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Abstract

An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a
biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation
helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum
and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown
theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable
additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even
when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used
model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to
discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose
validity we show is both necessary and sufficient for scale invariance of three-node enzymatic networks (and sufficient for
any number of nodes). Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon,
and results in concrete experimental predictions.
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Introduction

The survival of organisms depends critically upon their capacity

to formulate appropriate responses to sensed chemical and

physical environmental cues. These responses manifest themselves

at multiple levels, from human sight, hearing, taste, touch, and

smell, to individual cells in which signal transduction and gene

regulatory networks mediate the processing of measured external

chemical concentrations and physical conditions, such as ligand

concentrations or stresses, eventually leading to regulatory changes

in metabolism and gene expression.

An ubiquitous property of biological sensory systems at all levels

is that of adaptation: a step increase in stimulus triggers an initial,

and often rapid, change in a biochemical or physiological

response, followed by a more gradual relaxation toward a basal,

pre-stimulus level [1]. Adaptation plays a role in ensuring that

essential variables stay within acceptable bounds, and it also allows

organisms to readjust themselves to an optimum and non-

saturating sensitivity range even when faced with a prolonged

change in their operating environment, thus making them capable

of detecting changes in signals while ignoring background

information.

Physiological examples of adaptation in higher organisms

include phenomena such as the control of the amount of light

entering eyes through the contraction and relaxation of the pupil by

the nervous system, which brings intensities of illumination within

the retinal working range, or the regulation of key metabolites in the

face of environmental variations [2]. At the single-cell level, one of

the best understood examples of adaptation is exhibited by the E. coli

chemotaxis sensory system, which responds to gradients of nutrient

and ignores constant (and thus uninformative) concentrations [3,4].

The term ‘‘exact’’ or ‘‘perfect’’ adaptation is employed to describe

processes which, after a transient, return with very high accuracy to

the same input-independent level. In practice, however, an

approximate adaptation property is usually adequate for proper

physiological response [5].

By definition, neither the concepts of perfect nor approximate

adaptation address the characteristics of the transient signaling

which occurs prior to a return to steady state. The amplitude and

other characteristics of transient behaviors, however, are physio-

logically relevant. In this more general context, a remarkable

phenomenon exhibited by several human and animal sensory

systems is scale invariance or logarithmic sensing [2,6,7]. This means

that responses are functions of ratios (in contrast to actual

magnitudes), of a stimulus relative to the background. There is

evidence for this phenomenon at an intracellular level as well. It

appears in bacterial chemotaxis [8,9], in the sensitivity of S.

cerevisiae to fractional rather than absolute pheromone gradients

[10], and in two mammalian signaling systems: transcriptional as

well as embryonic phenotype responses to b-catenin levels in Wnt

signaling pathways [11], and nuclear ERK localization in response

to EGF signaling [12]. Scale invariance allows systems to react to

inputs ranging over several orders of magnitude, and is speculated
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to help make behaviors robust to external noise as well as to

stochastic variations in total expressed concentrations of signaling

proteins [13].

Mathematically, scale invariance is defined by the following

property of transient behaviors [13]: if a stimulus changes from a

background level u0 to a new level u, then the entire time response

of the system is the same as if the stimulus had changed, instead,

from a background level pu0 to pu. In other words, only the ratio

(or ‘‘fold-change’’) pu=pu0~u=u0 is relevant to the response; the

‘‘scale’’ p is irrelevant. For this reason, the term ‘‘fold change

detection’’ is interchangeably used instead of scale-invariance.

Scale invariance implies adaptation, but not every adaptive system

is scale invariant [13]. A mathematical analysis of scale-invariance

was initiated in [13,14]. Predictions regarding scale-invariance of

E. coli chemotaxis were subsequently experimentally verified [15].

While adaptation can be often understood in terms of control-

theoretic tools based on linearizations [16,17,18,19,20], scale

invariance is a genuinely nonlinear property; as a matter of fact,

a linear system can never display scale-invariance, since the

response to an input scaled by p will also be scaled by this same

factor p.

In this work, we focus on enzymatic signal transduction systems,

which involve the activation/deactivation cycles that typically

mediate transmission of external signals to transcription factors

and other effectors. Networks involving such enzymatic cycles are

involved in signal transduction networks from bacterial two-

component systems and phosphorelays [21,22] to actin tread-

milling [23], guanosine triphosphatase cycles [24], glucose

mobilization [25], metabolic control [26], cell division and

apoptosis [27], cell-cycle checkpoint control [28], and the

eukaryotic Mitogen-Activated Protein Kinase (MAPK) cascades

which mediate growth factor inputs and determine proliferation,

differentiation, and apoptosis [29,30,31,32,33].

Given the biological importance of these processes, and the

already observed scale-invariance in some of these pathways

[11,12], we pose here the following question: which enzymatic

networks do not merely adapt, but also display scale invariance? In

order to answer this question, we performed an exhaustive

computational study of all 3-node networks, finely sampled in

parameter space. Only about 0.01% of these networks are capable

of (approximate) adaptation. Testing which of these adapting

networks also display scale-invariant behavior, we found that only

about 0.15% of them did. Once that this small subclass was

identified, we turned to the problem of determining what network

characteristics would explain the results of these numerical

experiments. We discovered a surprisingly simple and general

property, which we call uniform linearizations with fast output

(ULFO), that is displayed by all the networks in this subclass, and

here we provide a theoretical framework that explains conceptu-

ally why this property is both necessary and sufficient for scale

invariance of such three-node enzymatic networks. The condition

is also sufficient for networks with larger numbers of nodes. As an

application (with more than three nodes), we consider a recently

published model [34] of an eukaryotic enzymatic system,

specifically the pathway involved in the social amoeba Dictyostelium

discoideum’s chemotactic response to cAMP, and show that our

conditions are satisfied in appropriate ranges of cAMP input.

Characterizations of this sort allow one to understand which

networks are robust to scale uncertainty, and constitute a powerful

tool in allowing one to discard putative mechanisms that are not

consistent with experimentally observed scale-invariant behaviors

[14,15].

Results

Three-node enzymatic networks
We consider networks consisting of three types of enzymes,

denoted respectively as A, B, and C. Each of these enzymes can be

in one of two states, active or inactive. The fractional concentra-

tion of active enzyme A is represented by a variable xA~xA(t), so

~xxA~1{xA is the fraction of inactive enzyme A. Similar notations

are used for B and C. Only enzyme A is directly activated by an

external input signal, and the response of the network is reported

by the fraction of active C. Enzyme B acts as an auxiliary element.

Each enzyme may potentially act upon each other through

activation (positive regulation), deactivation (negative regulation),

or not at all. If a given enzyme is not deactivated by any of the

remaining two, we assume that it is constitutively deactivated by a

specific enzyme; similarly, if a given enzyme is not activated by any

other, there is a constitutively activating enzyme for it. One

represents networks by 3-node directed graphs, with nodes labeled

A, B, C, and with edges between two nodes labeled z and { (or

‘‘?’’ and ‘‘a’’) to denote positive or negative regulation

respectively; no edge is drawn if there is no action. There are

32~9 potential directed edges among the three nodes (A to A, A

to B, etc.), each of whose labels may be z, {, or ‘‘none’’ if there

is no edge. This gives a total of 39~19,683 possible graphs. One

calls each of these possible graphs a topology. Discarding the 3,645

topologies that have no direct or indirect links from the input to

the output, there remain 16,038 topologies.

The restriction to three-node networks is made for both

practical and biological reasons. As argued in several papers that

use a similar approach [20,35,36], even though adaptation (as well

as scale-invariant) behaviors can, and do, arise in larger networks,

the coarse-graining involved in restricting the computational

search to minimal networks leads to a tractable search problem,

and allows also one to intuitively understand the basic principles.

The same motifs are observed in larger networks, in which several

nodes may represent a single node in the three-node networks that

we study. In fact, the necessary property that we discover for three-

node networks turns out to be sufficient, as well, for networks with

arbitrary numbers of nodes. The discussion section elaborates

further on this point, and an illustration of this reduction is given

by an example discussed below of a 6-variable model published in

[34] to represent the adaptation kinetics of a chemotaxis signaling

pathway in Dictyostelium discoideum.

Specification of a dynamic model
We quantify the effects of each existing regulatory interaction by

a Michaelis-Menten term and write a three-variable ordinary

differential equation (ODE) that describes the time evolution of

xA(t), xB(t), and xC(t):

_xxA~
X

i

kViA
vi
:~xxA

~xxAzKViA

{
X

i

kWiA
wi
:xA

xAzKWiA

ð1aÞ

Author Summary

Sensory systems often adapt, meaning that certain
measured variables return to their basal levels after a
transient response to a stimulus. An additional property
that many adapting systems enjoy is that of scale
invariance: the transient response remains the same when
a stimulus is scaled. This work presents a mathematical
study of biochemical enzymatic networks that exhibit
scale-invariant behavior.

Scale Invariant Responses in Enzymatic Networks
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_xxB~
X

i

kViB
vi
:~xxB

~xxBzKViB

{
X

i

kWiB
wi
:xB

xBzKWiB

ð1bÞ

_xxC~
X

i

kViC
vi
:~xxC

~xxCzKViC

{
X

i

kWiC
wi
:xC

xCzKWiC

ð1cÞ

The K ’s denote Michaelis-Menten, and the k’s catalytic, rate

constants associated to each regulatory interaction. All the

summations range over i~1, . . . ,6. Each ‘‘Vi’’ represents one of

A, B, C, EA, EB, EC , the activating enzymes in the respective

equations, and each ‘‘Wi’’ one of A, B, C, FA, FB, FC , the

deactivating enzymes; E and F are the constitutively activating

and deactivation enzymes, buffered at constant concentrations.

(Lower-case variables vi,wi~xA, . . . ,xFC
denote active fractions)

As an exception, the equation for node A does not include an EA

term, but instead includes a term kUAu
~xxA

~xxAzKUA

that models

activation of A by an external input whose strength at time t is

given by u~u(t) and whose values u(t) stay within a range ½u,�uu�.
No enzyme appears both an activator and as a deactivator of any

given component, that is, kXiA
kYiA

~0, kXiB
kYiB

~0, and

kXiC
kYiC

~0, and constitutive enzymes are included only if the

reaction would be otherwise irreversible. For example, the

topology shown in Fig. 1 is described by the following set of

ODE’s:

_xxA~
kUAu:~xxA

~xxAzKUA

{
kBAxB

:xA

xAzKBA

{
kCAxC

:xA

xAzKCA

ð2aÞ

_xxB~
kABxA

:~xxB

~xxBzKAB

{
kFBBxFB

:xB

xBzKFBB

ð2bÞ

_xxC~
kACxA

:~xxC

~xxCzKAC

{
kBC

:xBxC

xCzKBC

{
kCCxC

:xC

xCzKCC

ð2cÞ

The term circuit is used to refer to a given topology together with a

particular choice of the K and k parameters. The three-node

model in Eq.1 was employed by Ma et al. [20], in order to classify

the minimal enzymatic circuits that adapt. (With the model in [20]

that we adopted, there is no direct connection from the input to

the output node, and two-node networks are not sufficient for

adaptation, while larger adapting networks contain these three-

node networks [20]. If one allows direct connections from input to

outputs, then two-node networks are able to display adaptation.)

The same paradigm has since been used to investigate other

network characteristics as well [35,36].

Adaptation
Following [37], we define adaptation behavior in terms of two

functional metrics. The first metric quantifies the following effect: if

we start at steady state, and then step the input at time t~0 from a

value u0 to a different constant value u1, then the system’s output, as

reported by a response variable y(t) (where y(t)~xC(t) in Eq.1),

should return asymptotically to a value that is close to the original

value y(0). The relative difference in initial and final response

D?
y ~Dy(z?){y(0)D provides a measure of adaptation precision.

We say that a system is (approximately) adaptive provided that, for

all inputs in the valid range, D?
y =Duv0:1, where Du~Du1{u0D=Du0D

is the relative change in input. In particular, exact or perfect

adaptation means that D?
y ~0. The 10% error tolerance is natural

in applications, and the qualitative conclusions are not changed by

picking a smaller cutoff [20]. A second metric relies upon the

maximal transient difference in output, normalized by the steady-

state output, Dmax
y ~maxDy(t){y(0)D=Dy(0)D. A signal-detection prop-

erty for adaptation [18,38], should be imposed in order to rule out

the trivial situation Dmax
y &0 in which a system’s output is

independent of the input. To avoid having to pick an arbitrary

threshold, in this study we follow the convention in [20] of requiring

the sensitivity Dmax
y =Du to be greater than one.

Scale invariance
Scale invariance is the property that if a system starts from a

steady state that was pre-adapted (tv0) to a certain background

level u0, and the input is subsequently set to a new level u at t~0,

then the entire time response of the system yu0,u(t) is the same as

the response ypu0,pu(t) that would result if the stimulus had

changed, instead, from pu0 to pu. This property should hold for

scale changes pw0 that respect the bounds uƒuƒ�uu on inputs. For

example, recent microfluidics and FRET experimental work [15]

verified scale-invariance predictions that had been made in [13]

for bacterial chemotaxis under the nonmetabolizable attractant a-

methylaspartate (MeAsp) as an input. In these experiments, E. coli

bacteria were pre-adapted to input concentrations and then tested

in new nutrient gradients, and it was found experimentally that

there were two different ranges of inputs ½u1,�uu1� and ½u2,�uu2� in

which scale-invariance holds, the ‘‘FCD1’’ and ‘‘FCD2’’ regimes,

repectively. (The term fold-change detection, or FCD, is used to

reflect the fact that only the ratio or fold-change pu=pu0~u=u0

can be detected by the response y(t).) More generally, the

mathematical definition of (perfect) scale invariance [14] imposes

the ideal requirement that the same response invariance property

is exhibited if u~u(t), t§0 is any time-varying input. The

experiments in [15] included excitation by certain oscillatory

inputs, for example. In practice, however, this property will always

break down for high-frequency inputs, since there are limits to the

speed of response of biological systems.

Adaptive systems need not be scale-invariant
As an illustration of a (perfectly) adaptive yet not scale-invariant

system, consider the following equations:

_xxA~k1u{k2xB ð3aÞ

_xxB~k3xA{k4xB ð3bÞ

_xxC~k5xA{k6xBxC ð3cÞ

which is a limiting case of the system described by Eq.2 when

kCA,kCC ,KUA,KBA,KAB,KAC&0, kBC~k6KBC , KBC&1 (so

{kBCxBxC=(xCzKBC)&{k6xBxC ), and kFBBxFB
~k2KFBB

and KFBB&1. This network perfectly adapts, since at steady state

the output is xC~�xxC~k4k5=(k3k6), no matter what is the

magnitude of the constant input u, and in fact the system returns

to steady state after a step change in input u, with xC(t)?�xxC as

t?? (general stability properties of feedforward circuits shown in

[39]). On the other hand, the example in Eq.3 does not display

scale invariance. Indeed, consider the solution from an initial state

Scale Invariant Responses in Enzymatic Networks
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pre-adapted to an input level u0, that is xA(0)~k1k4u0=(k2k3),
xB(0)~k1u0=k2, and xC(0)~k4k5=(k3k6), and the input u(t):u1

for t§0. Then, xC(t)~k4k5=(k3k6)zk1k5(u1{u0)t2=2zO(t3)

for small t§0. Since the t2 coefficient in this Taylor expansion gets

multiplied by p when u0 is replaced by pu0 and u1 is replaced by

pu1, it follows that the transient behavior of the output xC(t)
depends on p. Interestingly, if the equation for the third node is

replaced by _xxC~k5xA=xB{k6xC , that is to say the activation of

C is repressed by B, instead of its de-activation being enhanced by

A, then scale invariance does hold true, because xA(t) and xB(t)
both scale by p when u0.pu0, u1.u0, and xC(t) depends on the

ratio of these two functions (in particular, the t2=2 term is

k2k5(u1{u0)=u0). Such a repression is typical of genetic interac-

tion networks, but is not natural in enzymatic reactions.

It turns out that the example described by Eq.3 is typical: no

enzymatic network described by Eq.1 can display perfect scale-

invariant behavior. This fact is a consequence of the equivariance

theorem proved in [14] (see Materials and Methods). Thus, a

Figure 1. Topology 2293. An example of a topology.
doi:10.1371/journal.pcbi.1002748.g001

Figure 2. Scale-invariance. Plots overlap, for responses to steps 3?1:2 � 3 and 5?1:2 � 5. Network is the one described by
E q . 2 . R a n d o m p a r a me t e r s e t : KUA~0:093918 kUA~11:447219, KBA~0:001688 kBA~44:802268, KCA~90:209027 kCA~96:671843,
KAB~0:001191 kAB~1:466561, KFB

~9:424319 kFB
~22:745736, KAC~0:113697 kAC~1:211993, KBC~0:009891 kBC~7:239357, KCC~0:189125

kCC~17:910182.
doi:10.1371/journal.pcbi.1002748.g002

Scale Invariant Responses in Enzymatic Networks
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meaningful study of enzymatic networks, even for perfectly

adaptive ones, must rely upon a test of approximate scale

invariance. Instead of asking that yu0,u(t)~ypu0,pu(t), as was the

case in the theory developed in [13,14], one should require only

that the difference be small. To investigate this issue, we

computationally screened all 3-node topologies through a high-

throughput random parameter scan, testing for small differences in

responses to scaled steps. We found that approximately 0.01% of

the samples showed adaptation, but of them, only about 0.15%

passed the additional criterion of approximate scale invariance (see

Materials and Methods). These samples belonged to 21 (out of 16,038

possible) topologies. As an example of the behavior of one of these,

Fig. 2 shows a response resulting from a 20% step, from 3 to 3:6,

compared to the response obtained when stepping from 5 to 6; the

graphs are almost indistinguishable. (See Text S1 for an enumer-

ation of circuits and corresponding plots). In the following

discussion, we will refer to these surviving circuits, and their

topologies, as being ‘‘approximately scale invariant’’ (ASI).

We found that all ASI networks possess a feedforward motif,

meaning that there are connections (positively or negatively

signed) A?B?C and as well as A?C. Such feedforward motifs

have been the subject of extensive analysis in the systems biology

literature [1] and are often involved in detecting changes in signals

[40]. They appear in pathways as varied as E. coli carbohydrate

uptake via the carbohydrate phosphotransferase system [41],

control mechanisms in mammalian cells [42], nitric oxide to NF-

kB activation [43,44], EGF to ERK activation [45,46], glucose to

insulin release [47,48], ATP to intracellular calcium release [49],

and microRNA regulation [50]. The feedforward motifs in all ASI

networks are incoherent, meaning such that the direct effect A?C

has an opposite sign to the net indirect effect through B. An

example of an incoherent feedforward connection is provided by

the simple system described by Eq.3 , where the direct effect of A

on C is positive, but the indirect effect is negative: A activates B

which in turn deactivates C. (Not every incoherent feedforward

network provides scale invariance; a classification of those that

provide exact scale invariance is known [14].)

It is noteworthy that all ASI circuits have a positive regulation from

A to B and a negative regulation from B to A. Thus, they all include a

negative feedback loop which is nested inside the incoherent

feedforward loop. In addition, as discussed below, all ASI circuits

and have only a weak (or no) self-loop on the response node C.

We then discovered another surprising common feature among

all ASI circuits. This feature can best be explained by a further

examination of the example in Eq.3 .

Approximate scale invariance
Continuing with example in Eq.3 , let us suppose that

k1,k2,k3,k4%k5,k6, so that the output variable y~xC reaches its

steady state much faster than xA and xB do. Then, we may

approximate the original system by the planar linear system

represented by the differential equations for xA and xB together with

the new output variable ~yy(t)~h(xA(t),xB(t))~kxA(t)=xB(t), where

k~k5=k6. This reduced planar system, obtained by a quasi-steady

state approximation, has a perfect scale-invariance property: replacing

the input u by pu results in the solution (pxA(t),pxB(t)), and thus the

output is the same: h(xA(t),xB(t))~h(pxA(t),pxB(t)). The exact

Figure 3. QSS quadratic approximation. Network is the one described by Eq.2. Random parameter set is as in Fig. 2.
doi:10.1371/journal.pcbi.1002748.g003

Scale Invariant Responses in Enzymatic Networks
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invariance of the reduced system translates into an approximate scale

invariance property for the original three-dimensional system because,

except for a short boundary-layer behavior (the relatively short time for

xC to reach equilibrium), the outputs of both systems are essentially the

same, y(t)&~yy(t). The assumption k1,k2,k3,k4%k5,k6 is often written

symbolically as _xxA~k1u{k2xB, _xxB~k3xA{k4xB, e _xxC~k5xA{

k6xBxC , where 0ve%1 and where k5,k6 are now the original k5,k6

multiplied by e. The quality of approximate scale invariance will

depend on how small ‘‘e’’ is.

Generality of the planar reduction
We found that, just as in the example in Eq.3 when

k1,k2,k3,k4%k5,k6, in every ASI circuits the time scale of node C
is much shorter than that of A and B. Therefore, the same

Figure 4. Relative contribution of terms in the equation for node C. The first two terms range in ½{0:25,0:25� but self-loop magnitude is
always less than 10{3 . i.e. contribution or self-loop to _xxC is less than 1%. Similar results hold for all ASI circuits. Network is the one described by Eq.2.
Random parameter set is as in Fig. 2 . Similar results are available for all ASI circuits.
doi:10.1371/journal.pcbi.1002748.g004

Figure 5. Constant A/B ratio in responses to 3?1:2 � 3 and 5?1:2 � 5. Network is the one described by Eq.2. Random parameter set is as in
Fig. 2. Similar results are available for all ASI circuits (see Text S1).
doi:10.1371/journal.pcbi.1002748.g005

Scale Invariant Responses in Enzymatic Networks
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two-dimensional reduction is always valid. It follows that one can

drop the last equation, approximating these circuits by planar

systems that are described by only the two state variables xA and xB,

where every occurence of xC in the first two equations of the right-

hand side of Eq.1 is replaced by h(xA,xB), the function obtained by

setting the right-hand side of the third equation in Eq.1 to zero and

solving for the unique root in the interval ½0,1� of the quadratic

equation. This reduced system, with ~yy(t)~h(xA(t),xB(t)) as an

output, provides an excellent approximation of the original

dynamics. Fig. 3 compares the true response with the response

obtained by the quasi-steady state approximation, for one ASI

circuit (see Text S1 for all comparisons).

Generality of dependence on xA=xB

In the example given by Eq.3 , there were two additional key

mathematical properties that made the planar reduction scale-

invariant (and hence the original system approximately so). The

first property was that, at equilibrium, the variable xC must be a

function of the ratio xA=xB, and the second one was that each of

xA and xB must scale by the same factor when the input scales by

p. Neither of these two properties need to hold, even approxi-

mately, for general networks. Surprisingly, however, we discovered

that both are valid with very high accuracy for every ASI circuit.

The equilibrium value of xC is obtained from setting the last right-

hand side of Eq.1 to zero and solving for xC . A solution

xC~h(xA,xB) in the interval ½0,1� always exists, because at xC~0
one has ~xxC~1 and thus the term is positive, and at xC~1 one has

~xxC~0 and so the term is negative. This right-hand side has the

general form xAw(xC)zxBc(xC)zk(xC ,xEC
,xFC

), where w and c
are increasing functions, each a constant multiple of a function of

the form ~xxC=(~xxCzK) or {xC=(xCzK). If the term k is

negligible, then xAw(xC)zxBc(xC)~0 means that also

(xA=xB)w(xC)zc(xC)~0, and therefore xC at equilibrium is a

(generally nonlinear) function of the ratio xA=xB. There is no a

priori reason for the term k to be negligible. However, we

discovered that in every ASI circuit, k&0. More precisely, there is

no dependence on the constitutive enzymes, and this ‘‘self-loop’’

link, when it exists, contributes to the derivative _xxC much less than

the xA and xB terms, see Fig. 4.

Generality of homogeneity of xA,xB

The last ingredient of the example given by Eq.3 that plays a

role in approximate scale invariance is that each of xA and xB

must scale proportionately when the input is scaled. In that

example, the property holds simply because the equations for these

two variables are linear. In general, however, the dynamics of

(xA,xB) are described by nonlinear equations. Thus it is

remarkable that, in all ASI circuits, the property holds. We tested

the property by plotting xA(t)=xB(t) in a set of experiments in

which a system was pre-adapted to an input value u0 and the input

was subsequently set to a new level u at t~0. When going from

pu0 to pu, we found that the new value xA(t)=xB(t) was almost the

same, meaning that xA and xB scaled in the same fashion. A

representative plot is shown in Fig. 5.

A new property: uniform linearizations with fast output
The (approximate) independence of xA(t)=xB(t) on input scalings is

not due to linearity of the differential equations for xA and xB(t).
Instead, the analysis of this question led us to postulate a new property,

which we call uniform linearizations with fast output (ULFO). To define this

property, we again drop the last equation, and approximate circuits by

the planar system that has only the state variables xA and xB, where

every occurence of xC in their differential equations shown in

Eq.1 is replaced by h(xA,xB). We denote by f (xA,xB,u)

~(f1(xA,xB,u),f2(xA,xB,u)) the result of these substitutions, so that

the reduced system is described in vector form by _xx~f (x,u),
x~(xA,xB). We denote by s(u) the unique steady state corresponding

to a constant input u, that is, the solution of the algebraic equation

f (s(u),u)~0. We denote by A(u)~(Lf =Lx)(s(u),u) the Jacobian

matrix of f with respect to x, and by B(u)~(Lf =Lu)(s(u),u) the

Jacobian vector of f with respect to u.

The property ULFO is then defined by requiring the following

properties:

1. time-scale separation for xC ;

2. h(xA,xB) depends only on the ratio xA=xB;

3. for every u , v, and p such that u, v, and pu are in the range

½u,�uu�:

s(pu)~ps(u), A(u)~A(v), B(u)~B(v) ð4Þ

Notice that we are not imposing the far stronger property that

the Jacobian matrices should be constant. We are only requiring

the same matrix at every steady state.

The first condition in Eq.4 means that the vector s(u)=u should

be constant. We verified that this requirement holds with very high

accuracy in every one of the ASI circuits. With u~0:3 and �uu~0:6,

we have the following s(u)=u values, rounded to 3 decimal digits:

(0:195,0:239), (0:193,0:237), (0:192,0:236), (0:191,0:235) when

u~0:3, 0:4, 0:5, and 0:6 respectively, for the network described by

Eq.2 and the random parameter set in Fig. 2 . Similar results are

available for all ASI circuits (see Text S1).

The Jacobian requirements in Eq.10 are also verified with high

accuracy for all the ASI circuits. We illustrate this with the same

network and parameter set. Let us we compute the linearizations

A0:3~A(0:3), A0:4~A(0:4), … , B0:6~B(0:6) and the average

relative differences

A err
ij ~

X
u~0:3,0:4,0:5,0:6

(Au)ij{(A0:45)ij

(A0:45)ij

�����
�����

and we define similarly B err . These relative differences are very

small (shown to 3 decimal digits):

A err ~
0:069 0:004

0 0:005

� �
, B err ~

0:002

0

� �
,

thus justifying the claim that the Jacobians are practically constant.

Similar results are available for all ASI circuits (see Text S1).

The key theoretical fact is that the property ULFO implies

approximate scale-invariance, see Materials and Methods.

Intuitively, the conditions in Eq.4 mean that the ‘‘memory’’ of

past inputs, represented by the activity level (phosphorylation,

methylation, etc.) of the pre-adapted steady state, is propor-

tional to the input, indicating an integration mechanism, and

that the small-signal behavior from different pre-adapted levels

is the same. The term ‘‘uniform’’ refers to the fact that the

linearizations at every steady state are the same. If the

linearizations are not all the same, it is easy to see that scale

invariance does not hold. The uniformity of linearizations

provides a ‘‘global’’ way to tie together behaviors at different

scales. The conditions give us the approximate homogeneity

property f (px,pu)&pf (x,u) when near steady states, because,

for u&u� and x&s(u�):
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f (px,pu)&A(pu�)(px{s(pu�))zB(pu�)(pu{pu�)

~A(u�)(px{ps(u�))zB(u�)(pu{pu�)

&pf (x,u) :

These conditions are satisfied in various combinations of

parameter regimes. As a purely theoretical example, consider

the following system (denoting x~xA, y~xB, z~xC ):

_xx~{
x

1zx=K
zzu

_yy~x{y

e _zz~x{zy,

which can be viewed as a limiting case of the system described by

Eq.2 when

kUA~1,kAB~1,kCC ,KUA,kBA,KAB,KAC&0,kBC~KBC ,KBC&1,

kAC~1,kFBBxFB
~KFBB,KFBB&1,KBA&0,kCA=KCA~1:

Substituting z~x=y in the first equation, we have:

_xx~f1(x,y,u)~{
x2

yzxy=K
zu

The linearization of the system evaluated at a steady state

corresponding to a constant input u has

A(u)~
{2z3u=K{u2=K2 0

1 {1

 !

(and B(u) constant), and is therefore approximately constant

provided that K is large or that the input u is small in relative

magnitude. Similarly, if we use s(pu) as initial state and pu as

inputs, we get a similar expression (with o(pu) instead of o(u) and

the p’s in the fraction canceling out).

A concrete biological model
In a recent paper [34] Takeda and collaborators studied the

adaptation kinetics of a eukaryotic chemotaxis signaling pathway,

employing a microfluidic device to expose Dictyostelium discoideum to

changes in chemoeffector cyclic adenosine monophosphate

(cAMP). Specifically, they focused on the dynamics of activated

Ras (Ras-GTP), which was in turn reported by RBD-GFP (the Ras

binding domain of fluorescently tagged human Raf1), and showed

almost perfect adaptation of previously unstimulated cells to

cAMP concentrations ranging from 10{2nM to 1mM. Further-

more, inspired by [20], the authors proposed alternative models

Figure 6. Scale-invariance computed when using the model in [34]: Responses to steps 1?2 and 2?4 coincide.
doi:10.1371/journal.pcbi.1002748.g006
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for adaptation, and concluded that the best fit was obtained by

using an incoherent feedforward structure. The model that they

identified is given by the following system of 6 differential

equations:

dR1

dt
~kR1

(vzr1)(R tot
1 {R1){k{R1

R1

dR2

dt
~kR2

(vzr2)(R tot
2 {R2){k{R2

R2

u~R1zR2

dGEF

dt
~kGEF u{k{GEF GEF

dGAP

dt
~kGAP u{k{GAPGAP

dRasGTP

dt
~kRAS GEF (RAS tot {RasGTP){k{RAS GAPRasGTP

dRBD cyt

dt
~k off

RBD (RBD tot {RBD cyt ){k on
RBD RasGTP RBD cyt :

The symbol v stands for the chemoeffector cAMP, and the

authors assumed the existence of two different receptor popula-

tions (R1 and R2, with very different Kd ’s) which when bound pool

their signals to downstream components (through u). The

constants r1 and r2 represent levels of constitutive activation.

The variables GEF and GAP represent activation and deactiva-

tion of RasGEF and RasGAP, RasGTP represents the activated

Ras, and RBD cyt describes the cytosolic reporter molecule RBD-

GFP.

The best-fit parameters obtained in [34] are as follows: Rtot
1 ~0:1,

Rtot
2 ~0:9, r1~0:012nM, r2~0:115nM, kR1

~0:00267nM{1sec{1,

k{R1
~0:16sec{1, kR2

~0:00244nM{1sec{1, k{R2
~1:1sec{1,

kGEF~0:04sec{1, k{GEF ~0:4sec{1, kGAP~0:01sec{1, k{GAP

~0:1sec{1, RAS tot ~1, kRAS~390sec{1, k{RAS~3126sec{1,

RBD tot ~1, k off
RBD~0:53sec{1, k on

RBD~1:0sec{1. With these

parameters, and cAMP concentrations which are small yet also

satisfy r1%v(t) and r2%v(t), it follows that _RR1&kR1
R tot

1

v{k{R1
R1 and _RR2&kR2

R tot
2 v{k{R2

R2, so we may view u(t) as

an input (linearly dependent on the external v(t)) to the three-

variable system described by xA~GEF , xB~GAP, xC~RasGTP.

Since RBD cyt depends only on xC , we may view xC as the output.

This three-variable system (interpreted as having limiting values of

Michaelis-Menten constants) has the ULFO property provided that

the dynamics of xC are fast compared to xA and xB, which the

identified parameters insure. So, we expect scale-invariant behavior.

Indeed, Fig. 6 shows a simulation of the entire six-dimensional

system (not merely of our 3-dimensional reduction) when using a

step from 1 to 2 nM of cAMP, and shows that essentially the same

response is obtained when stepping from 2 to 4 nM. This prediction

of scale-invariant behavior is yet to be tested experimentally.

Discussion

Work in molecular systems biology seeks to unravel the basic

dynamic processes, feedback control loops, and signal processing

mechanisms in single cells and entire organisms, both for basic

scientific understanding and for guiding drug design. One of the

key questions is: how can one relate phenotype (function) to

interaction maps (gene networks, protein graphs, and so forth)

derived from experimentation, especially those obtained from

high-throughput tools? Answers to this question provide powerful

tools for guiding the reverse-engineering of networks, by focusing

on mechanisms that are consistent with experimentally observed

behaviors, and, conversely, from a synthesis viewpoint, allow one

to design artificial biological systems that are capable of adaptation

[51] and other objectives. In particular, scale-invariance, a

property that has been observed in various systems [11,12], can

play a key role in this context, helping to discard putative

mechanisms that are not consistent with experimentally observed

scale-invariant behaviors [15]. Through a computational study, we

identified a set of simple mathematical conditions that are used to

characterize three-node scale invariant enzymatic networks.

The conditions that we obtained for three-node networks are also

sufficient for an arbitrary number of nodes, in the following sense.

Suppose that we consider a set of nz1 nodes, where n nodes are

described by variables x~(x1, . . . ,xn) and an additional node is

described by a variable z. Suppose that the z variable evolves at a

faster time scale than the x variables. Then, the ULFO property

implies approximate scale invariance (see Materials and Methods). A

variation of this situation is that in which a three-node network

already displays scale invariance through an output node xC , and

this output feeds into an additional node xD which evolves in a

linear mode; then the entire four-node network will display scale

invariance as well. Yet another variation is that in which an input is

processed linearly before being fed into a three-node network. The

discussed example of a published chemotaxis pathway in Dictyos-

telium discoideum combines these variations. One could ask, of course,

whether there exist large networks that are scale invariant yet are

not built in this fashion. We carried out a limited computational

search with four-node networks and have found none so far, leading

us to conjecture that the ULFO mechanism is indeed necessary as

well as sufficient in larger networks. However, a complete proof of

necessity for arbitrary networks is outside the scope of this paper,

and is most likely a very difficult if not impossible problem. A full

computational screen as performed for three-node networks is

already infeasible for four-node networks, due to the combinatorial

explosion in the number of possible networks and of parameters to

be randomly tested. A theoretical proof is also very difficult to

envision, because (a) exact scale invariance is impossible for

enzymatic networks, as shown in this paper, and (b) approximate

adaptation and scale invariance are mathematically very hard to

formalize in such a manner that impossibility can be rigorously

proved for systems that do not satisfy our characterizations. In any

event, as has been argued in other recent papers dealing with

biological adaptation by enzymatic networks [20,35,36], a restric-

tion to three-node networks is biologically reasonable, both as a

coarse-graining of the problem and because many eukaryotic

biological pathways, such as MAPK pathways, have at their core a

three-component architecture.

Materials and Methods

Computational screen
We generalized and extended the computational protocol

developed for adaptation in [20] to an investigation of approx-
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imate scale invariance. MATLAB scripts were used, in conjunc-

tion with the software developed in [20]. In order to test inputs in

ranges of the form aƒu(t)ƒ2a, redefining the constant kUA if

needed, we take simply u~0:3 and �uu~0:6. We considered

160,380,000 circuits, obtained from the 16,038 nontrivial 3-node

topologies, each one with 10,000 parameters sampled in logarith-

mic scale using the Latin hypercube method [52]. (We picked the

ranges kcat = 0.1–10 and Km = 0.001–100. A finer sampling does

not affect conclusions in any significant way [20].) Of these, 0.01%

(16,304) circuits showed adaptation, meaning that, as in [20],

when making a 20% step from u0~0:5 to u1~0:6 the precision is

10% or better, and the sensitivity is at least unity. Approximate

scale invariance (ASI) was then tested by also performing a 20%

step experiment from u0~0:3 to u1~0:36 and requiring that the

relative difference between the responses be at most 10%:

maxt Dy0:6(t){y3:6(t)D=max(y0:6(t){y3:6(t))f gv0:1
Of the adapting circuits, about 0.15% (25 circuits, classified into

21 different topologies) were determined to be ASI.

ULFO implies approximate scale invariance, for any
number of nodes

Consider a system of n differential equations with input signal u,

_xx~f (x,u)

with the variables x evolving on some closed bounded set and f
differentiable, and suppose that for each constant input �uu� there is

a unique steady state x�~s(u�) with the conditions in Eq.10 and

an output

y(t)~h(x(t))

such that h is differentiable and homogeneous of degree zero

(h(px)~h(x) for nonzero p). We view 3-node enzymatic networks

as obtained from a set of nz1 equations

_xx~F(x,z,u)

e _zz~G(x,z)

with n~2, x~(xA,xB), and z~xC (0ve%1 represents the faster

time scale for xC ), and we are studying the reduced system

_xx~f (x,u)~F (x,a(x),u) obtained by solving G(x,z)~0 for

z~a(x) and substituting in F . Consider a time interval ½0,T �, a

constant input u�, and a possibly time-varying input u(t), t§0, as

well as a scaling pw0, such that all values u�, pu�, u(t), pu(t) are in

the input range ½u,�uu�. The solutions of _xx~f (x,u) with initial

condition x(0)~s(u�) and of _zz~f (z,pu) with initial condition

z(0)~s(pu�) are denoted respectively by x(t) and z(t), and the

respective outputs are y(t)~h(x(t)) and yp(t)~h(z(t)). We wish to

show that these two responses are approximately equal on

0ƒtƒT .

More precisely, we will prove that the relative error

suptDyp(t){y(t)D
suptDu(t){u�D

?0

as a function of the input perturbation u(t){u�.

Write d(t)~u(t){u�. From Theorem 1 in [16] we know that

x(t)~x(0)zj(t)zo( dk k)

where dk k~ sup0ƒtƒT Dd(t)D and j is the solution of the variational

system

_jj(t)~Aj(t)zBd(t)

with j(0)~0, and that

z(t)~z(0)zf(t)zo( pu{pu�k k)~z(0)zf(t)zo( dk k),

where

_ff~Af(t)zBpd(t)

with f(0)~0. Recall that A(u)~(Lf =Lx)(s(u),u) is the Jacobian

matrix of f with respect to x, and B(u)~(Lf =Lu)(s(u),u) is the

Jacobian vector of f with respect to u, and the assumptions are

that these matrices are in fact independent of u. By linearity,

f~pj. Using z(0):s(pu�)~ps(u�)~px(0), we have that

px(t){z(t)~o( dk k): Thus,

y(t)~h(x(t))~h(px(t))~h(z(t)zo( dk k)) :

If K is an upper bound on the gradient of h, then

Dyp(t){y(t)D~Dh(z(t)){h(z(t)zo( dk k))DƒKo( dk k):

Thus, the relative error suptDyp(t){y(t)D= suptDu(t){u�D con-

verges to zero as a function of the input perturbation u(t){u�, as

claimed.

As a numerical illustration, we consider again the the network

described by Eq.2 and the random parameter set in Fig. 2 . We

compare the relative error between the original nonlinear system,

with initial state j~(xA,xB) corresponding to u~0:3, and applied

input u~0:36, and the approximation is jzz(t), where the z

solves the linear system with initial condition zero and constant

input 0:06. The maximum approximation error is about 5% (to 3

decimal places, 0:055 for xA and 0:01 for xB). When stepping from

u~0:5 to u~0:6, the error is less than 3% (0:028 and 0:005
respectively). Similar results are available for all ASI circuits (see

Text S1).

Impossibility of perfect scale-invariance
Consider any system with state x~(xA,xB,xC), output xC , and

equations of the general form:

_xxA~f (x)zG(xA)u

_xxB~g(x)

_xxC~h(x) ~ xAa(xC)zxBb(xC)zc(xC) :
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It is assumed that a(xC)=0 for all xC , G(xA)=0 for all xA,

G : ~ supx G(x)v?, and the system is irreducible [14]. We now

prove that such a system cannot be scale-invariant. Suppose by

way of contradiction that it would be, and pick any fixed p=1.

The main theorem in [14] insures that there are two differentiable

functions a(x) and b(x) such that the algebraic identities:

ax(x)½f (x)zG(xA)u�zay(x)g(x)zaz(x)h(x)

~f (a(x),b(x),xC)zG(a(x))pu,

bx(x)½f (x)zu�zby(x)g(x)zbz(x)h(x)~g(a(x),b(x),xC)

a(x)a(xC)zb(x)b(xC)zc(xC)~xAa(xC)zxBb(xC)zc(xC)

hold for all constant x~(xA,xB,xC) and u, and the vector function

x.(a(x),b(x),z) is one-to-one and onto, which implies in

particular that

sup
x

G(a(x))~G :

Dividing by u and taking the limit as u?? in the first identity,

we conclude that ax(x)G(xA):pG(a(x)). Doing the same in the

second identity, we conclude that bx(x):0. Finally, taking partial

derivatives with respect to xA in the third identity:

a(xC)pG(a(x))=G(xA)~ax(x)a(xC)zbx(x)b(xC)~a(xC)

is true for all x. Since a(xC)@0, it follows that

pG(a(x))~G(xA)

for all x. We consider two cases: (a) pv1 and (b) pw1. Suppose

pv1. Pick any sequence of points x(i) with G(x(i))?G as i??.

Then G(a(x(i)))?G=pwG, contradicting G(x)ƒG. If pw1,

picking a sequence such that G(a(x(i)))?G as i?? gives the

contradiction G(x(i))?pGwG. This shows that the FCD property

cannot hold.

Supporting Information

Text S1 Supplementary Text describes the dynamics of A and B

nodes for the linearized models, as well as the ratio between xA(t)
and xB(t).

(PDF)
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Supplementary Material

A characterization of scale invariant responses in enzymatic networks

1 Circuits that exhibit ASI

We list here the results of the computational screen as described in the Main Text.
Equations and parameters for the 25 identified ASI circuits (21 topologies) are given.
Firstly, we give graphical representation of the 25 circuits.

For each circuit, four plots are shown:

(a) a comparison between the plots of xA(t) and xB(t) for the original nonlinear system
and the respective plots for the linearized approximations,

(b) the plots showing scale-invariant behavior for step inputs,

and the comparison between the plots of xC(t) for the original nonlinear system
and for the quasi-steady state approximation, for

(c) step input change from 0.3 to 0.36 and

(d) step input change from 0.5 to 0.6.
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(a) Circuit 1. (b) Circuit 2. (c) Circuit 3.

(d) Circuit 4. (e) Circuit 5. (f) Ciircuit 6.

(g) Circuit 7. (h) Circuit 8. (i) Circuit 9.

(j) Circuit 10 (k) Circuit 11. (l) Circuit 12.

(m) Circuit 13. (n) Circuit 14. (o) Circuits 15 -17

(p) Circuit 18. (q) Circuit 19. (r) Circuit 20.

(s) Circuit 21 - 22 (t) Circuit 23. (u) Circuit 24 - 25

Figure S1. Identified ASI Circuits
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Circuit 1.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

Parameters: KAB = 0.001191; kAB = 1.466561; KAC = 0.113697; kAC = 1.211993;
KBA = 0.001688; kBA = 44.802268; KBC = 0.009891; kBC = 7.239357; KuA = 0.093918;
kuA = 11.447219; kAC = 1.211993; KAC = 0.1136927; KFB

= 9.424319; kFB
= 22.745736
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(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system,
I=0.36

(d) Quadratic approx. and output of nonlinear system,
I=0.6

Figure S2. Circuit 1.
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Circuit 2.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kCAxC
xA

xA +KCA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KCA = 90.209027; kCA = 96.671843; KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319;
kFB

= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S3. Circuit 2.

5



Circuit 3.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

ẋB = kABxA
x̃B

x̃B +KAB

− kCBxB
xB

xB +KCB

− kBBxB
xB

xB +KBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

Parameters: KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752;
KAC = 0.258375; kAC = 62.416585;KBA = 0.003960; kBA = 17.705166;KBB = 31.604578;
kBB = 3.692326;KBC = 44.386408; kBC = 65.027941;KCB = 0.701052; kCB = 26.091557;
KuA = 0.464248; kuA = 1.882348

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S4. Circuit 3.
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Circuit 4.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

ẋB = kABxA
x̃B

x̃B +KAB

− kCBxC
xB

xB +KCB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

Parameters: KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752;
KAC = 0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBC =
44.386408; kBC = 65.027941; KCB = 0.701052; kCB = 26.091557; KuA = 0.464248;
kuA = 1.882348

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S5. Circuit 4.
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Circuit 5.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

ẋB = kABxA
x̃B

x̃B +KAB

− kCBxC
xB

xB +KCB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

Parameters:KAB = 63.277600; kAB = 6.638959; KAC = 0.133429; kAC = 55.731406;
KBA = 0.011188; kBA = 2.749793; KBC = 0.013374; kBC = 45.175191; KCB = 1.457975;
kCB = 2.114949; KuA = 24.589517; kuA = 5.346875

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S6. Circuit 5.
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Circuit 6.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

− kCAxC
xA

xA +KCA

ẋB = kABxA
x̃B

x̃B +KAB

− kCBxC
xB

xB +KCB

− kBBxB
xB

xB +KBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

Parameters: KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752;
KAC = 0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBB =
31.604578; kBB = 3.692326; KBC = 44.386408; kBC = 65.027941; KCA = 26.714681;
kCA = 2.806080; KCB = 0.701052; kCB = 26.091557; KuA = 0.464248; kuA = 1.882348

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S7. Circuit 6.
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Circuit 7.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

− kCAxC
xA

xA +KCA

ẋB = kABxA
x̃B

x̃B +KAB

− kCBxC
xB

xB +KCB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

Parameters: KAA = 7.633962; kAA = 86.238263; KAB = 20.265158; kAB = 5.428752;
KAC = 0.258375; kAC = 62.416585; KBA = 0.003960; kBA = 17.705166; KBC =
44.386408; kBC = 65.027941; KCA = 26.714681; kCA = 2.806080; KCB = 0.701052;
kCB = 26.091557; KuA = 0.464248; kuA = 1.882348

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S8. Circuit 7.
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Circuit 8.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

+ kCBxC
x̃B

x̃B +KCB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxC
xC

xC +KCC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319; kFB
= 22.745736; KAC = 0.113697;

kAC = 1.211993; KBC = 0.009891; kBC = 7.239357; KCB = 30.602013; kCB = 3.811536;
KCC = 0.189125; kCC = 17.910182

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S9. Circuit 8.
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Circuit 9.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kCAxC
xA

xA +KCA

ẋB = kABxA
x̃B

x̃B +KAB

+ kCBxC
x̃B

x̃B +KCB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxC
xC

xC +KCC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KCA = 90.209027; kCA = 96.671843; KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319;
kFB

= 22.745736; KAc = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;
KCB = 30.602013; kCB = 3.811536; KCC = 0.189125; kCC = 17.910182

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S10. Circuit 9.
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Circuit 10.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

ẋB = kABxA
x̃B

x̃B +KAB

+ kCBxC
x̃B

x̃B +KCB

− kFBBxFB

xB
xB +KFBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

− kCCxC
xC

xC +KCC

Parameters: KAA = 24.989065; kAA = 53.174082; KAB = 0.444375; kAB = 12.053134;
KFB

= 1.716920; kFB
= 11.601122; KAC = 0.013988; kAC = 8.521185; KBA = 0.005461;

kBA = 7.103952; KBC = 51.850148; kBC = 80.408137; KCB = 5.392001; kCB = 3.086740;
KCC = 1.962230; kCC = 17.382010; KuA = 4.387832; kuA = 19.638124

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S11. Circuit 10.
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Circuit 11.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

ẋB = kABxA
x̃B

x̃B +KAB

+ kCBxC
x̃B

x̃B +KCB

− kFBBxFB

xB
xB +KFBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

− kCCxC
xC

xC +KCC

Parameters: KAB = 0.444375; kAB = 12.053134; KFB
= 1.716920; kFB

= 11.601122;
KAC = 0.013988; kAC = 8.521185; KBA = 0.005461; kBA = 7.103952; KBC = 51.850148;
kBC = 80.408137; KCB = 5.392001; kCB = 3.086740; KCC = 1.962230; kCC = 17.382010;
KuA = 4.387832; kuA = 19.638124

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S12. Circuit 11.
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Circuit 12.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

+ kCAxC
x̃A

x̃A +KCA

ẋB = kABxA
x̃B

x̃B +KAB

+ kCBC
x̃B

x̃B +KCB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxC
xC

xC +KCC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KCA = 5.026318; kCA = 45.803641; KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319;
kFB

= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;
KCB = 30.602013; kCB = 3.811536; KCC = 0.189125; kCC = 17.910182

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S13. Circuit 12.
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Circuit 13.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

+ kCAxC
x̃A

x̃A +KCA

ẋB = kABxA
x̃B

x̃B +KAB

+ kCBxC
x̃B

x̃B +KCB

− kBBxB
xB

xB +KBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

− kCCxA
xC

xC +KCC

Parameters: KAA = 24.989065; kAA = 53.174082; KAB = 0.444375; kAB = 12.053134;
KFB

= 1.716920; kFB
= 11.601122; KAC = 0.013988; kAC = 8.521185; KBA = 0.005461;

kBA = 7.103952; KBC = 51.850148; kBC = 80.408137; KCB = 5.392001; kCB = 3.086740;
KCC = 1.962230; kCC = 17.382010;KuA = 4.387832; kuA = 19.638124;KCA = 15.479253;
kCA = 4.903430

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system(d) Quadratic approx. and output of nonlinear system

Figure S14. Circuit 13.
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Circuit 14.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

+ kCAxC
x̃A

x̃A +KCA

ẋB = kABxA
x̃B

x̃B +KAB

+ kCBxC
x̃B

x̃B +KCB

− kBBxB
xB

xB +KBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

− kCCxA
xC

xC +KCC

Parameters: KAB = 0.444375; kAB = 12.053134; KFB
1.716920; kFB

= 11.601122; KAC =
0.013988; kAC = 8.521185; KBA = 0.005461; kBA = 7.103952; KBC = 51.850148; kBC =
80.408137; KCB = 5.392001; kCB = 3.086740; KCC = 1.962230; kCC = 17.382010; KuA =
4.387832; kuA = 19.638124; KCA = 15.479253; kCA = 4.903430

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S15. Circuit 14.
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Circuit 15.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxA
xC

xC +KCC

Parameters: KAB = 0.709169; kAB = 7.445605; KFB
= 1.495375; kFB

= 7.282827;
KAC = 0.002566; kAC = 1.115065; KBA = 0.002522; kBA = 5.753075; KBC = 0.017051;
kBC = 2.777794; KCC = 0.195997; kCC = 1.480130; KuA = 0.225814; kuA = 2.492872

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S16. Circuit 15.
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Circuit 16.

This is the same topology as in the previous case, only a different parameter set was
used:

Parameters: KAB = 0.001191; kAB = 1.466561; KFB
= 9.424319; kFB

= 22.745736;
KAC = 0.113697; kAC = 1.211993; KBA = 0.001688; kBA = 44.802268; KBC = 0.009891;
kBC = 7.239357; KCC = 0.189125; kCC = 17.910182; KuA = 0.093918; kuA = 11.447219

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S17. Circuit 16.
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Circuit 17.

This is the same topology as in the previous case, only a different parameter set was
used:

Parameters: KAB = 1.620877; kAB = 2.306216; KFB
= 2.012565; kFB

= 2.700847;
KAC = 0.010933; kAC = 8.968091; KBA = 0.001812; kBA = 10.039221; KBC = 0.014199;
kBC = 17.762333; KCC = 2.686891; kCC = 4.139044; KuA = 0.161715; kuA = 1.933303

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S18. Circuit 17.
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Circuit 18.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

ẋB = kABxA
x̃B

x̃B +KAB

+ kBBxB
x̃B

x̃B +KBB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxC
xC

xC +KCC

Parameters: KAA = 17.569120; kAA = 2.198366; KAB = 9.435176; kAB = 3.134007;
KFB

= 0.469083; kFB
= 1.934194; KAC = 0.062914; kAC = 2.742206; KBA = 0.003245;

kBA = 75.352905; KBB = 27.463128; kBB = 10.551155; KBC = 0.041615; kBC =
61.333818; KCC = 0.039332; kCC = 4.756637; KuA = 0.005167; kuA = 8.186533

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S19. Circuit 18.
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Circuit 19.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kAAxA
xA

xA +KAA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

− kCCxC
xC

xC +KCC

Parameters: KuA = 4.387832; kuA = 19.638124; KBA = 0.005461; kBA = 7.103952;
KAA = 24.989065; kAA = 53.174082; KAB = 0.444375; kAB = 12.053134; KFB

=
1.716920; kFB

= 11.601122; KBC = 51.850148; kBC = 80.408137; KAC = 0.013988;
kAC = 8.521185; KCC = 1.962230; kCC = 17.382010

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S20. Circuit 19.
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Circuit 20.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kBCxB
x̃C

x̃C +KBC

− kACxA
xC

xC +KAC

− kCCxC
xC

xC +KCC

Parameters: KuA = 4.387832; kuA = 19.638124; KBA = 0.005461; kBA = 7.103952;
KAB = 0.444375; kAB = 12.053134;KFB

= 1.716920; kFB
= 11.601122;KBC = 51.850148;

kBC = 80.408137; KAC = 0.013988; kAC = 8.521185; KCC = 1.962230; kCC = 17.382010

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S21. Circuit 20.
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Circuit 21.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

+ kCAxC
x̃A

x̃A +KCA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxC
xC

xC +KCC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KCA = 5.026318; kCA = 45.803641; KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319;
kFB

= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;
KCC = 0.189125; kCC = 17.910182

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S22. Circuit 21.
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Circuit 22.

This is the same topology as in the previous case, only a different parameter set was
used:

Parameters: KAB = 1.620877; kAB = 2.306216; KFB
= 2.012565; kFB

= 2.700847;
KAC = 0.010933; kAC = 8.968091; KBA = 0.001812; kBA = 10.039221; KBC = 0.014199;
kBC = 17.762333; KCA = 0.002690; kCA = 1.506954; KCC = 2.686891; kCC = 4.139044;
KuA = 0.161715; kuA = 1.933303

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S23. Circuit 22.
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Circuit 23.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

− kCAxC
xA

xA +KCA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

− kCCxC
xC

xC +KCC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KCA = 90.209027; kCA = 96.671843; KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319;
kFB

= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357;
KCC = 0.189125; kCC = 17.910182

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S24. Circuit 23.
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Circuit 24.

ẋA = kuAu
x̃A

x̃A +KuA

− kBAxB
xA

xA +KBA

+ kCAxC
x̃A

x̃A +KCA

ẋB = kABxA
x̃B

x̃B +KAB

− kFBBxFB

xB
xB +KFBB

ẋC = kACxA
x̃C

x̃C +KAC

− kBCxB
xC

xC +KBC

Parameters: KuA = 0.093918; kuA = 11.447219; KBA = 0.001688; kBA = 44.802268;
KCA = 5.026318; kCA = 45.803641; KAB = 0.001191; kAB = 1.466561; KFB

= 9.424319;
kFB

= 22.745736; KAC = 0.113697; kAC = 1.211993; KBC = 0.009891; kBC = 7.239357

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S25. Circuit 24.
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Circuit 25.

This is the same topology as in the previous case, only a different parameter set was
used:

KAB = 1.620877; kAB = 2.306216; KFB
= 2.012565; kFB

= 2.700847; KAC = 0.010933;
kAC = 8.968091; KBA = 0.001812; kBA = 10.039221; KBC = 0.014199; kBC = 17.762333;
KCA = 0.002690; kCA = 1.506954; KuA = 0.161715; kuA = 1.93330

(a) Dynamics of A and B in linearized model (b) Output from C nonlinear model

(c) Quadratic approx. and output of nonlinear system (d) Quadratic approx. and output of nonlinear system

Figure S26. Circuit 25.
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2 Ratios xA(t)/xB(t)

In this section, for each ASI circuit, we show that the ratio xA(t)/xB(t) is approximately
invariant when inputs are scaled, as discussed in the Main Text.
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Figure S27. xA(t)/xB(t) for Circuits 1-4
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Figure S28. xA(t)/xB(t) for Circuits 5-8
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Figure S29. xA(t)/xB(t) for Circuits 9-12
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Figure S30. xA(t)/xB(t) for Circuits 13-16
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Figure S31. xA(t)/xB(t) for Circuits 17-20
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Figure S32. xA(t)/xB(t) for Circuits 21-24
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Figure S33. xA(t)/xB(t) for Circuit 25.
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3 Tables

In this section the following three tables for the 25 identified ASI circuits are shown:

• Table 1. Relative differences in linearization matrices corresponding to different
linearizations, A0.3 = A(0.3), A0.4 = A(0.4), . . . , B0.6 = B(0.6), rounded to 3
decimal places. The corresponding expressions are given by:

Aerr
ij =

∑
u=0.3,0.4,0.5,0.6

∣∣∣∣(Au)ij − (A0.45)ij
(A0.45)ij

∣∣∣∣
and similarly for Berr. These relative differences are very small. The entries in
the table are of the following form: Aerr displayed as [a11 a12; a21 a22] and Berr

displayed as [b1 b2]
T .

• Table 2. Relative error between original (nonlinear) system with an initial state
ξ = (xA, xB) corresponding to u = 0.3, and applied input u = 0.36, and the
approximation is ξ+z(t), where z solves the linear system with an initial condition
of zero and a constant input of 0.06. Additionally, we provide relative errors between
the original (nonlinear) system with an initial state corresponding to u = 0.5, and
applied input of u = 0.6, and the approximation given by ξ + z(t), where z solves
the linear system with an initial condition of zero and a constant input of 0.1. The

corresponding expressions are given by: xA
err
max,u=0.36 = maxt≥0

∣∣∣xA
L
0.36(t)−xA

N
0.36(t)

xA
N
0.36(t)

∣∣∣ ,
xA

err
max,u=0.6 = maxt≥0

∣∣∣xA
L
0.6(t)−xA

N
0.6(t)

xA
N
0.6(t)

∣∣∣ ,
where N denotes the nonlinear system, and L denotes the linear system.
We define similarly for xB

err
max,u=0.36 and xB

err
max,u=0.6.

• Table 3. Homogeneity property of the states xA and xB. For a constant input u, it
holds that σ(pu) ≈ pσ(u), where σ(u) is a unique steady state (xA, xB).
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Circuit Aerr Berr
1 [0.069 0.004; 0 0.005] [0.002 0]T

2 [0.084 0.006; 0.019 0.015] [0.004 0]T

3 [0.069 0.004; 0 0.005] [0.002 0]T

4 [0.114 0.007; 0.011 0.003] [0.002 0]T

5 [0.045 0.003; 0.01 0.033] [0 0]T

6 [0.075 0.012; 0.021 0.012] [0.015 0]T

7 [0.057 0.012; 0.021 0.012] [0.012 0]T

8 [0.055 0.012; 0.019 0.009] [0.016 0]T

9 [0.069 0.004; 0 0.005] [0.002 0]T

10 [0.037 0.022; 0.009 0.0707] [0.002 0]T

11 [0.037 0.022; 0.007 0.009] [0.002 0]T

12 [0.025 0.029; 0.007 0.006] [0.012 0]T

13 [0.037 0.022; 0.009 0.007] [0.002 0]T

14 [0.036 0.022; 0.007 0.009] [0.002 0]T

15 [0.07 0.004; 0 0.005] [0.002 0]T

16 [0.07 0.004; 0 0.005] [0.002 0]T

17 [0.073 0.012; 0.017 0.009] [0.015 0]T

18 [0.051 0.004; 0 0.005] [0.002 0]T

19 [0.066 0.013; 0.018 0.009] [0.015 0]T

20 [0.048 0.013; 0.018 0.009] [0.016 0]T

21 [0.051 0.004; 0 0.005] [0.002 0]T

22 [0.233 0; 0.011 0.003] [0.002 0]T

23 [0.069 0.004; 0 0.005] [0.002 0]T

24 [0.051 0.004; 0 0.005] [0.002 0]T

25 [0.233 0; 0.011 0.003] [0.002 0]T

Table S1. Relative error in linearization matrices
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Circuit xA
err
max,u=0.36 xB

err
max,u=0.36 xA

err
max,u=0.6 xB

err
max,u=0.6

1 0.055 0.011 0.028 0.005
2 0.008 0.007 0 0.002
3 0.055 0.010 0.028 0.005
4 0.03 0.007 0.012 0.004
5 0.031 0.006 0.003 0
6 0.015 0.016 0.011 0.005
7 0.023 0.021 0.005 0.004
8 0.023 0.021 0.004 0.004
9 0.055 0.01 0.028 0.005
10 0.097 0.020 0.081 0.016
11 0.010 0.020 0.084 0.016
12 0.033 0.021 0.024 0.010
13 0.097 0.020 0.081 0.016
14 0.010 0.02 0.084 0.016
15 0.056 0.010 0.028 0.005
16 0.056 0.010 0.028 0.005
17 0.027 0.022 0.004 0.004
18 0.047 0.010 0.028 0.006
19 0.027 0.023 0.005 0.004
20 0.023 0.021 0.005 0.004
21 0.04 0.009 0.034 0.004
22 0.116 0.027 0.05 0.013
23 0.055 0.010 0.028 0.005
24 0.045 0.01 0.027 0.005
25 0.117 0.03 0.05 0.013

Table S2. Relative error between nonlinear and linearized system
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Circuit σ(u0.3)/0.3 σ(u0.4)/0.4 σ(u0.5)/0.5 σ(u0.6)/0.6
1 (0.195, 0.239) (0.193, 0.237) (0.192, 0.236) (0.19, 0.234)
2 (0.199, 0.364) (0.197, 0.359) (0.194, 0.356) (0.192, 0.353)
3 (0.195, 0.239) (0.193, 0.237) (0.192, 0.236) (0.191, 0.234)
4 (0.132, 0.172) (0.131, 0.170) (0.131, 0.169) (0.13, 0.168)
5 (0.591, 0.11) (0.58, 0.109) (0.57, 0.109) (0.561, 0.108)
6 (0.206, 0.526) (0.198, 0.507) (0.192, 0.493) (0.188, 0.481)
7 (0.208, 0.529) (0.2, 0.512) (0.194, 0.498) (0.19, 0.486)
8 (0.206, 0.530) (0.199, 0.512) (0.193, 0.499) (0.189, 0.486)
9 (0.195, 0.239) (0.194, 0.237) (0.192, 0.236) (0.190, 0.234)
10 (0.078, 0.083) (0.075, 0.08) (0.073, 0.078) (0.071, 0.076)
11 (0.077, 0.083) (0.074, 0.08) (0.072, 0.078) (0.071, 0.076)
12 (0.153, 0.09) (0.145, 0.086) (0.139, 0.082) (0.135, 0.08)
13 (0.078, 0.083) (0.075, 0.08) (0.073, 0.078) (0.071, 0.076)
14 (0.077, 0.083) (0.074, 0.08) (0.072, 0.078) (0.071, 0.076)
15 (0.195, 0.239) (0.193, 0.237) (0.191, 0.235) (0.190, 0.234)
16 (0.195, 0.239) (0.193, 0.237) (0.191, 0.236) (0.19, 0.234)
17 (0.204, 0.526) (0.197, 0.508) (0.191, 0.494) (0.186, 0.48)
18 (0.196, 0.24) (0.193, 0.238) (0.192, 0.236) (0.19, 0.235)
19 (0.205, 0.528) (0.197, 0.509) (0.192, 0.494) (0.187, 0.481)
20 (0.206, 0.532) (0.199, 0.513) (0.193, 0.5) (0.189, 0.487)
21 (0.196, 0.24) (0.194, 0.237) (0.192, 0.236) (0.191, 0.235)
22 (0.136, 0.177) (0.134, 0.173) (0.133, 0.171) (0.132, 0.17)
23 (0.195, 0.239) (0.193, 0.237) (0.192, 0.236) (0.191, 0.234)
24 (0.196, 0.240) (0.194, 0.237) (0.192, 0.236) (0.190, 0.235)
25 (0.136, 0.178) (0.134, 0.173) (0.133, 0.171) (0.132, 0.17)

Table S3. σ(u)/u for constant inputs u = 0.3, 0.4, 0.5, 0.6
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