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On Split Realizations of Response Maps over Rings 

]~DUARDO D. SONTAG • 

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 

This paper deals with observability properties of realizations of linear response 
maps defined over commutative rings. A characterization is given for those 
maps which admit realizations which are simultaneously reachable and observable 
in a strong sense. Applications are given to delay-differential systems. 

INTRODUCTION 

Observability is one of the central concepts of system theory (see Kalman, 
Arbib and Falb, 1969). We study here some aspects of observability in linear 
dynamical systems defined over commutative rings. For motivation and for a 
survey of results on systems over rings, the reader is referred to Sontag (1976); 
for an elementary mathematical introduction the reader is referred to Eilenberg 
(1974, Chapter XVI). 

Let  R denote a commutative ling. 
Consider a linear system 

z = t x(t + 1) = Fx(O + au(t), 
t y ( t )  = H x ( t ) ,  t = O, 1, 2, . . . ,  

where x(t) is in X = R n (n-vectors over R), u(t) is an m-vector and y(t) is a 
p-vector for t = 0, 1, 2,..., and where F, G, H are matrices of the appropriate 
sizes. 

Intuitively, observability means the existence of a procedure for determining 
the state x(0) of Z from data obtained by experiments of the type: "apply an 
input sequence u(0), u(1), u(2),.., beginning in state x(0) and observe the 
corresponding output sequence y(O), y(1), y(2),...". Since Z is a linear system, 
the effect of nonzero inputs can be substracted from the output sequence. Thus  
we may restrict ourselves to those experiments in which u(t) = 0 for all t >~ 0. 
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Let O(x) denote the output sequence Hx, HFx, HF2x ..... Then for linear 
systems we have the following characterization of 

(a) Observability: each state x in X can be uniquely determined from O(x). 

This question was studied in Kalman (1968, Definition 10.1) for the case 
R ~- field. In this case, (a) is equivalent to the possibility of determining x via 
linear data processing schemes. In other words, for each x' in X '  (where X '  
denotes the set of costates, i.e., the dual of the state-space X)  there exists an 
R-linear procedure 7~' (i.e., an R-linear map from the set of output sequences 
into R) such that for all states x in X, 

x ' ( x )  = (*) 

(see Kalman, 1969, Definition 10.2 and Theorem 10.10). Because of finite 
dimensionality, condition (*) can be also expressed as 

(b) R-linear observability: for every x' in X' ,  there exists y,, in (Rn~) ' 
such that x' = Yx' ° O~.  

[Here On : X - +  R n~ is given by 

x -+ HFx .] 

[HF'~-~xA 

The equivalence (a) -~  (b) breaks down when R is an arbitrary ring. Consider 
for instance a system over R : =  Z with n = p = 1, F = 0, G = arbitrary and 
H : =  2. The system will be observable in the sense of (a), since the state x can 
be recovered from the knowledge of the corresponding output y = 2x. On the 
other hand, observability in the sense of (b) does not hold, because division by 2 
cannot be performed when operating over Z. Similar differences among (a) and 
(b) when R = ring arise in continuous-time situations (for example, for delay- 
differential systems). 

The case R @ field is further complicated by the fact that canonical realizations 
are not always free, (unless R = principal ideal domain) i.e., the state space 
cannot be described by independent coordinate functions. We take the position 
that some notion of coordinate system is needed in order for the above problems 
to be manageable. Therefore, we shall only consider response maps for which 
the canonical state space admits (nonindependent) coordinates (projective 
modules). 

Condition (b) is related to such important system-theoretic questions as the 
existence of observers with arbitrary dynamics and the problem of regulation. 
Accordingly, we propose to study in this paper conditions under which the 
canonical realization of a given response map is observable in the (strong) sense of (b). 
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For integral domains, this is achieved in Theorem (2.1), which gives a necessary 
and sufficient condition stated in elementary terms. For rings with zero-divisors, 
a similar condition is given in (3.1). The  proofs rely heavily on known realization 
results on systems over rings together with some results from commutative 
algebra and an apparently new criterion for the projectivity of the column- 
module of a matrix. 

The  results of this paper have applications in the theory of regulation of 
delay-differential systems; we illustrate how this application comes about 
through an example, a more complete discussion having been already given by 
the author in Sontag (1976, Section 3.D). Consider a delay-differential system 
with equations 

~l( t )  = 2 x l ( t  - -  1) + x l ( t )  + x2(t)  + u( t ) ,  

22(t ) = x l ( t  - -  1) - -  3x2( t  - -  5) + u( t  - -  1), (a) 

y ( t )  = x ~ ( t )  - . ~ ( t  - 1 ) .  

I f  we introduce the delay operator a defined by 

a ( . ) ( t )  : =  x ( t  - -  1), 

we can rewrite (a) in matrix form as 

[::] = [2a$1 1 ]["1] _ . , < . ,  ÷ [ ] ] .  

X 2 

We see then that (a) can be expressed in a form very similar to the ordinary 
finite-dimensional constant linear systems of control theory, the only difference 
being that the matrices (F,  G ,  H )  now have polynomial instead of real valued 
entries. When all the delays a i , b s , cx~ in (*) are integral multiples of a fixed 
delay ), we can apply the same procedure as above, taking now for e a shift of 
• seconds. If, instead, the delays in (*) are not commensurable,  we need to 
define a finite set of delay operators el ,..., ~r and then consider systems whose 
matrices have entries in the ring of polynomials in el ,.-., c~, denoted by 
~[o~ ,..., ~,].  

A Luenberger  observer, or deterministic Kalman filter, can be constructed 
for (*) formally as in the case of finite-dimensional linear systems, with ar- 
bitrary convergence rates, prec i se l y  when the system (*) (with R = polynomial 
ring) is observable in the sense of (b). Given a delay-differential system described 
in the input/output  sense, the standard construction of a regulator (observer + 
state-feedback) is possible if and only if the canonical realization (in the ring- 
sense) is observable in the sense of (b). In  the case of finite-dimensional systems 
such a property is always true; in the delay-differential case a most natural 
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necessary and sufficient condition is given by (2.1) applied to R = polynomial 
ring. I t  is interesting to remark that the notions of projective and free module 
coincide in this case (Serre's conjecture/Quillen's theorem), so the notion of a 
"split realization" is very strong here; the application of (2.1) to delay-differential 
systems results then in a result of high intuitive significance whose proof 
depends on rather sophisticated algebra. 

1. DEFINITIONS AND NOTATIONAL CONVENTIONS 

We shall assume throughout this paper that R is a (commutative) Noetherian 
ring, i.e., every ideal of R is finitely generated. For commutative rings this is 
a very weak restriction and it simplifies the exposition considerably. 

We shall use the notation: 

R n : =  free R-module in n generators, i.e., the set of (column) n-vectors; 

R nxm : =  set of n X m matrices with entries in R; 

@ : =  tensor product of R-modules; 

Q : =  the set of maximal ideals of R; 

~r m : = the canonical map R --~ R /M,  for any M ~ ~2. 

I f  C is in R nx~, then Ie(C) : =  ideal generated by the set of all k × k minors 
of C. I f  ~: R ~ S is a ring homomorphism, then c~C : =  (aei~) E S ~xm. 

We shall identify an R-linear map R ~ -+ R ~ with its matrix when the standard 
bases are used for R n and R% 

(1.1) DEFINITION. Let M be an R-module. The dual M '  of M is the R- 
module consisting of all R-linear maps from M into R (with the pointwise 
operations). For an R-module homomorphism f :  M - +  N the transpose f ' :  
N '  -+ M '  is the R-linear map given b y f ' ( u )  : =  u o f  for all u: N--~ R. 

We shall work with the following definition of a projective module (see 
Bourbaki, Alg&bre, 11.2.2, Proposition 12; Alg~bre Commutative, 11.5.3, 
Theorem 2]): 

(1.2) DEFINITION. P is a (finitely generated) projective R-module iff there 
exist elements v 1 ,..., % in P and linear forms vl',..., vn' in P '  such that for 
every v in P, 

v = E v,'(v) . v , .  
i=1 

P has rank s iff, for every M in Q, the vector spaces P @ (R /M)  have equal 
dimension s. (Otherwise the rank is not defined.) 
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I f  R is an integral domain with quotient field Q, the rank of P is always 
defined; it is equal to the Q-dimension of P @ Q. See Bourbaki (Alg&bre, 
II.2.3) for a discussion of these questions. When R is a polynomial ring, pro- 
jective = free; see Quillen (t976). 

(1.3) Remark. Let  P be as in (1.2), and suppose that f :  P - ~  N is an R-  
homomorphism for which f '  is surjective. Then  f splits, i.e. there exists g: 
N --~ P such that g o f = identity on P. Indeed, since f '  is onto there exist 
u i : N -+ R, i = 1,..., n, such that u~ o f  = vi'. It  is then enough to define 

g(x) := i ui(x) 'v i  
i=1 

for all x in N. 

(1.4) DEFINITIONS. An (m, p)-response map foyer  R is a sequence (A1, A 2 .... ) 
of matrices in R ~xm. An (m, p)-system Z = (X, F, G, H)  over R is given by a 
finitely generated R-module X and R-module homomorphisms F: X--+  X, 
G: R "~ --+ X, H:  X ~ R v. (If  clear from the context, X is not explicitly dis- 
played.) 22 is projective [free,...] when X is projective [free,...]; 27 has rank n if X 
is projective of rank n. Given a response map f,  a system 27 is a realization o f f  
provided that Ai ~ HFi-IG for all i. The  map f is realizable if there exists at 
least one realization off .  The  rank o f f  is the smallest integer among the ranks of 
projective systems realizing f. Finally, the dual of 27 is the (p, m)-system 
.~' = (X',F' ,  H', G'). | 

For background concerning these definitions, consult Kalman, Falb, and 
Arbib (1969), Eilenberg (1974, Chapter XVI)  or Sontag (1976). The  terminology 
" input /output  m a p "  is sometimes used instead of our "response map."  

Given f : (A1, A 2 ,...), let us define the block matrix 

H .  = H . ( f )  : =  • (1 .5)  

i " " " A2 --1 

For each n, the nth order reachability [resp. observability] map of 27 is defined 
as R~ : R n'~ --+ X[resp. O~ : X --+ Rnv], where Rn is given, in block form, as 

R,~ := [G, FG,..., Fn-IG] (1.6) 

and On is given, in block form, as 

HF 
On : =  . (1.7) 

n--1 

Observe that  27 realizes f iff H~ : = On o R~ for all n. 
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Assume X can be generated by n elements. We define Z to be reachable [resp. 
observable, resp. canonical] iff 1t~ is surjective [resp. On is injectivel resp. Z' is 
reachable and observable]. 

The following is a new 

(1.8) DEFINITION. A system Z is split iff the following three conditions hold: 

(i) X is projective, 

(ii) 27 is reachable, and 

(iii) Z'  is reachable. 

The response map f splits iff it can be realized by a split system. 
The terminology is motivated by the fact that O,~ splits (c.f. (1.3)) for a split Z 

with n generators. 
It is not difficult to prove that a split system is necessarily canonical. When R 

is a field, it is clear that canonical = split. 

(1.9) Remark. When Q is an overring of R, any input/output map f over R 
can be naturally seen as an input/output map over Q. This applies in particular 
to an integral domain R and its quotient field Q. More generally, let S be an 
R-algebra; if 27 is a system over R then 27 @ S is defined as the system (X @ S, 
F @ l s ,  G @ ls , H @ ls) over S. I f f i s  a response map over R, t h e n f  @ S is 
defined as the response over S given by {As @ ls}, in other words, by the 
sequence ,A:,  ~A 2 ,..., where ~: R --~ S is the map defining the algebra structure. 

We write f (M) ,  N(M), etc. instead of f @  (RIM), X @ (R/M), etc., for 
M i n  g2. 

One of the main reasons for the restriction on R to be Noetherian is the 
following important result due to Rouchaleau, Wyman, and Kalman (1972): 

(1.10) THEOREM. Let R be a Noetherian integral domain, Q its quotient field. 
Let f be a response map over R. Suppose that f @ Q is realizable over Q. Then f 
is realizable over R. 

Proof. See the above reference or the alternative proofs in Eilenberg (1974, 
Chapter XVI, Theorem 12.1) and Sontag (1976, Appendix). | 

2. TI~E 1V[AIN RESULT 

The main result of this paper is Theorem (2 1). 

(2.1) THEOREM. Let R be a Noetherian integral domain, Q its quotient field, 
and f a response map over R. Suppose 

rankof  = n. 

rhen f splits i f  and only if ln(H,) = R. 
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For R = principal-ideal domain, the condition In(Hn) = R means that the 
greatest common divisor of all n × n minors of Hn must be a unit. Further,  over 
this R projective modules are free. So (2.1) gives a useful condition for existence 
of free split realizations over principal-ideal domains. 

The  proof of (2.1) will be delayed until certain general facts are established. 
The  next result is useful in studying questions of reachability. 

(2.2) PROPOSITION. _/J system Z over R is reachable if  and only if for any M 
in £2 the system Z(M)  over R / M  is reachable. 

Proof. I f  Z has n generators then each Z(M)  has dimension not greater 
than n. Therefore the problem is to show that 

Rn is surjective iff every Rn(M) is su@ctive. 

This is immediate from Bourbaki (Alg+bre Commutative II.3.3, Proposition 11). 
! 

(2.3) OBSERVATION. Let C be in R s×t and let n ~ rain{s, t}. Then  In(C ) = R 
i f  and only i f  ranks/M 7rMC >/ n for all M in £2. Indeed, this eondition is equiv- 
alent to the existence, for each M, of a minor of order n of C which is nonzero in 
R/M. In  other words, for each M there is some minor of order n of C not in M. 
This  can only happen when the ideal In(C ) is not contained in any maximal 
ideal, i.e., if it is not proper. | 

(2.4) PROPOSITION. Let R be a commutative ring. Suppose that Z = (.22, F, 
G, H) is a canonical projective realization o f f  of rank n. The following statements 
are then equivalent: 

(a) 

(b) 

(c) 
(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

O) 
(k) 

I f  X is 

(1) 

f splits. 

Z is a split system. 

Z '  is reachable. 

Z ' (M) is reachable for every M in £2. 

Z(M)" is reachable for every M in £2. 

Z (M)  is observable for every M in ¢2. 

Z (M)  is canonical for every 3~ in £2. 

r a n k m M f ( M  ) = n for every M in £2. 

Hn(M) = 7rmH n has rank n for every M in ~. 

/ ~ ( H n )  = R. 

On(M) has rank n for every M in ~. 

free, the above statements are also equivalent to: 

L ( o . )  = R .  
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Proof. First observe that since each RIM is a field, the equivalence between 
(e), (f) and (k), and the equivalence among (g), (h) and (i) are all well-known 
facts (see for instance Kalman, Arbib, and Falb 1969, Chapter 10). Observation 
(2.3) proves that (i) is equivalent to (j) and that (k) is equivalent to (1). Therefore 
it will be enough to prove that equivalence of (a), (b), (c), (d), (e) and the equiv- 
alence of (f), (g). 

(a) Equivalent to (b). Any split realization Z 1 o f f  is in particular canonical. 
By the uniqueness of canonical realizations (see Eilenberg, 1974, p. 419), 
Z ~___ Z 1 . Therefore Z is also a split system. 

(b) Equivalent to (c). Trivial, because Z is by hypothesis already reachable 
and projective. 

(c) Equivalent to (d). Clear from (2.2). 

(d) Equivalent to (e). Consider M in f2. It follows from the discussion in 
Bourbaki (Alg~bre, II.5.4) that the state-space P(M)' can be canonically identified 
with P'(M) (here P = projective is essential!). Under this identification, F'(M) 
[resp. G'(M), H'(M)I corresponds to F(M)' [resp. G(M)', H(M)']. Therefore 
Z'(M) is canonically isomorphic to Z(M)'. The equivalence is now clear. 

(f) Equivalent to (g). By hypothesis Z' is reachable. So by (2.2) all the 
RIM-systems Z(M) are reachable. | 

We may now give the 

Proof of (2.1). Assume that f splits. Then the equivalence of (a) and (j) in 
(2.4) shows that In(Hn) = R. 

Conversely, suppose that In(Hn) ~ R, i.e. 7ri l l  n has rank n for all 3//. To 
prove tha t f  splits, it is enough to show that (2.4) can be applied. In other words, 
it must be proved that the canonical state space X = X I is a (finitely generated) 
projective R-module of rank n. 

Since R is Noetherian, f is realizable; see (1.10). Assume then that X can be 
generated by s elements. Then X is isomorphic to the R-module generated by 
the columns of Hs (Rouchaleau, 1972, Section 2.A); see also Sontag (1976, 
Lemma (3.11)). 

Fix a maximal ideal M. Denote by R M the localization of R at M, the local 
ring consisting of all fractions a/b with a, b in R and b not in M (see Bourbaki, 
Alg~bre Commutative II.3.2, Proposition 3). Since RM is a fiat R-module (see 
Bourbaki, Alg~bre Commutative II.2.4, Theorem 1) it follows that the canonical 
state-space o f f @  R M is X~ : =  X @ R M . Therefore X~  is isomorphic to the 
R-module generated by the columns of H~ (viewed as a matrix over RM). 

Since obviously s ~> n, from the hypothesis on the ranks of f over Q and of 
~r~H~ over RIM it follows that H~ has rank n over Q and 7rMH ~ has rank n over 
RIM ~ R~/MR~. The lemma in the Appendix can be applied over R~ (with 
A = {1} and K~ = ~). Therefore X M is free. 
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It follows from Bourbaki (Alg~bre Commutative, 11.5.3, Theorem 2) that X is 
projective of rank n. I 

(2.5) Remark. In many cases of interest the realizations whose existence is 
claimed (under the stated hypothesis) can in fact be constructed explicitly. For 
principal-ideal domains, for example, it is only necessary to apply the usual 
realization procedure generalizing "Silverman's formulas" (see Rouchaleau 
and Sontag, 1978); the resulting canonical system will be necessarily split. For 
local rings, it is only necessary to find a submatrix C of the Hankel matrix such 
that 7rC is invertible; "Silverman's formulas" can be applied over the field ~) 
and the realization obtained will necessarily be over R. 

When f ~ (ak, a 2 ,...) is a scalar response map and the formal power series 
X aiz -i is expressed over R as p/q, where p, q ~ R[z], we may state a condition 
directly in terms of the "transfer function" p/q. Given two polynomials p, q over 
R we denote by p(p, q) the resultant o fp  and q (see Lang [1965, p. 135]). This 
is an dement of R. Recall Bourbaki [Alg~bre Commutative, V.1.2]) that an 
integral domain R is integrally closed iff for any equation 

z n + alz n-1 + "'" + an = 0 (*) 

(where all a~ are in R) every solution in Q is necessarily in R. (For instance, 
unique factorization domains are integrally closed.) 

A scalar realizable response map f over an integrally closed domain R admits a 
transfer function p/q, where q is in fact the minimal polynomial of f over 
(see Eilenberg, 1974, Chapter XVI Section 12; Rouchaleau and Sontag, 1978, 
Lemma (1.2)). We call such a transfer function irreducible. We can then state 

(2.6) PROPOSITION. Let R be an integrally closed integral domain. Let f be a 
(1, 1)-response map over R, with irreducible transfer function p/q. Then f splits iff 
p(p, q) is a unit. 

Pro@ The condition p(p, q) = unit is equivalent to the following require- 
ment: p(p(M), q(M)) v~ 0 for all M in £2, where p(M), q(M) are obtained by 
reducing modulo M the coefficients of p, q. But p(p(M), q(M)) - 0 precisely 
when p(M), q(M) have a common factor, i.e. when rankf(M) < n. The result 
follows then immediately from (2.1). | 

3. THE CASE OF REDUCED RINGS 

Recall that a commutative ring R is reduced when R has no nilpotent elements. 
(Example: 7710 , the integers modulo 10.) If R is a Noetherian reduced ring, let 
P(R) denote the (finite) set Of minimalprime ideals of R. Let Q(R) denote the set 
of quotient fields of the Rip, p in P(R). 

The following result generalizes (2.1) to the case of reduced rings: 

643/37/x-3 
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(3.1) THEOREM. Let R be a Noetherian reduced ring. Then the response map f 
splits i f  and only if: 

(i) the numbers ranko( f @ Q) are equal for all Q in Q(R), and 

(ii) for every M in ~, ranks/M H , ( M )  = n, where n is the common value of 
r anko( f  @ Q). 

Sketch of Proof. ["if"]  Let  S : =  (R/p1) × ... × (Rip,), where p~ .... , p ,  
are the elements of P(R). Since each RIP t is a Noetherian integral domain, each 
f @ (R/pi) is realizable and hence f is realizable as a map over S. But S is a finite 
extension of R, so f is realizable over R. Therefore the canonical state-space 
X = X I is a finitely generated R-module.  As in (2.1), it must  be proved that X 
is projective of rank n. 

Let  M be in 12. Then  R u is also reduced (Bourbaki [Alg+bre Commutative,  
II.2.7, Proposition 17]). The  minimal ideals of R u correspond to those minimal 
ideals of R which are contained in M and Q(RM) is a subset of Q(R) (see Bourbaki, 
Alg~bre Commutative,  II.3.1, Proposition 3). Therefore the result in the 
Appendix can be again applied, where the K a are the elements of Q(RM). 

["only i f"]  This  is similar to the proof of (2.1). | 

A P P E N D I X .  A CRITERION FOR FREENESS 

LEMMA. Let R be a (commutative) local ring and write ~: R--+ k for the 
canonical map into the residue fe ld  k of R. Suppose there is given a family of fields 
{Ka, h ~ A} and a family of ring homomorphisms ~ a : R - +  KA such that 
0 ker aa = 0. Let V be in R sx* and let X be the R-module generated by the columns 
of V. Then a sufficient condition for X to be a free module is 

rankxa(~aV ) = rankk(TrV ) 

for all A in A. 

Proof. By definition of rank over the field k, ~V has an n × n nonsingular 
submatrix 7rW, where W is an n × n submatrix of V. Let  8 : =  det W. T h u s  
~r3 @ 0, i.e. 8 is not in the unique maximal ideal of R. By Bourbaki (Alg~bre 
Commutat ive II.3.1, Proposition 1), 8 is a unit in R. Let  w I ,..., w~ denote those 
columns of V which belong to IV. Clearly the vectors {w 1 ,..., w~} are R-linearly 
independent, because 3 = unit. 

The  proof  now reduces to showing that the vectors w 1 ,..., w= generate X. I n  
fact, let v be any other column of V. Let  Pa ,..., Pn denote the row indices of the 
submatrix W. Let  8, : =  det(a~) where 

i f  j4:l ,  aij  ~ .  wot , j  

= vo~ if j = 1. 

(wi~ is the ith entry of w~ and vi is t he / th  entry of v). 
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Consider 

x : =  ~v - -  ~ ~ w , ~ X .  
i=J_ 

Then,  ~zx = (aaS)(~av) - -  ~ (%8,)(aaw~) for each A in A. Since 3 is a unit  in R, 

it follows that ~aS, which is equal to det(~aW), is nonzero in K~.  By definition 
of rank over a field, ~av is a unique Ka-linear combination of the ~aw~, and by 
Cramer's rule this combination has the coefficients ~8~/a~8. Therefore ~ax -~ 0. 

Hence x is in ker ~a for each A. Since N ker ~a = 0, it follows that x = 0. 
Therefore v = ~ (8d8) w~. | 
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