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ABSTRACT Feedback loops play an important role in determining the dynamics of biological networks. To study the role of
negative feedback loops, this article introduces the notion of distance-to-positive-feedback which, in essence, captures the number
of independent negative feedback loops in the network, a property inherent in the network topology. Through a computational study
using Boolean networks, it is shown that distance-to-positive-feedback has a strong influence on network dynamics and correlates
very well with the number and length of limit cycles in the phase space of the network. To be precise, it is shown that, as the number
of independent negative feedback loops increases, the number (length) of limit cycles tends to decrease (increase). These
conclusions are consistent with the fact that certain natural biological networks exhibit generally regular behavior and have fewer
negative feedback loops than randomized networks with the same number of nodes and same connectivity.

INTRODUCTION

An understanding of the design principles of biochemical

networks such as gene regulatory, metabolic, or intracellular

signaling networks is a central concern of systems biology. In

particular, the intricate interplay between network topology

and resulting dynamics is crucial to our understanding of

such networks, as is their presumed modular structure. Fea-

tures that relate network topology to dynamics may be con-

sidered robust in the sense that their influence does not

depend on detailed quantitative features such as exact flux

rates. A topological feature of central interest in this context

is the existence of positive and negative feedback loops.

There is broad consensus that feedback loops have a decisive

effect on dynamics, which has been studied extensively

through the analysis of mathematical network models, both

continuous and discrete. Indeed, it has long been appreciated

by biologists that positive and negative feedback loops play a

central role in controlling the dynamics of a wide range of

biological systems. Thomas et al. (1) conjectured that posi-

tive feedback loops are necessary for multistationarity,

whereas negative feedback loops are necessary for the exis-

tence of periodic behaviors. Proofs for different partial cases

of these conjectures have been given (see (2–5), D. Angeli,

M. Hirsch, and E. Sontag, unpublished). Moreover, it has

often been pointed out (see, for instance, (7)) that an abun-

dance of loops, and specifically negative loops (8,9), should

result in longer cycles and thus more ‘‘chaotic’’ behavior in

the network. Our results provide strong evidence in support

of this.

We focus here on Boolean network models, a popular

model type for biochemical networks, initially introduced by

Kauffman (10). In particular, we study Boolean network

models in which each directed edge can be characterized as

either an inhibition or an activation. In Boolean models of

biological networks, each variable can only attain two values

(0/1 or on/off). These values represent whether a gene is

being expressed, or the concentration of a protein is above a

certain threshold, at time t. When detailed information on

kinetic rates of protein-DNA or protein-protein interactions

is lacking, and especially if regulatory relationships are

strongly sigmoidal, such models are useful in theoretical

analysis, because they serve to focus attention on the basic

dynamical characteristics while ignoring specifics of reaction

mechanisms (see (11–14)).

Boolean networks constructed from monotone Boolean

functions (i.e., each node or gate computes a function which

is increasing on all arguments) are of particular interest, and

have been studied extensively, in the electronic circuit design

and pattern recognition literature (15,16), as well as in the

computer science literature (see, e.g., (17–19) for recent

references). For Boolean and all other finite iterated systems,

all trajectories must either settle into equilibria or into peri-

odic orbits, whether the system is made up of monotone

functions or not, but monotone networks have always some-

what shorter cycles. This is because periodic orbits must be

antichains, i.e., no two different states can be compared (see

(15,20)). An upper bound may be obtained by appealing to

Sperner’s Theorem (21): Boolean systems on n variables can

have orbits of period up to 2n, but monotone systems cannot

have orbits of size larger than
�

n
ºn=2c

�
� 2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=npÞ

p
; these

are all classical facts in Boolean circuit design (15). It is also

known that the upper bound is tight (15), in the sense that it is

possible to construct Boolean systems on n variables, made

up of monotone functions, for which orbits of the maximal

size
�

n
ºn=2c

�
given by Sperner’s Theorem exist. This number

is still exponential in n. However, anecdotal experience
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suggests that monotone systems, constructed according to

reasonable interconnection topologies and/or using restricted

classes of gate functions, tend to exhibit shorter orbits

(22,23). One may ask if the architecture of the network, that

is, the structure of its dependency (also called interconnec-

tion) graph, helps insure shorter orbits. In this direction,

Aracena et al. (17) showed that on certain graphs, called

caterpillars, monotone networks can only have cycles of

length of at most two in their phase space.

This article asks the even more general question of whether

networks that are not necessarily made up from monotone

functions, but which are close-to-monotone (in a sense to be

made precise, roughly meaning that there are few indepen-

dent negative loops), have shorter cycles than networks

which are relatively farther to monotone.

In Sontag (8), we conjectured that smaller distance-to-

monotone should correlate with more ordered (i.e., less

chaotic) behavior, for random Boolean networks. A partial

confirmation of this conjecture was provided in Kwon and

Cho (9), where the relationship between the dynamics of

random Boolean networks and the ratio of negative/positive

feedback loops was investigated, albeit only for the special

case of small Kauffman-type NK and NE networks, and with

the additional restriction that all nodes have the same func-

tion chosen from AND, OR, or UNBIAS. Based on computer

simulations, the authors of Kwon and Cho (9) found a pos-

itive (negative) correlation between the ratio of fixed points

(other limit cycles) and the ratio of positive feedback loops.

Observe that this differs from our conjecture in two funda-

mental ways:

1. Our measure of disorder is related to the number of inde-

pendent negative loops, rather than their absolute num-

ber.

2. We do not consider that the number of positive loops

should be part of this measure: a large number of nega-

tive loops will tend to produce large periodic orbits, even

if the negative/ positive ratio is small due to a larger number

of positive loops.

Thus, in the spirit of the conjecture in Sontag (8), the

current article has as its goal an experimental study (as op-

posed to a theoretical analysis) of the effect of independent

negative feedback loops on network dynamics, based on

an appropriately defined measure of distance to positive-

feedback. We study the effect of this distance on features of

the network dynamics, namely the number and length of limit

cycles. Rather than focusing on the number of negative

feedback loops in the network as the characteristic feature

of a network, we focus on the number of switches of the

activation/inhibition character of edges that need to be made

to obtain a network that has only positive feedback loops.

We relate this measure to the cycle structure of the phase

space of the network. It is worth emphasizing that the abso-

lute number of negative feedback loops and the distance to

positive feedback are not correlated in any direct way, as it is

easy to construct networks with a fixed distance to positive

feedback that have arbitrarily many negative feedback loops

(see Fig. 1).

Motivations

There are three different motivations for posing the question

that we ask in this article. The first is that most biological

networks appear to have highly regular dynamical behavior,

settling upon simple periodic orbits or steady states. The

second motivation is that it appears that real biological net-

works such as gene regulatory networks and protein signal-

ing networks are indeed close to monotone (24–26). Thus,

one may ask if being close to monotone correlates in some

way with shorter cycles. Unfortunately, as mentioned above,

one can build networks that are monotone yet exhibit expo-

nentially long orbits. This suggests that one way to formu-

late the problem is through a statistical exploration of graph

topologies, and that is what we do here.

A third motivation arises from the study of systems with

continuous variables, which arguably provide more accurate

models of biochemical networks. There is a rich theory of

continuous-variable monotone (to be more precise, cooper-

ative) systems. These are systems defined by the property that

an inequality a(0) , b(0) in initial conditions propagates in

time so that the inequality a(t) , b(t) remains true for all

future times t . 0. Note that this is entirely analogous to the

Boolean case, when one makes the obvious definition that

two Boolean vectors satisfy the inequality a¼ (a1, . . ., an) #

b ¼ (b1, . . ., bn) if ai # bi for each i ¼ 1, . . ., n (setting 0 ,

1). Monotone continuous systems have convergent behav-

ior. For example, in continuous-time (ordinary differential

models), they cannot admit any possible stable oscilla-

tions (27–29), and, when there is only one steady state, every

bounded solution converges to this unique steady state

(monostability), see (30). When, instead, there are multiple

steady states, the Hirsch Generic Convergence Theorem is

the fundamental result (20,29,31,32); it states, under an ad-

ditional technical assumption (strong monotonicity) that ge-

FIGURE 1 A graph that has an arbitrary number of negative loops, as

many as the number of nodes in the second layer, but its PF-distance is 1: to

avoid negative feedback, it suffices to switch the sign of the single (negative)

arrow from the bottom to the top node. All unlabeled arrows are positive.
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neric bounded solutions must converge to the set of steady

states. Biological applications of these theorems include

positive gene feedback circuits (20) as well as single phos-

phorylation/dephosphorylation loops (33) and double phos-

phorylation/dephosphorylation loops under appropriate

assumptions on kinetic constants (34). For discrete-time

strongly monotone systems, generically also stable oscilla-

tions are allowed besides convergence to equilibria, but no

more complicated behavior. In neither case, discrete-time or

continuous-time continuous monotone systems, does one

observe chaotic behavior. It is an open question whether

continuous systems that are in some sense close to being

monotone have more regular behavior, in a statistical sense,

than systems that are far from being monotone, just as for

the Boolean analog considered in this article. The Boolean

case is more amenable to computational exploration than

continuous-variable systems, however. Since long orbits in

discrete systems may be viewed as an analog of chaotic be-

havior, we focus on lengths of orbits.

One can proceed in several ways to define precisely the

meaning of distance to positive feedback. One associates to a

network made of unate (definition below) gate functions a

signed graph whose edges have signs (positive or negative)

that indicate how each variable affects each other variable

(activation or inhibition). The first definition, explored in the

literature (8,24,25,35,36), starts from the observation that in a

network with all monotone node functions there are no

negative undirected cycles. Conversely, if the dependency

graph has no undirected negative parity cycles (a sign-

consistent graph), then a change of coordinates (globally

replacing a subset of the variables by their complements)

renders the overall system monotone. Thus, asking what is

the smallest number of sign-flips needed to render a graph

sign-consistent is one way to define distance to monotone.

This approach makes contact with areas of statistical physics

(the number in question amounts to the ground energy of an

associated Ising spin-glass model), as well as with the general

theory of graph-balancing for signed graphs (37) that origi-

nated in Harary (38). It is also consistent with the generally

accepted meaning of monotone-with-respect-to-some-or-

thant-order in the ordinary differential equation literature as a

system that is cooperative under some inversion of variables.

A second, and different, definition starts from the fact that

a network with all monotone node functions has, in particu-

lar, no negative-sign directed loops. For a strongly connected

graph, the property that no directed negative cycles exist is

equivalent to the property that no undirected negative cycles

exist. However, for nonstrongly connected graphs, the

properties are not the same. Thus, this second property is

weaker. The second property is closer to what biologists and

engineers mean by not having negative feedbacks in a sys-

tem, and hence is perhaps more natural for applications. In

addition, it is intuitively clear that negative feedbacks should

be correlated to possible oscillatory behavior. (This is basi-

cally Thomas’ conjecture. See (25) for precise statements for

continuous-time systems; interestingly, published proofs of

Thomas’ conjecture use the first definition, because they

appeal to results from monotone dynamical systems.) Thus,

one could also define distance to monotone as the smallest

number of sign-flips needed to render a graph free of negative

directed loops. To avoid confusion, we will call this notion,

which is the one studied in this article, distance-to-positive-

feedback (PF-distance).

THEORY

Distance-to-positive-feedback

We give here the basic definitions of the concepts relevant to

the study.

Definition 1

Let k ¼ f0, 1g be the field with two elements. We order the

two elements as 0 , 1. This ordering can be extended to a

partial ordering on kn by comparing vectors coordinatewise

in the lexicographic ordering.

1. A Boolean function h: kn/k is monotone if, whenever

a # b coordinatewise, for a, b 2 kn, then h(a) # h(b).

2. A Boolean function h is unate if, whenever xi appears in

h, the following holds:

Either

(a) For all a1, . . ., ai–1, ai11, . . ., an 2 k,

h(a1, . . ., ai–1, 0, ai11, . . ., an) # h(a1, . . ., ai–1, 1,

ai11, . . ., an),

Or

(b) For all a1, . . ., ai–1, ai11, . . ., an 2 k,

h(a1, . . ., ai–1, 0, ai11, . . ., an) $ h(a1, . . ., ai–1, 1,

ai11, . . ., an).

The definition of unate function is equivalent to requiring that

whenever ai appears in h, then it appears either everywhere as

ai or everywhere as :ai: ¼ 1 1 ai.

Let f be a Boolean network with variables x1, . . ., xn, and

coordinate functions f1, . . ., fn. That is, f¼ (f1,. . .,fn): kn / kn.

We can associate to f its dependency graphD(f): The vertices

are v1, . . ., vn, corresponding to the variables x1, . . ., xn, and

there is an edge vi / vj if and only if there exists a1, . . .,
ai–1, ai11, . . ., an2 k such that fj(a1, . . ., ai–1, 0, ai11, . . ., an) 6¼
fj(a1, . . ., ai–1, 1, ai11, . . ., an). If all coordinate functions fi
of f are unate, then the dependency graph of f is a signed

graph. Namely, we associate to an edge vi / vj, a plus sign

(1) if fj preserves the ordering as in 2(a) of Definition 1 and a

minus sign (�) if it reverses the ordering as in 2(b) of Defi-

nition 1. For later use we observe that this graph (as any di-

rected graph) can be decomposed into a collection of strongly

connected components, with edges between strongly con-

nected components going one way but not the other. (Recall

that a strongly connected directed graph is one in which any

two vertices are connected by a directed path.) That is, the

graph can be represented by a partially ordered set in which
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the strongly connected components make up the elements

and the edge direction between components determines the

order in the partially ordered set.

Definition 2

Let f be a Boolean network with unate Boolean functions and

D(f) be its signed dependency graph. Then

1. The graph D(f) is a positive-feedback (PF) if it does not

contain any odd parity directed cycles. (The parity of a

directed cycle is the product of the signs of all the edges

in the cycle.) In this case, f is called a positive-feedback

(PF) network.

2. The PF-distance of f is the smallest number of signs that

need to be changed in the dependency graph to obtain a PF

network. We denote this number by jD(f)j or simply j f j.

Notice that for a given directed graph G, different assign-

ments of sign to the edges produce graphs with varying PF-

distance. In particular, there is a maximal PF-distance that a

given graph topology can support.

The dynamics of f are presented in a directed graph, called

the phase space of f, which has the 2n elements of kn as a

vertex set, and there is an edge a/b if f(a) ¼ b. It is

straightforward to see that each component of the phase space

has the structure of a directed cycle, i.e., a limit cycle, with a

directed tree feeding into each node of the limit cycle. The

elements of these trees are called transient states.

In this article, we relate the dynamics of a Boolean network

to its PF-distance. The following is a motivational example

that explains the main results.

Example

Let G be the directed graph depicted in Fig. 2 (left). It is easy

to check that the maximal PF-distance of G is 3. Let f¼ (x3 _

:x4, i1 ^ x2, x2 ^ :x4, :x3): f0, 1g4/f0, 1g4 and g¼ (:x3 _
x4, x1 ^ :x2, x2 ^ x4, :x3): f0, 1g4/f0, 1g4. It is clear that f
and g are sign-modifications of the same PF network (x3 _ x4,

x1 ^ x2, x2 ^ x4, x3); in particular, they have the same (un-

signed) dependency graph. However, the PF-distance of f is 0

while it is 3 for g. The phase space of f is depicted in Fig. 2

(middle) and that of g is on the right. Notice that f has two

limit cycles of lengths 1 and 2, respectively, while g has only

one limit cycle of length 4.

For each distance 0 # d # 3, we analyze the dynamics of

10 random PF networks and their sign modifications of dis-

tance d on the directed graph in Fig. 2 (left). The average of

the numbers (lengths) of limit cycles is computed as in Table 1.

The best fit-line of the averages of the number (length) of

limit cycles is computed and its slope is reported as in Fig. 3.

The details of this analysis are provided in the Supplementary

Material, Data S1.

Note that the purpose of the experiment is to determine a

trend in the number and length of cycles as the PF-distance

increases. It is thus appropriate to use a straight line to ap-

proximate the data points, even though this might not at all be

the best possible approximation. But the slope of the line of

best fit incorporates that trend adequately. We have repeated

the experiment in the Example above for many different

graphs and observed that the slope of the best fit-line of the

length (respectively, number) of limit cycles is positive (re-

spectively, negative) most of the time. In the next section we

present the details of the experiments and the algorithms used

in the computations.

METHODS

The main results of this article relate the PF-distance of Boolean networks

with the number and length of their limit cycles. Specifically, our hypothesis

is that, for Boolean networks consisting of unate functions, as the PF-

distance increases, the total number of limit cycles decreases on average and

their average length increases. This is equivalent to saying that for most or all

FIGURE 2 The dependency graph (left), the phase space of f (middle), and the phase space of g (right) from the Example in text. These graphs were

generated using DVD (40).
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experiments this slope is negative for the number of limit cycles and is

positive for their length.

To test this hypothesis we analyzed the dynamics of .6,000,000 Boolean

networks arranged in ;130,000 experiments.

Random generation of unate functions

We generated a total of .130,000 random directed graphs, where each graph

has 5,7,10,15, 20, or 100 nodes, with maximum in-degree 5 for each node.

The graphs were generated as random adjacency matrices, with the restric-

tion that each row has at least one ‘‘1’’ and at most five ‘‘1’’s. For each

directed graph G, we generated 10 Boolean networks with unate functions

and dependency graph G, by using the following fact.

Lemma

A Boolean function f of n variables is unate if and only if it is of the form

f(x) ¼ g(x 1 s), where g is a monotone Boolean function of n variables and

s 2 kn and ‘‘1’’ denotes addition modulo 2.

Proof

If f is unate then each variable xi appears in f always as xi or always as :xi.

Suppose that all xi appear without negations. Then f is constructed using ^
and _ . Hence f is monotone. Otherwise, let s 2 kn be the vector whose ith

entry is 1 if and only if xi appears as :xi in f. Then g(x) ¼ f(x 1 s) is a

monotone function and f(x) ¼ g(x 1 s). The converse is clear.

So to generate unate functions it is sufficient to generate monotone

functions. We generated the set Mi of monotone functions in i variables by

exhaustive search for i ¼ 1, . . . , 5. (For example, M5 has 6894 elements.)

Unate functions for a given signed dependency graph can then be generated

by choosing random functions from Mi and random vectors s 2 kn. The

nonzero entries in s for a given node correspond to the incoming edges with

negative sign in the dependency graph. Using this process we generated

Boolean networks with unate Boolean functions.

We then carry out the following experiment.

The Experiment

Let G be a random unsigned directed graph on n nodes with a maximal PF-

distance t, and let D # t. Consider 10 unate Boolean networks chosen at

random with G as their dependency graph.

1. For 1 # d # D, let Gd be a signed graph of G of distance d.

(a) For each network f of the 10 networks,

i. Let g be a modified network of f such that D(g) ¼ Gd; the

signed dependency graph of g is Gd.

ii. Compute the number and length of all limit cycles in the

phase space of g.

(b) Compute the average number N (respectively, average length L)

of limit cycles in the phase spaces of the g values.

2. Compute the slope sN (respectively, sL) of the best fit-line of the N
values (respectively, L values).

The output of a single experiment consists of the two nonnegative integers sN

and sL.

Computation of PF-distance

Let f be a Boolean network with unate Boolean functions and let j f j be its

PF-distance. The proofs of the following facts are straightforward.

1. Suppose the dependency graph of f has a negative feedback loop at a

vertex. Let f9 be the Boolean network obtained by changing a single

sign to make the loop positive. Then j f j ¼ j f 9j 1 1.

2. Let H1, . . . , Hs be the strongly connected components of the depen-

dency graph D(f). Then

jDðf Þj ¼ +
s

i¼1

jHij:

The algorithm for computing jHij now follows.

Algorithm: Distance to PF

Input. A signed, directed, and strongly connected graph G.

Output. jGj; the PF-distance of G.

Let d ¼ 0.

Step 1. Let G1, . . . , Gr be the collection of all signed graphs obtained by

making exactly d sign changes in G.

Step 2. For i ¼ 1; . . . ; r
If Gi is PF, then RETURN jGj ¼ d.

Step 3. Otherwise, d: ¼ d 1 1, Go to Step 1 above.

In Step 2 above, to check whether a strongly connected graph is PF, it is

equivalent to check whether it has any (undirected) negative cycles, which

can easily be done in many different ways, see, e.g., Sontag (25). This al-

gorithm must terminate, since G has finitely many edges and hence the PF-

distance of G is finite.

FIGURE 3 The best fit-line of the averages of the numbers (lengths) of

limit cycles from Table 1.

TABLE 1 The average of the numbers (lengths) of limit

cycles of the networks from the Example in text

D Average number Average length

0 3.5 1.23

1 2.80 1.25

2 2.50 1.52

3 1.20 3.50

TABLE 2 The average CPU time (seconds) as we increase

the number of nodes n, the maximum in-degree of each

node k, and the maximal-considered distance D

k ¼ 2 and D ¼ 4 n ¼ 5 and D ¼ Max. n ¼ 10 and k ¼ 5

n Average CPU k Average CPU D Average CPU

5 0.5951 2 0.6256 5 56.779

7 2.842 3 1.525 6 82.718

10 32.892 4 7.4078 7 101.35

15 2445.3 5 208.39 8 204.45
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If G has m directed edges, then there are 2m possible sign assignments.

However, to compute the maximal PF-distance, one does not need to find the

PF-distance of such possible assignments; see Data S1 for the algorithm we

used to compute the maximal PF-distance.

We have coded these algorithms into a Mathematica code that we use to

carry out our experiment. Once the number of nodes n, the maximal in-

degree k of each node, and the maximal considered distance D are fixed, a

random directed graph is generated and the experiment is carried out as

shown above. Although we will not analyze the complexity here, it is clear

that, as the value of n, k, or D increases, the time needed to do the experiment

increases exponentially. In Table 2 we report the average CPU time (minutes)

for some of the experiments where two of the variables are fixed.

RESULTS

As mentioned in the previous section, we have carried out

;130,000 such experiments for networks whose number of

nodes ranges from 5 to 100. Table 3 summarizes the outcome

of these experiments and represents the main result of the

article. The rightmost two columns list the percentage of

experiments for each network size that conform to our main

hypothesis. As can be seen, the table confirms the hypothesis

strongly, in particular for networks of smaller size. To ex-

plain the drop in the percentage of networks that conform to

the hypothesis for larger networks, we need to consider some

details of the experiments.

To begin with, we need to observe that a computationally

expensive part of an experiment is the computation of the

maximal PF-distance which a given directed graph topology

can support, since this is done essentially by an exhaustive

test of all possible sign distributions on the edges. This

computation becomes prohibitive for even modest-size

graphs, with, e.g., 10 nodes. So unlike in the Example above,

for networks on more than five nodes, we only considered

PF-distances that are less than or equal to the number of

nodes in the network. (See Methods for a detailed description

of the experiment.) In fact, for graphs with 20 (respectively,

100) nodes, all considered networks have PF-distance #5

(respectively, 10). That is, our experiments reflect only the

relationship between dynamics and PF-distance for networks

that are very close to positive feedback, relative to their actual

PF-distance.

For networks on five nodes, we carried out 4000 experi-

ments by varying the PF-distance considered in the compu-

tations. Table 4 shows the number of experiments that do not

conform to our hypothesis as we vary the considered PF-

distance. A more instructive way to visualize the effect of

restricting the range of PF-distance relative to maximal PF-

distance on the likelihood of experiments validating the

conjecture is in the form of a histogram. In Figs. 4 and 5, the

horizontal axis represents the slope of the lines of best fit and

the vertical axis represents the percentage of experiments that

confirm our hypothesis. Fig. 4 shows the results of the 4000

experiments on five-node networks. The histograms show the

results when PF-distance of the network, respectively, is

25%, 50%, 75%, and 100% of the maximal PF-distance. It

can be seen as the allowed range of PF-distance approaches

the maximal distance, almost all experiments show positive

slope of the best-fit line, thereby conforming to the conjec-

ture. Similar results for the average number of limit cycles are

shown in Fig. 5, demonstrating that if the PF-distance of

networks is allowed the whole possible range, almost all the

experiments conform to our hypothesis as we already noticed

in Table 4.

We have carried out similar computations for networks

with seven (5000 experiments) and 10 (6000 experiments)

nodes; see Data S1 for details. The results there are not quite

as clear as for five-node networks, primarily because all

computations were done with PF-distance #5, due to the

computational complexity involved. For instance, for net-

works with 10 nodes (and up to four incoming edges per

node), 31 out of 1000 experiments did not conform to our

hypothesis for networks with PF-distance up to five.

In summary, the extensive computations confirm our hy-

pothesis that, as the PF-distance increases, the total number

of limit cycles decreases on average and their average length

increases. Furthermore, the slopes of the best-fit lines in-

creasingly conform to our hypothesis the closer the PF-distance

of the networks comes to the maximum PF-distance of the

network topology.

For details of our analysis of the five-node networks and all

other considered networks, see Data S1.

DISCUSSION

Negative feedback loops in biological networks play a crucial

role in controlling network dynamics. The new measure of

distance-to-positive-feedback (PF-distance) introduced in

this article is designed to capture the notion of independent

feedback loops. We have shown that PF-distance correlates

very well with the average number and length of limit cycles

TABLE 3 The percentage of experiments that conform to

the hypotheses

n Number of experiments Average number Average length

5 117,000 99.75 99.83

7 5000 97.82 99.92

10 6000 95.70 99.58

15 2921 95.72 98.25

20 331 90.03 94.86

100 659 77.39 93.93

TABLE 4 The number of experiments that did not conform

to our hypothesis for five-node networks; we considered

PF-distance 25%, 50%, 75%, and 100% of the maximal

distance (for each d, we considered 1000 experiments)

D

Average

number

Average

length

Medium

number

Medium

length

25% 26 114 29 542

50% 4 16 18 59

75% 0 1 6 3

100% 1 0 2 0
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in networks, key measures of network dynamics. By ana-

lyzing the dynamics of .6,000,000 Boolean networks, we

have provided evidence that networks with a larger number

of independent negative feedback loops tend to have longer

limit cycles and thus may exhibit more random or chaotic

behavior. Furthermore, the number of limit cycles tends to

decrease as the number of independent negative feedback

loops increases.

In general, the problem of computing the PF-distance of a

network is NP-complete, as MAX-CUT can be mapped into

it as a special case (see the literature (24,25,35) for a discussion

for the analogous problem of distance to monotone). The ques-

tion of computing distance to monotone has been the subject

of a few recent articles (24,35,36). The first two of these pro-

posed a randomized algorithm based on a semidefinite pro-

gramming relaxation, while the last one suggested an efficient

FIGURE 4 Five-node networks. Histogram

of slopes of best-fit lines to the average length

of limit cycles (horizontal axis) versus percent-

age of experiments with a given slope (vertical
axis). The panels from left to right include net-

works with increasing PF-distance, with 25%,

50%, 75%, and 100% of the maximal distance.

FIGURE 5 Five-node networks. Histogram

of slopes of best-fit lines to the average number

of limit cycles (horizontal axis) versus percent-

age of experiments with a given slope (vertical

axis). The panels from left to right include net-

works with increasing PF-distance, with 25%,

50%, 75%, and 100% of the maximal distance.
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deterministic algorithm for graphs with small distance to

monotone. Since a strongly connected component of a graph is

monotone if and only if it has the PF property, methods for

computing PF distance for large graphs may be developed by

similar techniques. Work along these lines is in progress.

One may speculate that the regular behavior observed in

biological networks is due, in some measure, to their pre-

sumably small distance to positive feedback. There are as of

yet too few large networks known with information on di-

rectionality and signs of interactions, to be able to draw

statistically meaningful conclusions. However, one may

make some preliminary statements. It was shown in Prill et al.

(7) that for five networks (Escherichia coli transcription,

Saccharomyces cerevisiae transcription, STKE signaling,

Drosophila transcription, and a Caenorhabditis elegans
neuron), feedback loops are statistically highly underrepre-

sented among other motifs. No sign information was avail-

able for some of these networks, but it has been observed that

negative (i.e., incoherent) cycles are less abundant than

positive (i.e., coherent) ones in certain networks (39), and this

will in turn bias feedback loops to be negative, when post-

transcriptional modifications are added to the model. Simi-

larly, models of a segment polarity network in Drosophila
and of an S. cerevisiae gene network were shown to be close

to monotone (no negative undirected cycles) compared to

random graphs (24,25,35), and a similar statement of small

PF distance (now including feedback loops as well as feed-

forward loops) was made for a CA-1 neuron signaling net-

work and an E. coli and S. cerevisiae network (26), although

this study was restricted to small loops.
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Supporting Information 
 

1. Motivational Example. 
 

Consider the directed graph G in Figure 1, it is not hard to check that its maximal PF-

distance is 3.  At random, choose ten Boolean networks such that all have the same 

dependency graph G. For example, consider the Boolean network 

f(x1,x2,x3,x4)=(x3∨x4,x1∧x2, x2∧x4,x3). 

 
G 

Figure 1. A directed graph on 4 nodes.  

 

Let G0, G1, G2, G3  be signed graphs of G of distance 0,1,2,3, respectively, as in Figure 2. 

Let S={G0,G1,G2, G3}. For each Gd, by replacing xi by ~xi wherever it appears for some i, 

modify f into f’ such that Gd is the dependency graph of f’, see Figure 2. Similarly, we 

modify each of the other 9 networks.  

 

f1 = x3∨(∼x4) 

f2 = x1 ∧x2 

f3 = x2∧(∼x4) 

f4 = ~x3 

 

f1 = x3∨(∼x4) 

f2 = (~x1) ∧x2 

f3 = x2∧x4 

f4 = x3 

 

f1 = (~x3)∨(∼x4) 

f2 = x1 ∧(∼x2) 

f3 = x2∧x4 

f4 = x3 

 

f1 = (~x3)∨x4 

f2 = x1 ∧(∼x2) 

f3 = x2∧x4 

f4 = ~x3 

Figure 2. Possible sign assignments of the graph G and the corresponding 

modified network of f for each signed graph. For example, for d=1, since the are 

negative edges from x4 to x1 and x1 to x2, we write ~x4 in f1 and ~x1 in f2  

 



For each d, we find the phase spaces of the 10 Boolean networks that have Gd as their 

signed dependency graph. 

 

Compute the average number as well as average length of limit cycles. We 

summarize this in Table 1. 

 

 

d 0 1 2 3 

Average number of cycles 3.50 2.80 2.50 1.20 

Average Length of cycles 1.23 1.25 1.52 3.50 

 

Table 1. The average number and average length of limit 

cycles with respect to d. For example, for networks with PF 

distance 0, the average number of cycles is 3.50 and their 

average length is 1.23. 

 

We plot the average as a function of d and compute the slope of the best fit line. In 

our example, the slope of the best fit line of the numbers is -0.72 and the slope of the 

best fit line of the lengths is 0.71. 
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Figure 3. The best fit-line of the average of number (resp. 

length) of limit cycles is in blue (resp. red). 

 

 

 

 

 

 

 

 

 

 



 

 

 

2. Networks on 5 nodes 
 

We performed 4000 experiments using 5-node networks. We varied the PF-distance from 

d=0 to D=25%, 50%, 75%, 100% of the maximum distance of the network (Figure 4 and 

Table 2). We show the histograms for the slopes for the average number and length of 

limit cycles, and the median number and length of limit cycles.  
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Figure 4. (5-node networks) Histograms for the average number/length of cycles 

(first/second row) and the median number/length of cycles (third/fourth row). The 

distance d varies from 0 up to D=25, 50, 75, 100% of the maximum distance in the first, 

second, third, fourth column, respectively. 

 

 

 



 

 
D Num. of Exp. Av. Num. Av. Len. Med. Num. Med. Len. 

25% 1000 26 114 29 542 

50% 1000 4 16 18 59 

75% 1000 0 1 6 3 

100% 1000 1 0 2 0 

Table 2 

 

We also performed 40000 experiments using 5-node networks, where we varied the PF-

distance from d=0 to D = D*+the number of self loops, where D*=2, 3, 5, Maximum 

distance, respectively (Figure 5 and Table 3). We show the histograms for the slopes for 

the average number and length of limit cycles, and the median number and length of limit 

cycles.  
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Figure 5. (5-node networks) Histograms for the average number/length of cycles 

(first/second row) and the median number/length of cycles (third/fourth row). The PF-

distance varies from 0 to D*+the number of self loops, where D*=2, 3, 5, Maximum 

distance, respectively of the network without self loops. 

 

 

 
 



D* Num. of Exp. Av. Num. Av. Len. Med. Num. Med. Len. 

2 10000 63 53 221 258 

3 10000 33 19 153 44 

5 10000 9 6 65 7 

Max. Dis. 10000 6 5 54 7 

Table 3 
 

 

3. Networks of size n=7, 10 
 

The computationally expensive part of the analysis made for 5-node networks is the 

computation of the maximal PF-distance of a given directed graph. Hence, we performed 

experiments using networks of n=7, n=10 where we considered the distance to vary from 

0 to a fraction of the number of nodes. The results are shown in Table 4, 5, respectively. 

We show the histograms for the slopes for the average number and length of limit cycles, 

and the median number and length of limit cycles (Figures 6, 7).  
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Figure 6. (7-node networks) Histograms for the average number/length of cycles 

(first/second row) and the median number/length of cycles (third/fourth row). The PF-

distance varies from 0 to D*+the number of  self loops where D*=3,4,7, respectively. 

 

 

 

 

D* Num. of Exp. Av. Num. Av. Len. Med. Num. Med. Len. 

3 1000 58 0 72 12 

4 1000 33 0 44 8 

7 1000 4 0 10 0 

Table 4 
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Figure 7. (10-node networks) Histograms for the average number/length of cycles 

(first/second row) and the median number/length of cycles (third/fourth row). The PF-

distance varies from 0 to D*+the number of negative self loops where D*=3,4,5, 

respectively. 

 

 

D* Num. of Exp. Av. Num. Av. Len. Med. Num. Med. Len. 

3 1000 61 3 80 17 

4 1000 40 4 40 13 

5 1000 31 0 39 13 

Table 5 

 

4. Networks of n=15, n=20, n=100 nodes 
 

We performed experiments with networks of n=15, 20, 100 nodes. The results are shown 

in Figure 8 and Table 6. The dynamics of Boolean networks on 100 nodes were 

computed using 10000 random initializations. 
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Figure 8. (15, 20, 100-node networks) Histograms for the average number and length of 

cycles for 15-node networks (first row), 20-node networks (second row) and 100-node 

networks (third row). 

 
n Num. of Exp. Av. Num. Av. Len. 

15 2921 95.72 98.25 

20 331 90.03 94.86 

100 659 77.39 93.93 

Table 6 

 

5. An Algorithm for computing the maximal PF distance. 
 

As we noted in body of the article, the distance of any graph is the sum of the distances of 

its strongly connected components. Furthermore, it is easy to see that each self loop with 

a negative sign increased the distance by 1. Therefore, without loss of generality, we 

assume the graph is strongly connected without self loops. 

 

Input: The adjacency matrix A=(aij) of a strongly connected directed graph G on n 

nodes with m edges. 

Output: The maximal distance D of G and a sign assignment S with exactly D negative 

signs and PF-distance D. 

1. Let ( )
1 1

/ 2 / 2
n n

ij ji

i j

B a a
= =

  
= +  

  
∑ ∑ , 

2. For D=B  to 1, do 

a. For i=1 to 
m

D

 
 
 

 (there are 
m

D

 
 
 

 sign assignments having d negative signs) 

- Let S be the i-th sign assignment of A 

- If the PF-distance of S equal to D, then RETURN (D,S) 

 

This algorithm is guaranteed to return the maximal distance and a sign assignment of A 

with D negative signs and distance D because of the following Lemmas. 

 

Lemma A. The PF-distance of S is less than or equal to 



( )
1 1

/ 2 / 2
n n

ij ji

i j

a a
= =

  
+  

  
∑ ∑  

 

Proof. It follows from the fact that for any given vertex we can flip the sign of the 

incoming outgoing edges without changing the PF distance. Then we can obtain more 

positive than negative edges around every vertex (the dynamics of the Boolean network 

associated to the directed graph does not change either). 

 

Lemma B. If PF-distance of S is d, then there exists a sequence of vertices, v1, v2,…,vt 

such that the sign assignment R  obtained by changing the sign around those vertices has 

distance d with exactly d negative signs. 

 

Proof. (By induction on d.) Recall that flipping the signs of the (in and out) edges of a 

given vertex in S does not change its PF-distance [24]. For d=0, the network is monotone 

and hence, by definition, the statement follows. 

 

 

 

 

6. An Algorithm to check if a network is a PF network. 
 

The following algorithm checks whether a network is positive feedback, which is 

equivalent to check if there are no negative feedback loops. Again, without loss of 

generality, we assume the graph is strongly connected without self loops. 

 

 

 

Input: The adjacency matrix A=(aij) of a signed, strongly connected, directed graph G 

that has no self loop. 

Output: TRUE if the G is a PF network and FALSE if G is not.  

1. Let P and N be (0,1)-matrices such that A=P-N. 

2. Let P’=P, N’=N. 

3. For i=1 to n, DO 

If N’ has a nonzero diagonal entry,  

RETURN FALSE 

Else, let P’=P’P+N’N and N’=N’P+P’N 

4. RETURN TRUE 

 

At each step i, P’ keeps track of the number of positive paths and N’ keeps track of the 

number of negative paths of length i. Then, the diagonal entries of N’ correspond to the 

number of negative closed paths (any negative feedback loop will appear as a nonzero 

diagonal element of N’). 


