedral structure. A projective transformation is obtained by
embedding the given affine space into a projective space and then
restricting to a different affine open set. In local coordinates, say
for V = Rn, this process induces a partial map of the form

«ι >(<<>, ̂ > +d)-\Ax + b) ,

where A is linear and | |c | | 2 + d2 Φ 0. Grϋnbaum's book discusses
these transformations in detail. Projective transformations preserve
colinearity and the polyhedral sets in their domain. Questions about
polyhedra can then be reduced to the case of polytopes. For example,
consider the nonsingular projective transformation:

(1.3) a: x i > (1 + xx + + xn)~\%lf , xn) .

This maps the open positive orthant Rl of Rn into the following
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open polytope An of Rn,

(1.4) xx + . + xn < 1 , a, ^ 0 ,

in such a way that directions in R% become identified to just points
in xι

Jr + xn — 1, Xi ̂  0. Open polyhedra P in 12+ correspond to
open polytopes Q contained in Δ%9 extreme points [resp., extreme
directions] of P corresponding to extreme points of Q [resp., extreme
points of Q lying in xx + + xn = 1].

A {generalized) m-simplex is the (closed or open) convex hull of
m + 1 affinely independent points and directions, i.e., of a set S\JD
of cardinality m + 1 for which aff (conv (S, D)) has dimension m.
Since projective equivalences preserve affine independence in their
domains, simplexes correspond to simplexes under (1.3), and the usual
(polytope) baricentric subdivision theorem implies, (after if necessary
subdividing a given polyhedron into its intersection with orthants,):

LEMMA 1.5. Every (open or closed) polyhedron is a disjoint
union of open simplexes.

This lemma will be useful in the last section.

2* PL-sets and maps*

DEFINITION 2.1. The PL-subsets of a vector space V are those
belonging to the Boolean algebra PL (V) generated by all the open
(or all the closed) half-spaces of V. A PL-set is a PL-subset of some
V. A PL-relation R: X~*Y is one which is a PL-set as a subset
of I x 7; a PL-map f: X-+ Y is a map which is a PL-relation.

A PL-set is thus the same as a disjoint union of open polyhedra.
A number of facts are therefore immediate consequences of those
known for polyhedra. For example, images and preimages under
linear maps preserve PL-sets, and the product X x Y of PL-subsets
of V, W is a PL-subset of V x W.

LEMMA 2.2. Let R: Xλ -* X2 and S: X2 ~> X3 be PL-relations, with
the X, in VL(Vt). Then

R&S: = {(x, y, z) in X x Y x Z\ x R y and y S z)

is a PL-set.

Proof. Just note that R & S = (R x F3) Γ) (Fx x S). •
Projection of the above on Vx and F3 yields:

COROLLARY 2.3. A composition of PL-relations is a PL-relation.
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Thus PL-maps are also closed under composition, and we have
a well-defined category PL. Note that since PL-maps are defined
through their graphs, f'1 is a PL-relation for any PL-map /, and
therefore isomorphisms in PL are the same as PL-bijections. Before
studying general properties of PL we need several technical facts.
A PL-map is a "piecewise linear" map in the following sense.

LEMMA 2.4. / / / : X-+ Y, X is in PL (V), Y is in PL (W), and

X = U Xi is a finite covering such that each restriction f\Xt is a
PL-map, then f is a PL-map. Conversely, assume that f: X-+Y is
a PL-map and let X = U X\ and Y = U YJ be {finite) partitions into
open polyhedra. Then there exist (finite) open polyhedral partitions
X = U Xi and Y = U Y, which refine the original ones and such
that each restriction f\Xt is the restriction of a affine map V —> W,
and maps Xt into some Y3. Further, if f is one-to-one, then there
exist simultaneous open refinements as above X = \jXtf f(X) — U Yif

with f(Xi) — Yi and each f\ Xi the restriction of an invertible linear
map from aff (Xt) onto aff

Proof. The first assertion is clear from the fact that (the graph
of) / is the union of (the graphs of) the f\Xt.

To prove the remaining assertions, let X = U X'if Y = U Yj, and
G — \jGk be partitions of X, Y, and G — graph of /, into open
polyhedra. Let Gijk be the intersection of Gk, prϊ\Xi), and prΐ\ Y's)9

where prt denotes projection of F x If into the ΐth factor. Each
Gijk is an open polyhedron and projects into X\, Y]. Since / is a
function, the family of all pr^G^) is a partition of X into open
polyhedra Xijkf which refines the original one; note that Xijk maps
into Yj. When / is one-to-one, the Yijk: = pr2(Gijk) are disjoint, and
f(Xijk) = Yijk. The last statement follows from the fact that the
projections restricted to aff(6r<iJfe) establish isomorphisms with
2ίfί(Xijk), aff (Y<iJfe), since they are one-to-one on the open subset Gijk

of aff(G^). •

A PL-map is in fact, up to PL-automorphisms of its domain, a
linear map, since X= graph (/). This fact is itself not too useful,
(since the automorphism carries all the nonlinearity,) but is implicit
in arguments like the above. (The terminology "PL" should not be
confused with the very different notion that appears in combinatorial
topology, where all (PL) maps are continuous and all polyhedra are
closed polytopes.)

A general way of constructing PL-sets is the following. Let L
be the first-order language over the alphabet having: constants r
for each real number r, variables xu •••,#«, •••, unary function
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symbols "r.( )" for each r real, binary function symbol +, and
relational symbols >, = .

LEMMA 2.5. Every sentence S in L defines a PL-set, i.e., if
xlf , xn are the free variables in S then

(2.6) Dom (S): = {(xlf ., s j in Rn\S(xlf , xn)}

is a PL-set. Conversely, any PL-subset of an Rn can be defined in
this fashion.

Proof. The converse part is clear, since every open half-space,
or hyperplane, can be defined by an equation axxx + + anxn < r,
or = r . To prove that Dom (S) is always a PL-set, it is enough to
prove that all atomic formulas define PL-sets and that closing under
—i, Λ, 3, preserves the PL-structure. But atomic formulas are all
linear equations or inequalities, so they define hyperplanes or half-
spaces, and they are therefore PL-sets. Closure under negation and
conjunction holds by the Boolean closure (complements, intersections).
Finally, {x\(ly)S(x, y)} is the projection of {(x, y)\S(x, y)}; it is there-
fore PL if the latter is. •

Another way of expressing the conclusion of the above lemma
is by saying that any set defined using existential or universal
quantifiers can be also defined using only propositional connectives.
In using the above one usually extends the language (informally) to
include sentences containing PL-functions (since these are defined by
their graphs, which are PL-sets), and arbitrary PL-sets (since under
isomorphism a P in PL (V) is a subset of some Rn). Similarly, one
can bound quantifiers, as in "for all x in S, •••", when S is known
to be a PL-set.

For example, consider the situation in applications in which one
has a family of PL-maps

(2.7) fy=f( ,y):X >Z, ymY,

where /: X x Y -»Z is a fixed PL-map. Here it is natural to ask
whether the sets of the y in Y where / is one-to-one, or onto, are
PL-sets. In view of 2.5, the answer is (trivially) yes: for instance,
/ is one-to-one for the y in:

{y in Y\f(x, y) = f(x\ y) implies x = x'} ,

which is expressable as a first-order sentence. Similarly, given a
z0 in Z, the set of common "zeros"

(2.8) {x in X\fy(x) = z0 for all y}
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is a PL-set. Related to this is the set of all x for which there is
some y solving the equations:

(2.9) Xo: = {x in X\ there exists y with f(x, y) = z0} ,

which is again PL. One of the most useful properties of the category
PL is the validity of the following global implicit function theorem:

THEOREM 2.10. Let f:XxY-*Z be a PL-map, z0 in Z, and
XQ as in (2.9). Then there exists a PL-map s: Xo-+Y such that
f(x, 8(x)) = z0 for all x in Xo.

Letting R be the relation "xRy iSf(x, y) = z0", this becomes a
consequence of the first part of the following stronger result:

THEOREM 2.11. Let R: X—>Y be a PL-relation with domain Xo.
There exists then a "PL-map s: XQ—>Y such that:

(a) s(x) is in R(x) for all x> and
(b) R(x) = R(xr) implies s(x) — s(x').

Proof With a slightly different terminology, the problem is
that of showing that for each PL-subset R of V x W there is a
section s of prt such that s{x) depends only on prr\x) Without loss
of generality we assume V = Rn, W = Rk. The result will follow
by induction on k once it is established for k = 1. Indeed, assume
it is true for k and let R be a PL-subset of Rn+k+\ Let X, be the
projection of R on the first n + 1 coordinates. The result being
true for k = 1 means that there is an sL: XQ —* R with 8t(x) in Jϊ̂ αO
for all x and (̂as) = s^x') if iϋ ί̂c) = Rx{xf)9 where Rλ is just ^ seen
as a relation iί" —> J?; note that Xo is the domain both of R and of
J?i. By the inductive hypothesis there is also an s2: X1-^Rk satisfy-
ing (a), (b). The desired s can be then obtained defining s(x): —
S2(X, 8t(x)).

Thus the problem reduces to the case k = 1. Further, we may
assume that R is an open polyhedron. If R is a more general PL-
set we can write R as a union of the disjoint open polyhedra
Bl9 •• ,i? ί. If for each of these there exists an s^prJJRi) -* R, an
s: prλ(R) —> J2 can be constructed using 2.4 by defining s: = s, on
X,, where Xx is pr^JSi) and Xt is priR^X^ for i > 1. This s will
satisfy both (a), (b).

We divide the case R = open polyhedron in Rn x R into four
disjoint cases: (i) the vector

en+1: = (0, ...,0,1)

is in 0+R and —βΛ+1 is not, (ii) en+1 is not in 0+R but — eM+1 is, (iii)
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both ±en+1 are in 0+Rf and (iv) neither of ±en+1 is in 0+R. Let

r^x): — inf {r\(x, r) is in R) ,

r2(x): = sup {r\(x, r) is in R)

(these may be ±00). If (i) holds, we define s(x): = rx(x) + 1; if (ii)
holds, s(x): — r2(x) — 1; if (iii) then s(x): = 0; and if (iv) then s(x): =
1/2(̂ (0?) + r2(#)) Property (b) is trivially true for such a definition
of s, since the r^x) depend only on the corresponding R(x). With
respect to (a), case (i) corresponds to the situation in which ({x}x
R) Π c/(R) is always a half-line not bounded "above", thus (x9 rx(x)) +
eft+1 is in R, since (x, r^ix)) is in c/{R) and 0+R = 0+(c/i2). The same
argument applies to case (ii). Case (iii) corresponds to ({#} x R) Π c/(i2)
being a finite interval with endpoints (x, r^x)) and (α?, r2(α)); thus
(x, s(x)) is in ri {c/(R)) = R. In case (iv) the entire line {x} x R is
in J? and thus (#, 0) is in R.

It only remains to prove that s is piece wise linear. For this it
is enough to show that rλ and r2 are PL-maps when finite-valued.
We work with rx\ the argument for r2 being the same. Let 2*7, , Fϊ
be the relative interiors of the proper faces of R. These cover
rb(R), so that rλ(x) is always in a suitable F" when finite. We drop
from the list all those F) for which {x} x R either doesn't intersect
Fj or intersects F] at more than one point. Note that, for the
latter, rx(x) will be in a face of F% which is in turn a lower-
dimensional Fi. Since the projections pr±\Fj are now all one-to-one,
they admit PL-sections (whose graphs are the F] themselves). If
rλ(x) belongs to a certain Fj then also r^x') is in the same F] for
any other x' in pr^Fj): otherwise, there is some ε > 0 such that

z': = (1 + ε)rx(x) - εz

is in Fj, where z is the unique point in F] projecting into x', since
Fj is relatively open and convex. But then

(1 + ε)~\z' + εTl{x'))

is in c/(R), projects into x, and is strictly less than r^x), contradict-
ing the definition of the latter. Thus τ1 is a PL-map on each of
the (disjoint) pr^Ff), and is therefore PL itself.

The above remarks help in characterizing the category PL. The
terminology "subset" will be used in the set-theoretic sense, while
"subobject" will be used in the categorical sense. Note that the
category of finite sets is equivalent to a full subcategory of PL;
the subcategory of finite sets of integers (as PL subsets of R) gives
the representation. By arguments as in Sets, (and using the above
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results,) it is easy to establish that: (i) 0 = 0 and 1 = {0} are initial
and final objects respectively; (ii) 0 is a generator for the category,
and 2 = {0, 1} is a cogenerator; and (iii) equalizers and finite products
and coproducts exist (first order constructions). Thus PL is finitely
complete with finite coproducts, with the respective (co)limits
preserved by the forgetful functor to Sets. It is equivalent for a
PL-map to be a monomorphism, one-to-one, a coretraction, or an
equalizer. Similarly, epimorphism, onto, retraction, and coequalizer
are equivalent properties. A theory of congruences exists, as with
algebraic theories. A congruence on a PL-set X is a PL-relation
R:X—>X which is an equivalence relation. Then one can prove
that a relation R is a congruence iff R = Ker / = {{x, y) \f{x) — f{y)} for
some PL-map / with domain R. The induced-homomorphism property
holds for congruences. Thus PL is a pretopos (Johnstone [6]).

It follows that PL admits a full, limit-preserving, and finite
coproduct-preserving embedding into the geometric topos shv {PL, J)
of sheaves for the precanonical (Grothendieck) topology J on PL.
This embedding is for example useful in system theory, when one
studies the category Mach {PL) of machines (see Arbib and Manes
[1]) over PL. The canonical realization functor does not admit a
adjoint over PL, but adjoints do exist over the larger category of
sheaves, since the latter is in particular cartesian closed and has
epi/mono factorizations (see Goguen [4]). For the "uniqueness of
canonical realizations" results, one can work on the sheaf category
and then descend to the (full) subcategory PL. In fact, observable
and bounded-time reachable realizations over PL are also canonical
over the larger category because the embedding preserves finite
coproducts and limits. Other applications to system theory of the
PL concepts introduced in this paper are given in Sontag [8].

3* The objects of PL. The main purpose of this section is to
obtain a classification of the isomorphism classes of PL-sets. This
classification is of course not as simple as that for the subcategories
of finite sets and of finite-dimensional vector spaces, but is non-
etheless easy to understand after introducing the proper algebraic
structure. The theory will be developed through a series of technical
remarks.

A* Ranks and labels. For each fixed n, Dn is the set of all
finite disjoint families of open polyhedra contained in Rn. The
following defines an equivalence relation in Dn:

(3.1) DEJ)' iff U{P, P in D} = U{Q, Q in D'} .

The relation Eo is defined as follows: DE0D' is and only if D =
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{Pi, -- ,P r} and there is some hyperplane H intersecting Pr such
that D' = {Plf , Pr_l9 Pr°, P+, P-}, where Pr°, Pr

+, and Pr~ denote the
intersection of P r with H and with the two half-spaces associated
to H.

LEMMA 3.2. The smallest equivalence relation on Dn containing
Eo is Ex. In fact, E1 is the union, over all i, j , of the relations

Proof. Since Et contains EQ, we need only to prove that, if
B = {Plf , Pr} and D' = {Ql9 , Q8} have the same union, then
there exists a third family D" of open polyhedra {Llf , Lt) such
that DEtD" and DEiD" for some i, j . In other words, D" must be
such that there is a chain D = A, A, , A = # " with DkE0Dk+1

for all &, and similarly for D'. Let {iϊ̂ } be a finite family of
hyperplanes constructed as follows. For each P in D or in D\ pick
hyperplanes i^, , Kn such that P is the intersection of some of
the Kj and of open half-spaces associated to the rest of the Kά\ the
Hx are then obtained by considering all the K5 obtained in this way,
for P in D and D'.

Let D" be the family of all those minimally-nonempty intersec-
tions T of the Hx and open half-spaces associated to the Hλ for
which T is included in the union of the sets in D (or D'). These
intersections are disjoint, by minimality, so D" is in Dn. Note that
DEjy\ To obtain a chain from Ό to Ό", let D: = {Px, -- ,P r},
and write each P^ as an intersection of the Hλ and corresponding
half-spaces. If any of the Pi9 say P r, is not a minimal intersection,
there exists an Hλ inducing a proper subdivision Pr

+, P~, PI. Then
DEODU where A is {Pu , Pr_i, Pr°, P

+, P"}, and the argument can
be repeated with A Eventually one reaches a A with all Pά

minimal (so a member of D"). But every T in D" appears in Dίf

since D ' ^ A and every T in D" is included in the union of the
P3 in D. So A = D" The same argument gives a chain from D'
to D". •

Pairs of integers are naturally ordered by: (i, j) ^ (i', /) when-
ever i <* if and j ^ i'. With this ordering:

DEFINITION 3.3. The p-rank of a (nonempty) open polyhedron
P is

p-rank (P): = (dim P, dim 0+P) .

The rank r(X) of a nonempty Vh-set X is defined as the maximal
possible p-rank of a polyhedral subobject of X when there is a
unique such maximal rank.
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DEFINITION 3.4. The (open or closed) polyhedron P in Rn is
acute if it is included in the orthant R+.

The above subclass of polyhedra is introduced for purely technical
purposes, mainly because the projective equivalence a introduced in
(1.3) will permit reducing many questions about acute polyhedra to
questions about poly topes (even though a is not a PL-map).

LEMMA 3.5. Let P be an acute open polyhedron in R% of p-rank
(n, m), with n Φ 0, and H be a hyperplane intersecting P. Let P°,
P+, and P~ be the intersections of P with H and its associated open
half-spaces, and let (n°, n°), (n+, n+), and (n~, m~) denote the respective
p-ranks. Then exactly one of the following possibilities holds:

(a) (n+, m+) = (n~, m~) = (n, m) and (n°, m°) = (n — 1, m);
(b) m ^ 2, (n+, m+) = {n~, m~) = (n, m), and (n°, m°) = (n — 1,

m - 1);
(c) for some k < m, (n+, m+) = (n, m), (n~, m~) = (n, k), and

« m°) = (n - 1, k);
(d) idem to (c), with + , — reversed.

Proof. We first note that P + , P~ (and P°) are all nonempty.
This is because P is open in Rn and H is the boundary of its as-
sociated half-spaces. In fact, P + and P~ are again open, so also of
dimension n, while P° is relatively open in H and hence of dimension
n — 1. To understand the dimensions "at infinity" m°, m+, m~, we
consider the projective equivalence a: Rn -> An = A, Let Q, Q+, Q~,
Q°, K be the images of P, P + , P~, P°, and Hf]Rn+ under this
transformation, denoting also by K the span of the above K. Let
ifoo denote the hyperplane

Since directions of recession of acute polyhedra correspondtto points
in Koo with all xt ^ 0, one has for each of A: = Q, Q°, Q+, Q~ and
A': = P, P°, P + , P~ (and defining the dimension of the empty set as

- 1 ) :

(3.6) dim 0+A' = 1 + dim (c/(A) n JK"-) .

There are then four cases to consider:
( i ) c/(Q) Π ϋΓoo = 0 . Here c/(A) Π ifoo is empty for all of the

above A, and hence case (a) holds with m = 0.
(i i) c/(Q) Π ifoo ^ 0 but Λ L Π C / ( Q ) Π JBLOO = 0 . In this case,

c/(Q°) Γ\Koo = c/(K Π Q ίΊ #00) = iΓ Π c/(Q) Π UΓCO = 0 , so one of
c/(Q+) Π #00 or cs(Q~) Π #00 must also be empty (otherwise a line in
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Koo joining points in both of the latter would intersect cs(Q°) Π K*>).
If c/{Q~) Π Koo is empty, then c/(Q+) Π K«> = c/{Q) Π K*» and (c) holds
with k = 0. Otherwise, (d) holds with & = 0.

(iii) if Π c/(Q) Π K«> Φ 0 and c/(Q) Π K^ is contained in KΓ\ K^.
In this case all c/(A) n ifoo are equal, so (a) holds.

(iv) As above but with c/(Q) Π K«> not contained in i fnίCo.
Necessarily c/(Q) Π i£>o has more than one point so (since a polytope)
dimension at least one, and hence m ^ 2. Here K Π !£» is a hyper-
plane of iΓoo intersecting the polytope c/(Q) Π K* at c/(Q°) Π JKΌO.

Let k be the dimension of the latter. If K Π K^ intersects Q Π JBΓOO

then k — m and (b) holds. If if Π i£°° intersects only the boundary
then k <m and either c/(Q°) Π ΛLOO = c/(Q-) Π K^ and (c) holds, or
c/(Q°) Π ίΓoo - c/(Q+) n ίΓc and (d) holds instead. Q

DEFINITION 3.7. The (n, m)-simplex s(n, m) is the (generalized)
open ^-simplex opconv (S, D), where S is the set of points
0, el9 , eΛ_m and Z? is the set of directions of en_m+1, , en (et

denotes here the ith. canonical vector in R%).
Thus 8(n, m) is an acute polyhedron of p-rank (n, m), namely,

(3.8) {(xlf , xn) in 22^|all xt > 0 and xx + - - + x%_m < 1} ,

(just a point if w = 0) or equivalently, the product Pn_m x R+, where
Pk is the interior of the standard (bounded) fc-simplex and R+ is
(0, oo). Every simplex of p-rank (n,m) is isomorphic to s(n, m)
under an invertible linear map between their spans.

LEMMA 3.9. For open polyhedra the p-rank coincides with the
rank.

Proof. We need to show that if there is a one-to-one PL-map
f:Q -» P between open polyhedra then p-rank (Q) <: p-rank (P). For
this it will be sufficient to show that the p-rank is invariant under
isomorphism, since it is clear from the definition that the p-rank of
a subset of P cannot exceed that of P. Assume then that / is
bijective.

Consider for each of P, Q, the partitions into open subpolyhedra
obtained by intersecting with the various orthants of aff (P), aff (Q)
and their respective faces (without loss of generality assume
aff (P) = Rs, aff (Q) = R*). By (2.4) there exist refinements into open
polyhedral partitions {PJ, {QJ such that / is a linear isomorphism
in each Qt. (By (1.5) we may in fact assume that each element of
the partition is a generalized simplex, with corresponding Pu Qi

linearly isomorphic.) Since p-rank is invariant under linear isomor-
phism, it will be enough to show that, whenever one has such
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partitions, p-rank (P) = max. of the p-ranks of the Pi (and the same
for Q). If P is acute, this is a consequence of (3.2) and (3.5). In
the general case, it will be enough to show that the intersection P'
of P with at least one of the open orthants of R8 has the same
rank as P. But 0+P is open in aff (0+P) and thus there is some
orthant, say R\ under a linear change of coordinates, such that
c/{R%) intersects aff(0+P) and 0+P. Thus P recedes in dim(0+P)
linearly independent directions of vectors in R+ and the corresponding
P' has equal p-rank. One may construct the Pi so that some refine
p'y and the result follows from the case of acute polyhedra. •

A polyhedron is by (1.5) a disjoint union of (generalized) simplexes.
Let

(3.10) F: = N [ { s i j f i ^ j ^ 0 } ]

be the free abelian monoid on the symbols sίd (here N denotes the
nonnegative integers, and elements of F are polynomials in the
symbols sί3- with coefficients in N and "termwise" addition).

DEFINITION 3.11. An element a = ^aiάsiά of of F is a label for
a PL-set X if there exists a partition of X into open simplexes
consisting of precisely aiβ simplexes of rank (i, j).

Of course labels are far from unique. Note that each PL-set
has labels and that for each element a of F there is a PL-set X
having a as a label; in fact the latter X can be assumed to be in
an orthant R+ (one only needs to suitably embed the orthants of an
R71-1 containing X in disjoint hyperplanes of Bn).

LEMMA 3.12. Two PL-sets are isomorphic if and only if they
have a label in common.

Proof. Clear from 2.4 and the previous remarks. •

LEMMA 3.13. Let P be an open polyhedron. If {P}Ei{Qlf Q2, •}
and each Qt is isomorphic to a (generalized) simplex, then P is
also isomorphic to a simplex.

Proof. We must prove that if P + , P~, P° are all isomorphic to
generalized simplices then P also is. Since s(n, m) = Pn_m x R™,
this is by 3.5 equivalent to showing that the coproducts of each
of:

( a ) ±kf ±ki Pk-lf
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(b) R\, R\, 28+,
(c) R+, P w , Pn_u n^l,

are all simplices (respectively, Pk, R%, 28+). The simplex s{n, m) is
isomorphic to the cube In~m x 28+, where I is the open interval (0, 1).
This is proved in the first paragraph of (3.14) below, and will be
used here. Since / is isomorphic to the coproduct of two Ps
and a point, case (a) follows by multiplication by Ik~\ Case (b)
follows by slicing P = 28+ by the hyperplane K = {x± — x2 — 0}: each
of P+, P~ is a simplex (isomorphic to) 28+, and Po is a half-line.
We now study case (c). Consider P = 28+ and let K«> be the hyper-
plane {xj_ + + xn — 1}. Let P~ be the bounded component. Then
P~ is isomorphic to Pn, and Po is PW_L. It will be enough then to
prove that P + is isomorphic to 28*. For this, define /: P+—>28+ as
the identity if â  + + xn_x ;> 1, and (xlf , #Λ_i, x1 + + xn — 1)
if »! + + xn^ < 1; this is a PL-isomorphism. •

PROPOSITION 3.14. Every acute open polyhedron is isomorphic
to a (generalized) open simplex.

Proof. It is proved in combinatorial topology that a closed
polytope is isomorphic to a closed simplex, with the relative interiors
mapping to each other, via a continuous PL-map; see for instance
Zeeman [9, Lemma 8]. Recalling the form of s(n, m), this implies
that any product X x 28+, with X a polytope, is isomorphic to a
simplex, so the cubes Γ x R{ used in 3.13 are indeed isomorphic to
simplices.

For a general acute polyhedron P the result will be proved by
a refinement of the argument for polytopes, using the projective
equivalence a. "Slicing" first by a suitable hyperplane x1 + +
xn = α, it is enough by 3.13 to prove the result for a P such that
a(P) is in any desired neighborhood of JKΌO (notation as in 3.5). A
further linear transformation on P can be used to insure that a(P)
is in fact contained in a neighborhood of any given point x in
Koo with all xt > 0. For a(P) small enough, there exists then a
simplex Q such that (i) a(Q) contains and has the same dimension
as α(P), and (ii) Qoo = c/(a(Q)) n K^ has the same dimension as
p^ = c/(α(P)) Π Koo.

Pick now a point z in the relative interior of the face Poo of
a{P). Define a "pseudo-radial projection" into z, as in Zeeman [9,
Lemma 8], from a cell subdivision of the boundary of a(Q) into one
for the boundary of α(P). Since z is in K^ and Poo, Qoo have equal
dimensions, this means joining to z that a(P) and a(Q) admit
simultaneous partitions into isomorphic open simplexes α(PJ, a(Qt)
with (PJoo and (<?<)«> of equal dimensions. So P*, Qt have the same
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rank and are isomorphic to each other, for each i. Thus P is
isomorphic to Q, as wanted. Π

B* Classification* We consider now the set PL0 of isomorphism
classes of PL-sets, as an abelian monoid, with coproduct as the binary
operation and whose identity is the empty set. By 1.5, PL0 is
generated by the generalized simplices. Thus the monoid homomor-
phism

(3.15) X:F >PL0

induced by

(3.16) λ(β4i): — isoclass of s(i, j) , i ^ j ^ 0 ,

is surjective.

PROPOSITION 3.17. As a monoid congruence, the kernel of X is
generated by the following set of equations:

(a) stj = 2sί5 + s,_1}i, i ^ 1, j ^ 0,

(b) si5 = 2siά + 8<_i,/-i, i ^ j ^ 2, and
(c) s^ = s o + 8ik + Si,!^, i ^ k, i - 1 ^ k ^ 0.

Proof Each of the above equations is in the kernel of λ, since
they can be realized by slicing the simplex s(i, j) by appropriate
hyperplanes, as in the proof of 3.13. Conversely, assume that

(3.18) λ(α) = λ(δ) .

We want to prove that there exists a sequence of elements of F,
all mapping into the same isoclass, and such that each of these
elements is obtained from the preceeding or succeeding one by one
of the above types of substitutions.

Let Xand Y be PL-sets in R\ with labels a and δ respectively.
Since λ(α) = λ(6), X and Y have by 3.12 a label in common, say
c. It is enough to prove that a (and hence by the same argument
b) is equivalent to c using the above transformations. Let D be a
partition of X that gives the label c. Then {X}Eι

0D1EiD2 E\D,
with each i = + 1 or —1. Each Dt has a label ct with λ(c<) = λ(c<+1).
Since the polyhedra Dt are all acute, 3.5 can be applied at each
step, with each of the cases (a), (b), (c) resulting from the cor-
responding cases in 3.5. •

One has then an algebraic representation for the isoclasses of
PL, as elements of the quotient monoid ίy(kerλ). Given a PL-set,
a label for it can be obtained immediately from any partition of F
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into open simplices, or more generally, (by 3.14), from any parti-
tion into open polyhedra contained in orthants.

Matters can be further simplified by the introduction of the
two-generator abelian semiring with identity:

(3.19) N[x, y] = {Σ a***!/* α** ̂  0} .

Additively, this is just again F, when one identifies

(3.20) 8ii = x*-'y' .

The map λ, thought of now as defined on N[x, y], is a semiring
homomorphism when PL0 is viewed as a semiring using (cartesian,
or categorical) product as multiplication. The multiplicative identity
1 is the one-point set, X(x) is the open unit interval / = (0, 1), and
My) is R+. The semiring structure permits giving a finite presenta-
tion for PL0:

THEOREM 3.21. Let PL0 be the set of isomorphism classes of
objects of PL, thought of as a semiring with coproduct as addition
and product as multiplication. Then PL0 is isomorphic to the
semiring

(3.22) S: = N[x, y]/E ,

where E is the semiring congruence generated by the three equations

(a) x = 2x + 1 ,

(3.23) (b) y2 - 2y2 + y ,

(c) y == x + y + 1 .

Proof. In terms of x and y, a set of equations generating E =
kerλ is known to be, from (4.17),

(a) xnym = 2xnym + xn~1ym , n ^ 1 , m >̂ 0 ,

(3.24) (b) xnym = 2an2/m + xnym~ι , n ^ 0 , m ^ 2 ,

(c) &V+* = xdVk+t + ^d+ί?/fe + a? d + ί-y ,
d^O, ί ^ O , A : ^ 0 , d + ί ^ l .

As generators of a semiring congruence, these equations are in turn
equivalent to the simpler set consisting of (3.23a), (3.23b) and

(3.25) yt = yt + x* + xl~l, ί ^ 1 .

Since (3.23c) is the particular case t = 1 of this, the proof will be
complete once that we establish that (3.25) follows from (3.23). By
induction assume that (3.25) is true for ί — 1 (ί ^ 2); then:
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yt = yt-2y2 = yt-2(2y2 + y )

= 2y2 + y*-1

= 2yt~1(x + y + 1) + 2/*

- (2y* + βy'-1 + xy*-1) + a ^ " 1 + α?'-1 + x*~2)
1 + 31/*-1) + (a?* + x*-1) ,

and we need to show that the first of these is again y*. But this
term is

y'-*[(2y2 + y) + 2y + 2ay] = y'-2(i/2 + 2y

- y*-1^ + 1 + (1 + 2x)]

= l/*"1^/ + 1 + x)

= »'. D

Let

(3.26) χ: PL-sets >S

be the characteristic of P i , the map assigning to each PL-set its
equivalence class of labels. This is a useful object to consider when
answering questions about the category. Note that χ can be used
to translate into purely algebraic problems even questions not ex-
clusively about isomorphism. For instance, asking whether there
is an epimorphism f: X->Y between PL-sets amounts by the results
of §3 to asking if 7 is a subobject of X, and this is in turn
equivalent to deciding if χ( Y) is a summand of %{X) in S. Similarly,
Y is a factor of X (/ "splits") if and only if %{Y) divides %{X).
As an example, we solve here the epi/mono question for the case
of well-defined ranks (the solution in the general case follows easily
from this).

PROPOSITION 3.27. Let X, Y be PL-sets with well-defined ranks.
Then there exists a monomorphism f: X—>Y if and only if either
one of the following conditions hold:

( i ) dim X > 1 and r{X) ^ r(Γ).
(ii) dim X = dim Y — 1 and the coefficient of y in a label of X

never exceeds that of y in a label of Y.
(iii) dim Y > dim X = 1 and r(X) £r(Y).
(iv) X is finite and card(X) ^ card(F).

Proof. The condition r{X) ^ r( Y) is necessary, by definition of
rank. Assume now that dimX=^ + m > l and let r(X) = (w+m, m ) ^
(u + v, v) = r(Y). Let a, b be labels of X, Y. Each monomial α?V
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is a summand of xnym, and hence of xuyv, so a is a summand of rxuyv

for some integer r. Iterating (3.24a), the latter is in fact a summand
of a single monomial xuy\ But b contains one such monomial, since
r(Y) = (u + v, v). Thus a is a summand of ί>, and (i) is proved.
When the dimension of X is 1, the possibilities are r(X) = (1, 0) or
(1, 1). In the first case, a = ax + β is a summand of x and hence
of 6. In the second case, a = ax + βy + 7, which is a summand of
a suitable fc#. Since r(Y) ^ (2, 1), 6 has a term ##. By (3.24a),
this admits a summand kxy, which by (3.23a) has a summand ky.
Thus (ii) follows. To prove (iii), note that a = ax + βy + 7, δ =
a'x + βfy + 7', aar Φ 0, /3' ̂  /3. By (3.23a), α& + 7 is a summand
of x, hence of a'x. And βy is a summand of β'y, so α is a
summand of 6, as wanted. •

It is interesting to remark that the classical theorem of Euler
on counting faces of polyhedra is a consequence of the form of S.
Let

(3.28) X: PL-sets > N

be obtained by composing χ with the evaluation x: = — 1, y: = 0
(well-defined by the form oί E). In terms of 5, a PL-set X is
isomorphic to an acute polyhedron iff it is isomorphic to a cube, i.e.,
of the form λ(#V) In particular, an open poly tope of dimension n
has label xn. Thus %{X) = (—1)". A closed poly tope P is (see proof
of 3.14) isomorphic to a closed cube, i.e., it has a label (x + 2)n, so
χ(P) = 1 always. Writing a closed polytope P as a disjoint union
of the relative interiors of its faces, one has, if P has dt faces of
dimension i, that ΣΓ=o( —1)*^ = 1 (Euler's theorem). The map X
can be extended to ψ: PL-sets —> Z2, by evaluation at x: = (—1, —1),
y: = (0, —1). This map is universal for groups, and establishes Z2

as the Grothendieck group of PL. Note that by studying the free
abelian monoid (rather than group) generated by the open simplexes,
one obtains a complete characterization of isoclasses, from which the
Grothendieck group can be in turn derived.

We turn now to the word problem for S, i.e., deciding for given
a, b in N[x, y] if they are equivalent under E. Since the generators
of E all preserve degree, it is clear that in deciding if aEb one
may restrict attention to the free abelian monoid

(3.29) Fn: = N[{si3-\0 ^ j ^ i ^ n}] ,

where n is the dimension of λ(α) and λ(6), modulo the congruence
generated by those equations in (3.15) which involve only i ^ n.
Note that Fn is just the product monoid N2n.
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There are a considerable number of results each of which
implies the decidability of word problems in a monoid M = N2n.
For example, one may use the results on integer equations given by
Ginsburg and Spanier [3]. Another approach is to note that every
monoid congruence on the (finitely generated commutative) monoid
I is a rational subset of M x M, as proved in Filenberg and
Schϋtzenberger [2] (in fact, they also prove that there are always
rational cross-sections for such congruences). A rational subset of
M x M is recognizable by a generalized finite automaton (Eilenberg
[2, Theorem VII. 10.1]). Thus checking if aEb is equivalent to
checking if (α, b) is accepted by a given automaton, a purely
algorithmic process.

To rigorously state the implications of the above one would
need to give a precise meaning to the phase "given a PL-set". This
could mean for example "given by a sentence in the language L"
introduced in (2.5), restricting unary operators and constants to
computable real numbers. Obtaining a polyhedral partition, i.e., a
label, becomes a problem in linear algebra. We shall assume in
any case that a PL-set is "given" by specifying a label for it.
Decidability of word problems in each Fn gives then:

THEOREM 3.30. Isomorphism of FL-sets is decidable.
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