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LINEAR SYSTEMS WITH SIGN-OBSERVATIONS*
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Abstract. This paper deals with systems that are obtained from linear time-invariant continuous-
or discrete-time devices followed by a function that just provides the sign of each output. Such
systems appear naturally in the study of quantized observations as well as in signal processing and
neural network theory. Results are given on observability, minimal realizations, and other system-
theoretic concepts. Certain major differences exist with the linear case, and other results generalize
in a surprisingly straightforward manner.
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1. Introduction. A central issue in current control theory and signal process-
ing concerns the interface between, on the one hand, the continuous, physical, world
and, on the other hand, discrete devices such as digital computers, capable of sym-
bolic processing. Classical control techniques, especially for linear systems, have
proved spectacularly successful in automatically regulating relatively simple systems.
However, for large-scale problems, controllers resulting from the application of the
well-developed theory are used as building blocks of more complex systems. The
integration of these systems. is often accomplished by means of ad hoc techniques
that combine pattern recognition devices, various types of switching controllers, and
humans—or, more recently, expert systems—in supervisory capabilities.

Recently, there has been renewed interest in the formulation of mathematical
models in which this interface between the continuous and the symbolic is naturally
accomplished and system-theoretic questions can be formulated and resolved for the
resulting models. Successful approaches will eventually allow the interplay of modern
control theory with automata theory and other techniques from computer science.
This interest has motivated much research into areas such as discrete-event systems,
supervisory control, and, more generally, “intelligent control systems.”

One possible first step in a systematic attack of this problem is the study of partial
(discrete) measurements on the state of a continuous dynamical system. When no
controls are present, this is closely related to classical work on symbolic dynamics,
and in fact has been pursued in the control theory literature, where Ramadge studied
in [9] the dynamical behavior of observation sequences corresponding to such systems.

If inputs are available, one of the first questions that we may address in this
context is that of the nature of the information that can be deduced by a symbolic
“supervisor” from data transmitted by such a “lower level” continuous device, using
appropriate controls to obtain more information about the system. Here the work of
Delchamps, especially in [3]-[5], is especially relevant. His work dealt with what we
may call “single-experiment observability” of constrained-output systems, systems for
which the dynamics are linear but the outputs reflect various limitations of measuring
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devices. These are systems, in discrete or continuous time, whose equations can be
expressed as

1) z(t+1) fora(t)] = Az(t)+ Bu(t),
yt) = o(Caz),

for some n x n real matrix A, n X m matrix B, and p x n matrix C, and where o is
a memory-free map: R? — IRP—in the case of Delchamp’s work, a quantizer. (The
simplest example of a constrained-output system occurs if o is the identity. Then we
are dealing with the class of all finite-dimensional linear systems. See [12] for precise
definitions of “system” and related terms.) Models of the form (1) with quantizer o
arise also in a variety of other areas besides control. For instance, in signal processing,
when modeling linear channels transmitting digital data from a quantized source, the
channel equalization problem becomes one of systems inversion for such systems; see
[2] and also the related paper [8].

In contrast to Delchamp’s work, in this paper we look at the more standard notion
of multiple-experiment observability, which is different for nonlinear systems from the
single-experiment concept (for purely linear systems, both concepts do coincide, of
course). We will be especially interested in the case in which o simply takes the sign
of each coordinate, that is, sign-linear systems, those for which

o(z) = sign (z)

(applied to each coordinate independently), where

1 if >0,
sign (z) = 0 if =0,
-1 if z<0.

Sign-linear systems correspond to the 1-bit quantization case of Delchamps’ model
and are also motivated by pattern recognition applications (see below), but many
technical results will be given in the paper in somewhat more generality.

Among the most popular techniques in pattern classification are those based on
the use of perceptrons or linear discriminants (see, e.g., [6], [13]). Mathematically,
these are simply functions of the type

R" — R?, v — y = sign (Cv),

typically with large n and small p; again, the sign is understood as being taken in each
coordinate separately. Perceptrons are used to classify input patterns v = (v1,...,vp)
into classes, and they form the basis of many statistical techniques. In many practical
situations arising in speech processing or learning finite automata and languages (see,
e.g., [7]), the vector v really represents a finite window

(2) u(t—1),...,u(t—s)

of a sequence of m-dimensional inputs u(1),u(2),..., where the components of (2)
have been listed as v (and sm = n). In that case, the perceptron can be understood
as a sign-linear system of dimension n, with a shift-register used to store the previous
inputs (2). Borrowing from the signal processing terminology, perceptrons are “finite
impulse response” sign-linear systems. As such, they are not suited to modeling time
dependencies and recurrences in the data. More general sign-linear systems are called
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for, and this motivated the introduction of such systems in [1], using the name “infinite
impulse response” again by analogy to the classical linear case. In that paper, the
authors studied practical problems of systems identification but did not address the
more system-theoretic types of questions with which this paper deals.

As a final reason for studying sign-linear systems, we point out that such systems
provide a natural class of nonsmooth nonlinear systems, a class that combines logical
and switching devices together with more classical continuous variables. When the
nonlinearities appear in the feedback loops, the problems become far more difficult;
in that context, see, for instance, [11] for results about the computational power of
systems of the type z(t + 1) = o(Az(t) + Bu(t)).

1.1. Summary of paper. As mentioned earlier, the focus of this paper is the
class of sign-linear systems, that is, those of the type (1) with o(x) = sign (z) (the sign
is understood as being taken in each coordinate, so that the output value space could
be taken simply as {—1,0, 1}?; careful definitions are given later). Also of interest are
the associated sign-linear input/output (i/0) maps of the form

y(t) = sign (A u(t) + - - - + Au(l))

or the analogous continuous-time maps (convolution followed by sign).

For a system such as (1), we call any triple (A, B, C) such that the equations of
the system can be expressed in terms of that triple, a triple associated to the system
2. Note that in some cases there may be many triples associated to a single system:

Ezample 1.1. Let X be a sign-linear system with state-space IR? defined by the

equations
z(t+1)= ( (1) (1) )w(t)+( (1] )u(t),

y(t) = sign (z1 + 2z5).

Then the following triples are both associated to X:

A:((l) ),B:(é),cz(lz),
A:((l) ),B:(é>,0=(24).

The results that we describe parallel those known for standard linear systems, but
with a few, perhaps unexpected, differences. We may summarize the main conclusions
on sign-linear systems as follows:

(a) Although stronger than just observability of the pair (A4, C), observability of
sign-linear systems can be characterized in an elegant manner. The characterization
is different in the continuous- and discrete-time cases, in contrast to what happens
for linear systems. Moreover, in another characteristic that is typical of nonlinear
systems, the degree of controllability of the system does affect observability.

(b) Minimal-dimensional realizations of sign-linear i/o maps by sign-linear sys-
tems are unique up to a change of variables in the state space and a positive rescaling
of outputs. This is basically as in the linear case, except for the obvious need to
rescale. Moreover, finite-dimensional realizability can be characterized in the usual
manner using Hankel matrices.

O = O
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(c) If a realization of a given sign-linear i/o map is controllable and observable, in
the usual sense of control theory, then it is minimal. Conversely, a minimal realization
is necessarily final-state observable (that is, there is a control allowing for determi-
nation of the state at the end of the interval of application) but, in the discrete-time
case, minimal realizations may not be observable. (In continuous-time, final-state and
plain —initial-state— observability coincide.)

(d) Because of the possible lack of observability of minimal realizations, for some
discrete-time sign-linear i/o maps it is the case that the abstract “canonical” realiza-
tion, known to exist from automata-theoretic arguments, is not given by a sign-linear
system. We discuss the canonical systems that result when minimal realizations are
not observable, obtaining a description in terms of cascades of finite automata and
linear systems.

The paper ends in § 6, where we show how some of the continuous-time observ-
ability results can be seen as consequences of the corresponding discrete-time results
by sampling at appropriate frequencies.

Some of the results to be given can be stated in more generality, in terms of
constrained-output systems as in (1), where o is a fixed nonlinearity satisfying some
(or all) of the following axioms:

1. sign (o(z)) = sign (z).
2. Finite precision sensor: o(z) =constant for z € (0,¢] and z € [—¢,0), for

some € > 0.
3. Sensor saturation: o(z) =constant for z > K > 0 and z < —K < 0, for some
K > 0.
4. o(z) is not constant on (0, 00) or (—00,0).
(Again, for a vector z € IR, the notation o(z) denotes the vector (o(z1),...,0(2p)) €

IR?.) The main systems of interest in this paper, sign-linear ones, are those for which
o(z) = sign(z), which satisfies axioms 1,2,3. Some other examples of constrained-
output systems are as follows:

e Output-saturated systems (satisfying 1,3,4) are those with o(z) = s(z),

where
1 if z>1,
s(z) = z if |z| <1,
-1 if z<-1

The output space for output-saturated systems is [—1, 1]P.

¢ Quantized systems (satisfying 1,2,4) are defined by o(z) = |z]|, with output
space ZP.

e Saturated-quantized systems (satisfying 1-4) are systems for which

_ | Ksign(z) if |z|]> K,
"("”)—{ lz] i |o| <K

for some fixed K > 0. Saturated-quantized systems have output space {n €
Z:|n| < K}P.
More details about such functions, and results specific for some of these classes,
are described in [10].

2. Observability. Our notion of observability is the usual concept of multiple-
experiment observability. Let us recall the main ideas. For formal definitions, please
refer to [12, §5.1].
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DEFINITION 2.1. A system X is observable if for any two initial states, there is
some control that produces different outputs for each of the two initial states. This is
not in general equivalent to single-experiment observability in which there exists one
control function (or sequence of controls) that distinguishes any pair of states. The
control we use to distinguish two states may depend on the two given states. This
concept of observability really tells us only that we may distinguish between any two
initial states, not that we may determine the initial state using one special control.
For linear systems, multiple- and single-experiment observability are equivalent. If a
linear system is observable, then the zero control will distinguish any pair of states.

DEFINITION 2.2. A system X is final-state observable if for any two initial states,
there is some control and some time T so that either the output before time T is
different for each of the two states, or the states at time T are the same.  For
continuous-time systems, final-state observability is equivalent to observability ([12,
Prop. 5.1.9]).

We now state a few general necessary conditions for observability of constrained-
output systems. Later, we will provide necessary and sufficient conditions for the class
of sign-linear systems. The following result is obvious.

LEMMA 2.3. If ¥ is an observable constrained-output system, then (A,C) is an
observable pair.

Conversely, if o is one-to-one, then observability of the pair (A, C) implies oberv-
ability of 3J, but in general the implication does not hold. The following lemma gives
an additional necessary condition when o is not one-to-one.

LEMMA 2.4. If ¥ is an observable discrete-time constrained-output system with
a single output channel (p = 1), and o is not one-to-one, then det A # 0.

Proof. Suppose det A = 0. Then there exists a nonzero x € ker A. The output
sequence for the initial state z is {o(Cxz), . ..} where the part not shown is independent
of z. Since ¥ is observable, (A, C) is an observable pair, so Cz # 0. Let o(u) =
o(v), p # v. Then, we may choose a; # a3 so that a;Cz = p and a2Cx = v. Then
a1 # agz are indistinguishable, contradicting observability. O

For p > 1, this lemma is not necessarily true. Consider the following counterex-
ample. We will use the notation z*(t) to mean z(¢ + 1), and we drop the argument ¢
from now on.

Ezample 2.5. Let ¥ be the system with equations zt = 0, y; = o(z), y2 =
o(2z); and

_Jx x¢g[1,2
"("’)'{ 1 ze [1,2} :
The nonlinearity o is not one-to-one, but the map z — (o (z), o(2z)) is one-to-one, so
the system is observable. However, A is not invertible.

If the measurement limiter o is some form of saturation or ¢ has finite precision
near 0, observability does imply that A is invertible, even in the multiple output case,
since the following lemma will apply.

LEMMA 2.6. If ¥ is an observable discrete-time constrained-output system and o
either models sensor saturation

o(x) = constant for x > K >0 and < —K <0
for some K > 0, or has finite precision

o(z) = constant for z € (0,¢] and z € [—¢,0)
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for some € > 0, then det A # 0.

Proof. If det A = 0, then there exists a nonzero x € ker A. In the saturated case,
choose A so that for all  satisfying C;x # 0, then |AC;z| > K. Then Az and 2\z
are indistinguishable. In the finite precision case, choose A so that |AC;z| < ¢ for all
i=1,...,p. Then Az and %)\x are indistinguishable. O

Before stating the next lemma we introduce the following definition.

DEFINITION 2.7. Let ¥ be a constrained-output system and let (A, B,C) be
any triple associated to X. Then the sequence of p X m matrices

A = {Ala A2, A31 . '},
where
A;=CA" B, i=1,2,3,...

is called a Markov parameter sequence associated to 2. Since in general C is not
uniquely defined from the system equations, there may be more than one Markov
sequence associated to a given system; this issue is discussed later.

LEMMA 2.8. Assume that ¥ is a single-output observable discrete-time constrained-
output system defined by the triple (A, B,C), and o has finite precision

o(z) = constant for x € (0,¢] and z € [—¢,0).

If A has an eigenvalue \ satisfying |A\| < 1, then A Z 0, for any Markov sequence
associated to T.

Proof. Let A be any Markov sequence associated to ¥. Let v be a nonzero
eigenvector for A corresponding to A and let v = ||v|| (where || - || denotes Euclidean
norm). Then A%y = A\*v for all £, so ||A¥v|| < «y for all k. Write v = v; + vz, where
v1, vy are real vectors. Then ||A*v;|| < |A*v|| < v for all k. Note that ||C|| # O since
(A, C) is an observable pair. Then

- V1€
~ el
satisfies
Clive
CA*z| < |lC||[| A%zl < I =c
I | < ICllA* | ~ICT

for all k. If A =0, then z, %az are indistinguishable, contradicting observability. O

3. Sign-linear systems. Now we concentrate on the observability of sign-linear
systems. Sign-linear input/output maps and their realizations will be discussed in §§ 4
and 5.

DEFINITION 3.1. A sign-linear system X is a system with state, input, and output-
value spaces R", R™, and {—1,0,1}?, respectively, for which there exist matrices
Ace R, BeR"™™,C e RP*", so that the equations of ¥ take the form

zt(or ) = Az + Bu,
y = sign (Cx)

in discrete- (or continuous-) time. If (A, B,C) is a triple like this, we denote ¥ =
(A,B,C)s. Whether we are dealing with discrete- or continuous-time will be clear
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from the context. The integer n is the dimension of the system. It is convenient to
include the degenerate case n = 0, corresponding to the system with zero-dimensional
state space. o ) )
Note that (4, B,C)s = (4,B,C), if and only if A = A, B = B, and C = AC,
where A is a scaling matriz in the following sense.
DEFINITION 3.2. A p X p scaling matriz is a matrix of the type

A - 0
A=diag()\1,...,)\p)=: ,
0 - A

where \; > 0, i = 1,...,p. Any triple for which ¥ = (A4, B, C), will be said to be
associated to . Observe that the properties of (A4, B) being a controllable pair, (A, C)
being an observable pair, and (A4, B, C') being canonical (controllable and observable),
in the usual linear systems sense, are independent of which of the associated triples
is considered.

The following trivial observation will be used often.

Remark 3.3. If H is a real pre-Hilbert space (that is, a space with a nondegenerate
inner product), and if ¢ € H, ¢ nonzero, a,b € R, a # b, then there is a u € H so that

sign (a + (¢, u)) # sign (b + (c,u)).
Indeed, without loss of generality, we may assume that a > b. Let

__a+b
2[c[f2

Then u := «c satisfies a + (c,u) > 0 and b+ (c,u) < 0.

Since controllability of a system does not depend on outputs, a sign-linear system
is controllable if and only if (A4, B) is a controllable pair in the usual sense ([12]).
Observability requires a bit more than in the linear case, as illustrated by the system

z(t+1) =u(t), y(t)=sign(z(t)).

Observability of the pair (A4,C) is not sufficient to guarantee observability of the
corresponding sign-linear system.

We will say that a triple (A, B, C) has property P if not only is (A, C') observable,
but we can choose a subset of outputs which allow observability of the pair (4, C)
and for each of which the corresponding row of the Markov sequence .4 is nonzero.
In the case p = 1, this just means that (A4, C) is an observable pair and A # 0, or
equivalently, that (A, C) is an observable pair and B # 0. For p > 1, A has p rows
and we only require that enough of those rows are nonzero. More precisely, let

I(A) = {iy,... ik}

be the indices of the nonzero rows of A; then property P is the condition that

(3) [ ker(C;4%) = {0},

JEI(A)
q=0,...,n—1

where C; denotes the jth row of C. Note that if C and C differ only by multiplication
by a scaling matrix, property P holds for (A, B, C) if and only if it holds for (A, B, C).
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Thus there is no ambiguity in the following statements. For discrete- and continuous-
time the following theorems state necessary and sufficient conditions for observability.
THEOREM 3.4. Let ¥ = (A, B,C)s be a sign-linear discrete-time system of di-
mension n > 0. Then, X is observable if and only if the following conditions hold:
1. det A #0,
2. (A, B,C) has property P.

Proof. Necessity. Suppose X is observable. We know det A # 0 from Lemma 2.6.
Now assume that property P would not hold, and pick £ # 0 in the intersection in
(3). The output sequence for any given control sequence {u1,ug, ...} is {y(0),y(1),...}
where

k
y(k) = sign (CAkx + Z.Alukmlﬂ) .

=1

For the chosen z in that intersection, each row of each term in the output sequence
has the form

_ [ sign(C;Akz +0) if j & I(A),
y(k); = { sign (0 + %) if j € I(A),

where * denotes a (possibly nonzero) function of the inputs and the Markov parame-
ters. Then, £ and Az for any A > 0, A # 1, cannot be distinguished, so observability
is contradicted.

Sufficiency. Now suppose det A # 0 and (A, B,C) has property P. We must
show that X is observable. Pick an integer I > 0 so that the ith row of

(-Al-AZ"‘-Al)

is nonzero for every ¢ € I(A). Note that since A is invertible,

0 M ker(C;at) = {0},
JEI(A)
q=0,...,n—1

which follows from (3).
Now look at the following n terms in the output sequence for initial state x:

sign (CA’:I: + Ay + -+ Ay,

sign (CAH’I::: +Apug + -+ Alulﬂ) yeens

sign (CA™™ 1z + Appn—1u1 + - + A1ti4n-1) -
Given = # z we must show that x, z are distinguishable. If we can choose a sequence
U1, U2, . - - Ul4n—1 SO that some row of some term above is different for the initial states

z and z, then z, z are distinguishable. As « — z # 0, we may pick some j € I(A) and
some ¢ =0,...,n — 1 so that

Cj ATz # C; AT 2.

Since j € I(A), the jth row of (A;---.A;) is nonzero by our choice of [. Denote
k := q+1 so that the jth row of (A; - - - Ag) is also nonzero. Let A7 be the jth row of
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A;. Then we may apply Remark 3.3 (with H = IR* and the standard inner product)
and obtain u;,us,...,u; so that

sign (Cj A%z + Aluy + -+ + Aluy)
+# sign (C; ARz + Ay + - + Aluy).

Thus, x and z are distinguishable. This completes the proof. O

We will say that a triple (A, B,C) is discrete-time sign-linear observable if the
triple satisfies the observability conditions in Theorem 3.4.

For continuous-time sign-linear systems, the conditions for observability are slightly
weaker, as invertibility of the matrix A is not needed.

THEOREM 3.5. Let ¥ = (A, B,C)s be a sign-linear continuous-time system of
dimension n > 0. Then X is observable if and only if (A, B,C) has property P.

Proof. The proof is exactly the same as in the discrete-time case. Indeed, if (3)
is not satisfied and z # 0 is in the intersection of the kernels, consider the output

y(t) = sign <CeAtw + Z Ak(t 1)| ( )ds)

0 k=1
Each row has the form

[ sign(Cjettz +0) if 5 ¢ I(A),
y(t); = { :;gn (of*)ac if j € I(A),

where * denotes a (possibly nonzero) function of the inputs and the Markov param-
eters. Then z and Az for any A > 0, A # 1, are indistinguishable, contradicting
observability.

Now suppose (A, B, C) satisfies property P. We must show that ¥ is observable.
Look at the output function for initial state x:

t
y(t) = sign (Ce"“x + / K(t— s)u(s)ds) ,
0
where

. 2 Ag(t — s)k1

Given = # z we must show that x,z are distinguishable. If we can choose a ¢ and
a control function u(-) of length ¢ so that some row of y(t) is different for the initial
states z and z, then z, z are distinguishable. As x—z # 0, we may pick some j € I(A)
and some t > 0 so that

At At
Cie™'x # Cje'z,

by property P. Since Cje4z is an analytic function of t, this is true in a neighborhood
of t = 0 so we may, in fact, fix a ¢ > 0 so that the inequality holds.

Next note that since j € I(A), A7 # 0 so also K;(-) # 0. Now apply Remark 3.3
with a = Cjedtz,b = Cjedtz, H = L>[0,t] with the £2 inner product

(0(),u() == / v(s)u(s)ds,
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and ¢ = Kj(t — s) € H. Thus we may choose a measurable essentially bounded u(-)
so that

sign (Ce’“w + /: K(t- s)u(s)ds) # sign (Ce““z + /Ot K(t- s)u(s)ds) :

This u(-) distinguishes z, z and the proof is complete. u]

4. Sign-linear realizations. We now focus on questions of realizability for the
class of sign-linear systems. As we mentioned earlier, a sign-linear system does not
have a unique associated Markov sequence. However, for sign-linear systems, we have
the following obvious fact.

Remark 4.1. A Markov parameter sequence associated to ¥ = (A4, B, C); is any
sequence of p X m matrices A = {A;, A2, As, ...} so that

(5) A; =ACA* B, i=1,2,3,...

for some scaling matrix A.
For the degenerate system, its (only) associated sequence is A = 0. If A is
associated to X, we also say that 3 realizes A. If (A, B, C) is a triple of matrices and
A = {A;, A, ...} is a Markov sequence so that A; = CA*~! B holds, we will say that
(A, B,C) is a linear representation of A. The standard terminology is “realization”
(as a linear system), but this can lead to confusion here, since we are interested in
sign-linear realizations. Note that the above definitions imply that for any given triple
(A, B, C), and any sequence of pxm matrices .4, the sign-linear system ¥ = (4, B, C),
realizes A if and only if (A, B, AC) is a linear representation of A for some scaling
matrix A. In other words, there must exist a triple associated to ¥ that represents .A.
The matrix
A A,
H, t= : ) :

’

As As+t-—1

is called the s x t Hankel matriz for the Markov sequence .A. The (Hankel) rank of a
sequence A is defined to be

sup rank H, ¢.
s,t

An i/o map (for a precise definition, see [12, Rem. 2.2.2], is a function of controls
u defined on some time interval [0, 7), which gives the entire output function for the
time interval (o, 7].

DEFINITION 4.2. A (pxm) discrete-time sign-linear i/o map « is a discrete-time
i/o map for which there exists some sequence of (p x m) matrices Aj;, As, ..., so that

(6) a(u)(j) =sign (Ajur + - - + Aju;)

for each input sequence {ui,us2,us,...}. A continuous-time sign-linear i/o map is
a continuous-time i/o map « for which there exists an analytic kernel K(t) with
expansion

ti——l

(7 K(t):;&@_—l—)!
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so that
(8) a(u)(t) = sign (/Ot K(t— s)u(s)ds)

for every measurable essentially bounded control function u(-). In either case, any
sequence of matrices A;, As, ... as above is called a Markov sequence of the map a.
We will study realizations of these i/o maps by sign-linear systems. It will be helpful
to have a simple example in mind as we go through the definitions and results.

Ezample 4.3. Let A= {1,-1,1,—1,...}. Then a is a 1 x 1 discrete-time i/o
map, where

o(u)(j) = sign ((—1)Mug + -+ +uj_o —uj_1 +uy) .

For the control v = {1,0,0,...}, a(u)(j) = (—1)~! for all j. For the control u =
{1,2,3,0,0,0,...}, the values of the i/o function are

o(u)(1) = sign (1) = 1,
a(u)(2) =sign(-1+2) =1,
a(u)(3) =sign(1—2+3) =1,
a(u)(4) =sign(-14+2-3) = -1,
a(u)(j) = (=1) for j > 4.

DEFINITION 4.4. Two triples (A4, B, C) and (4, B, C) are sign-similar if there is
a T € Gl(n) and a scaling matrix A such that

T-TAT = A,
T-'B =B,
CT = AC.

If ¥ =(A,B,C)s and Y= (A,B,C’)s are sign-linear systems, they are called sign-
stmilar if the corresponding triples are. Note that sign-similarity is an equivalence
relation, and that the ambiguity in defining a triple associated to ¥ causes no difli-
culties in the above definition.

DEFINITION 4.5. Two Markov sequences

.A={.A1,.A2,...}, and A={A1,A2,...}
are sign-equivalent if there exists a scaling matrix A so that

Aj=AA;, §=1,2,3,....

Note that if K(-) and K(-) are as in (7) for the sequences A and A, sign-
equivalence of A and A is the same as asking that K(t) = AK(t) for all ¢, where
A is a scaling matrix. The Markov sequence A in Example 4.3 is sign-equivalent to
A={a,—a,a,—a,...} for any a > 0.
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4.1. Basic facts about realizations. The next lemma says that the Markov
sequence A is uniquely determined by a sign-linear i/o map « up to multiplication by
a scaling matrix. That is, a sign-linear i/o map is defined by many Markov sequences,
but these sequences are related by scaling.

Observe that the impulse response of a sign-linear i/o map (e.g., for discrete-time
systems, the response to the input u = {1,0,0,0, ...}) is not enough to uniquely char-
acterize the i/o map. For a discrete-time sign-linear i/o map «, the impulse response
is just the sequence of signs of the Markov parameters: {sign (A;),sign (Az),...}.
Such a sign sequence represents infinitely many different families of sign-equivalent
Markov sequences, as illustrated by the following example.

Ezample 4.6. Let a; be the discrete-time sign-linear i/o map defined by
A={1,3,1,3,...} and & the map defined by A ={3,1,3,1,...}. Then the impulse re-
sponse for both i/o maps is {+1,+1, +1,...}; however the two maps are not the same
as shown by considering the output corresponding to the input v = {1,-1,1,-1,...}:

a(w)(1) = +1; aw)(1) = +1,

a)(2) = +1 &w)(2) = -1,
aw)@) = -1 &u)(3) = +1,
a(u)(4) = +1; aw)(d) = -1

LEMMA 4.7. A and A define the same i/o map if and only if they are sign-
equivalent.

Proof. If A and A are -sign-equivalent, then A; = AA; for all i, where A is a
scaling matrix. It is then clear from (6)—(8) that the corresponding i/o maps coincide.
To prove the converse, we can assume, without loss of generality, looking at each
component of the output and each row of A, that p = 1. We first prove the following
easy observation.

Remark 4.8. If V is a real pre-Hilbert space and if v,w € V are nonzero and
such that

sign (v, u) = sign (w, u)

for all u € V, then there exists A > 0 so that v = Aw.

Proof. Suppose first that v and w are linearly independent, and consider the plane
they span. Let u # 0 be in this plane and perpendicular to v + w. As (v + w,u) =0,
necessarily (v,u) # 0 and (w,w) # 0, since if either of these is zero, then the other
one is too, and that would contradict linear independence. Then

(v,u) + (w,u) = (v+w,u) =0.

So (v,u) = — (w,u) # 0, contradicting the assumption. Thus, either v = Aw with
A>0,0r v=—pw with g > 0. If v = —pw, then

(v,u) = (—pw,u) = —p (w,u) #0

and so sign (v, u) # sign (w,u), again a contradiction. The only remaining possibility
is that there exists a A > 0 so that v = Aw. O

Now we can continue the proof of Lemma 4.7. For discrete-time, we must show
that if

! !
sign (Z Aiul—i-!-l) = sign <Z Aiul—i+1)

i=1 i=1
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for all [ > 1 and for all uq,us,...,u;, then A = AA for some A > 0. First choose an !
so that (Ay,...,A;) # 0. Note that R'™ = (R™)! forms a pre-Hilbert space with the

standard inner product
U1 u !
< A IS > = Z viu;.
1

(Y] up

Applying Remark 4.8 with v = (A;,..., 4, w = (A, ... ,A) and u = (ugy ..., uy),
we see that there exists a A > 0 so that

(A1,..., A) = MAy, ..., A).

Now pick any g > {. Applying the same argument to (IR™)?, we obtain a Ay > 0 so
that

(A1,..., Ag) = A( Ay, ..., Ay).

Since (Aj,...,.A) is a subvector of (Ay,...,A,), and similarly (./il,...,./il) a sub-
vector of (./il, . ,Aq), this implies that A = A;. Thus A, = AA, for all ¢ > 1.
For continuous-time, we need to show that if

sign (/Ot K(t— s)u(s)ds) = sign (/Ot K(t - s)u(s)ds)

for all ¢ € [0,00) and for all u(-), measurable and essentially bounded on [0,t], then
K(t) = AK(t) for some A > 0 and for all ¢ > 0. Note that £>°(0, t] forms a pre-Hilbert
space with the £2 inner product

(v(-), u()) = / o(s)u(s)ds.

Applying Remark 4.8 with v(s) = K(t — s) and w(s) = K(t — s), we see that there
exists a A, > 0 so that K(-)|j0,§ = A¢K(:)|jo,4- Using an argument similar to the
one used in the discrete-time case, we can conclude that there exists a A > 0 so that
K(t) = AK(t) for all t > 0. 0

COROLLARY 4.9. Let a be a sign-linear i/o map, with Markov sequence A, and
let ¥ = (A, B, (), be any sign-linear realization of a, with Markov sequence A. Then
A and A are sign-equivalent.

Proof. Just note that A and A define the same i/o map, namely a. Thus, the
previous lemma applies. 0

4.2. Minimality.

DEFINITION 4.10. A sign-linear system of dimension n is minimal if any other
sign-linear system realizing the same i/o map has dimension n; > n. Recall that a
triple (A, B, C) is canonical if and only if it is a minimal-dimensional linear represen-
tation of its Markov sequence ([12, Thm. 20]). The next lemma states that minimality
of a sign-linear system is equivalent to minimality of the associated linear system.

LEMMA 4.11. The sign-linear system (A, B,C), is a minimal realization of o if
and only if the triple (A, B,C) is canonical.
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Proof. Suppose the sign-linear system X = (A4, B, C); is a minimal realization of
the i/o map « and A is a Markov sequence associated to a. If (A, B, C) is not canon-
ical, then there exists another triple (A B, ) of smaller dimensjon that is a linear
representation of the same Markov sequence A as (A,B,C). Then T = (4,B,0)s
also realizes A so A is sign-equivalent to A by Corollary 4.9. But then since (A B,0),
realizes A, it also realizes A (a Markov sequence associated to a sign-linear system
is only determined up to sign-equivalence). Thus, (4, B,C)s is a sign-linear system
realizing o and of smaller dimension than (A4, B, C)s, contradicting minimality.

Conversely, suppose the triple (A, B, C) is canonical of dimension n, which im-
plies, in particular, that it is mlmmal If (A, B,C); is not also minimal, then there
exists a sign-linear system ¥ = (A B, C’) of dimension n; < n that realizes the same
i/o map a as (4, B,C)s. Let A be the Markov sequence represented by (4, B,C) and
A the sequence represented by (A, B,C). Then (A, B,C), realizes A and (A, B C)S
realizes A. Since the two sign-linear systems realize the same i/o map «, A and A
are sign-equivalent (Corollary 4.9). Thus, there exists a scaling matrix A so that
Aj = AA; forall j > 1. So

CA*'B=ACA'B, i=1,2,3,.

But then (A B, AQ) is a linear representation of A of dimension n; < n, contradlctlng
the minimality of (4, B, C). 0

Remark 4.12. If A and A are two Markov sequences associated to the same i/o
map «, then rank A = rank.A. Thus, we can define the Hankel rank of o as the rank of
any of the associated Markov sequences. Indeed, by Lemma 4.7, we know that .A and A
are sign-equivalent. Thus there is a scaling matrix A with A; = AA;, j=1,2,3,....
We then have, for any s,t > 1,

Hs,t = AsHs,h

where H, ; is the s x t Hankel matrix for A and A, = diag (A,...,A). Since this is
true for every s, 1,

rank(A) = sup{rank(H, )}

s,t

= sup{rank(H, ;)} = rank(A),

s,t

as claimed.

THEOREM 4.13. Let o be a sign-linear i/o map. Then a is realizable by a sign-
linear system if and only o has finite Hankel rank.

Proof. If a has finite rank then any Markov sequence for a, A, has finite rank.
It then follows that there exists a linear representation for A, (A, B,C). Then the
corresponding sign-linear system (A, B, C); realizes a.

Conversely, given a sign-linear i/o map « that is realizable by a sign-linear system
(A, B,C)s, we would like to show that a has finite rank. One Markov sequence
for (A, B,C)s is the impulse response of the linear system (A4, B,C). This impulse
response A is a Markov sequence for . From linear realization theory, we know that
A has finite rank. Thus, by the remark above, o has finite rank. 0

LEMMA 4.14. If (A, B,C) is a canonical representation of a Markov sequence A,
then (A, B,C) satisfies property P.
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Proof. Suppose (A, B,C) does not satisfy property P. Then by observability
there is some i & I(.A) (i.e., so that the ith row A* of A is zero) so that

N ker(CAY) # {0},

JEI(A)
1=0,...,n—-1
but
(9) [ ker(C;AYEG (]  ker(C;AY.
JeI(A)U{i} JEI(A)
1=0,...,n—1 1=0,...,n—1

Since A* = 0 then C;(A47B) = 0 for all 4, so in particular,
Ci(B AB A*B -.- A™'B)=0.
The pair (A, B) is controllable so
(B AB A’B ... A™B)

has full row rank. Thus C; = 0, contradicting (9). So property P indeed holds. N
LemMA 4.15. If (A, B,C) is a triple satisfying property P, then the sign-linear
system ¥ = (A, B, C)s is final-state observable.
Proof. First suppose ¥ = (A, B, C)s is a discrete-time sign-linear system. Perform
a change of variables in the state space. Let

z=T 1z = “1
z2 !

where T € Gl(n) is chosen so that

A 0
-1 _ 1
T AT_(0 Az),

with A; of size n; X n; nilpotent and Ay of size ny X ng nonsingular. (This can be
done, for instance, by first putting A in real canonical form and then reordering the
blocks so that the blocks corresponding to 0 eigenvalues come first.) Then

y = sign (CT%)
can be written as

y = sign [( C: (G )z],

“ip_ { B1
o (5)

Since (A4, C) is an observable pair, the n columns of

and we can also write

C C1 Cs
CA C1A1 CZA.‘Z

cArt! CLATY CpApT
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are linearly independent. As T~! is an invertible matrix, both (A4;,C1) and (42, C)
must be observable pairs. Property P implies that the subset of outputs indexed by
I(A) allows observability of the pair (A, C). Then the outputs indexed by I(.A) also
allow observability of the pair (Az,Cs). We know that A* # 0 for i € I(A). Since 4;
is nilpotent, after n + 1 steps the output sequence looks like

sign (C2A3 20 + Aty + - - + Anawa),
sign (C2 43 %25 + Artingz + - 4 Angou), - ..

Now we have (A3, C3) is an observable pair, det A, # 0, and

(] ker((Ca);A3) = {0},

JEI(A)
q=0,...,n2—1

where A* # 0 for i € I(A). Now using Remark 3.3, we may always choose appropriate
controls to distinguish any distinct 2, and Z3. Also, z; goes to zero (in less than n
time steps). So the system is final-state observable.

For a continuous-time sign-linear system, ¥ = (A, B, C),, property P alone im-
plies that the system is observable, by Lemma 3.5. Hence, ¥ is also final-state ob-
servable. (Observability and final-state observability are equivalent in continuous-
time.) a

THEOREM 4.16.

1. If a sign-linear realization is controllable and observable then it is minimal.
2. If it is minimal then it is controllable and final-state observable.
3. Any two minimal sign-linear realizations are sign-similar.

Proof. 1. If the sign-linear system (A, B, C); is controllable and observable then
in particular the triple (A4, B, C) is canonical so the sign-linear system is minimal by
Lemma, 4.11.

2. If the system X = (A, B, C); is minimal, then the triple (4, B, C) is canonical.
If A = 0, then the minimal realization has dimension 0 and is trivially final-state
observable. So now assume that we are dealing with dimension n > 0. We know
that the triple (A, B, C) is canonical, so it satisfies property P (Lemma 4.14). Next,
applying Lemma 4.15, we conclude that ¥ = (4, B, C)s is final-state observable.

3. Given two minimal realizations (A, B C)s and (4, B,C)s, of a sign-linear
map «, with Markov sequence .4, we must show that they are sign-similar. The
corresponding triples (4, B,C) and (A, B,C) represent Markov sequences A! and
A2, respectively, which are both sign-equivalent to A (Corollary 4.9). That is, we
have scaling matrices Ay, As satisfying

A=A A, A=A A%

Since the sign-linear realizations are minimal, the linear representations are canoni-
cal (Lemma 4.11). Since A; and Ay have full rank, this implies that (A4, A;C) and
(A,A;C) are also observable pairs. Thus, (4, B,A;C) and (A, B,A,C) are both
canonical linear representations of the same Markov sequence A. By [12], Thm.
20, they must be similar, i.e., there exists some T € Gl(n) so that T~1AT = A,
T~1B = B, and A;CT = A,C. Thus (4, B,C)s and (A, B, C), are sign-similar, with
T as above and scaling matrix A = AT 1A, O

The rank of A = {1,-1,1,-1,.. } from Example 4.3, is 1, which is clearly finite.
The triple A = —1, B = 1, C = 1 is a realization of the i/o map «, which is
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controllable and observable; hence it is minimal. An example of a nonminimal sign-
linear realization of the same « is

A=(‘(1) 8);3:(});0:(1 0).

In this case (4, B) is a controllable pair, but (A, C) is not an observable pair.

4.3. Counterexamples. Note that the converses of parts 1 and 2 of Theo-
rem 4.16 are not true for discrete-time systems. If a sign-linear system is minimal, it
is not necessarily observable. For example, the system with z+ = u and y = sign ()
is minimal, but A = 0 so it is not observable. Also, a system may be final-state
observable, and yet not be minimal. For example,

0 0 1
+
x—(01>m+(1)u,

y = sign [( 01 )a:]

is final-state observable. After k steps (for any k > 1) any state (z1,z2) ends up
at (uk,x2) and z2 can be identified. However, (A, C) is not an observable pair. If
this system would be minimal, then the corresponding triple would be canonical by
Lemma 4.11. But then (A,C) would have to be an observable pair. The minimal
system for this i/o map is one of dimension 1, namely, z+ = z + u, y = sign(z).

5. Canonical realizations of sign-linear i/o maps. We noted that for sign-
linear systems (unlike for linear systems) it is not true that a system is minimal if
and only if it is canonical. The problem is that a minimal discrete-time sign-linear
system may have det A = 0, in which case it is not observable (Theorem 3.4). We may
then ask—what is the canonical realization of a minimal sign-linear system which is
guaranteed to exist by abstract realization theory ([12, §5.8])? The answer, for p =1,
is that for any « realizable by a sign-linear system, there exists a canonical (reachable
and observable) system 3. that realizes o, where ¥ is in the form of a cascade of a
sign-linear system and shift registers. (In the general case, p > 1, the result has to be
modified: we can only conclude that there is a system of this cascade form in which
the minimal system may be embedded.)

We know there exists some canonical realization. We need only to show that there
is a canonical realization of the form described above. Next we sketch the construction
for the single-output case (p = 1). First find a minimal sign-linear realization X of a.
Then we know (A, B,C) is a canonical triple and satisfies property P (Lemmas 4.11
and 4.14). Perform a change of variables in the state space so that A has the form

A; O
0 A
with A; an ny X n; invertible matrix and Az an ny X 1y nilpotent matrix. (Note that

if ¥ is already observable, then A is invertible and there is no A;. This ¥ is already
in the canonical form we are looking for.) Now the system equations have the form

:L'i*_ = Aizy + Byu,
:L';— = A2.’L‘2 + Bg'u,,

y = sign (C1z1 + Caza).
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From now on, assume ¥ has the form described above. Let x be the relative
degree of the system and [ := min{x,ns}. Let ¥ be the discrete-time system with
state space R™ ™ x {—1,0,1}}, and system equations

(10) &t = F¢€ + Gu,
¢ = sign (§n—1 + Ar),
;— = Cl,
Cl+ - Cl—la
n=q,

where (F,G) = (A1, B1) when | = ng, and when ! < ng,

B

A, 0 0 An,

F=[ A 0 0|, G=| An
0 I 0 :

A1

and [ is the identity matrix of size ng — ! —1. (When [ = ny — 1, there is no “I” part.)
This can be seen as a cascade of a sign-linear system and shift registers.

LEMMA 5.1. The system 3 is the observable reduction of X.

Proof. First we show that two states = and z are indistinguishable for ¥ if and
only if

(11) Ty = 21
CA™~1p = (CA™m 1,

(12) :
CAHly — (At
CAlz = CA2
sign (CA'1z) = sign(CA12)
(13) :

sign (Cx) = sign(Cz).

In the case | = ng, we have only (11) and (13). Suppose all equalities hold. Since ! <
relative degree, the first [ output terms for ¥ are independent of the control. Then
the last | equalities imply that the first I output terms coincide for z and z, for any
input. Equations (12) imply that actually the first no output terms coincide for x
and z.

The remaining outputs only involve the first n; components of the state because
of the nilpotency of As. So if 1 = z;, then we see that all the remaining output
terms are equal for initial states x and z. Thus, x and 2 are indistinguishable.

On the other hand, if z, z are indistinguishable, then using any control sequence,
the outputs for the two initial states are always equal. In particular, the first [ output
terms are independent of the control so we obtain the last | equalities directly. For
equalities (12) (in the case [ < ny) look at the next ng — [ output terms. If

CA*z # CAFz, for some I < k <ng—1,
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then property P and Remark 3.3 would imply that there is some control that would
cause the kth output to be different for z, z, contradicting indistinguishability. Thus,
those equalities hold too. Finally, for (11), we may focus on the output terms y(k) for
k > ng. Indistinguishability implies that in particular, for the 0 control, all output
terms are equal. Then CAFz; = CA*2; for all k > ny. But (A3, Ch) is an observable
pair and det A; # 0 so this implies z; = 2;.

Now consider the mapping ¢ : R® — R™™! x {~1,0,1}! given by é(x) = (£,¢),
where

(ot
CA™1g
¢ = : eR",
\ Cf.llz
(sign(CAl‘la:)
¢= 5 € {-1,0,1}'
sign (C Ax) { }
sign (Cz)

and £ = z; if | = ny. We just proved that x and 2 are indistinguishable if and
only if ¢(z) = ¢(z). To show that the map is onto, we must show that for any
(£,¢) € R"™ x {—1,0,1}, there is some z € R™ so that o(z) = (§,¢). Since (A,C)
is an observable pair, (A3, C3) is also an observable pair. Thus, we may let z; be the
first nq components of £ and z the solution to

na—1
€niv1 — C1AT* "y

Cy Ayt :
: Ty = En—1 — C1lzili1$1
CaA, GQ-—Cia;
Cs :
G —Cim

Then clearly, ¢(x) = (£,¢). Furthermore, it is easy to verify that ¢ commutes with
the dynamics of X so it is a system morphism in the sense of [12], §5.8. 0

LEMMA 5.2. The system ¥ is reachable and observable and realizes the same i/o
behavior as ¥.

Proof. Since X is the observable reduction of ¥, and ¥ is reachable, [12, Lemma
5.8.3] implies that £ is both reachable and observable with the same input/output
behavior as X. a

" Example 5.3. Let ¥ be the system with state space IR? and

+

T3 =22 +u,
y = sign (z1 + ).
Then ¥ is minimal. But this sign-linear system is not observable, since det A = 0.

Perform a change of variables in the state space so that the A matrix is in the form
discussed above. In the new coordinates, (21, 22), the equations take the form

zi":zl—u,
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+
23 =u,

y = sign (—21 + 22).

The Markov sequence is A = {2,1,1,1,...}, na = 1, relative degree = 1, so | = 1.
The state space for ¥ is R x {—1,0,1} and the equations for ¥ are

§+ =§—’U,,
¢+ = sign (€ + 2u),
n=¢.

This system is reachable and observable.

6. Sampling. In this section we make some remarks about the time-sampling
of sign-linear systems. This is the process of replacing a given continuous-time sign-
linear system by the discrete-time one that results when only piecewise constant inputs
(with a fixed sampling time) are used. The results in this section can be used to obtain
the continuous-time results of Theorem 3.5 as a consequence of those of Theorem 3.4,
and they clarify the differences between the two types of results, in particular, the
fact that invertibility of the A matrix is not needed in the continuous-time case.

Remark 6.1. Suppose that (A, B, C) has property P. Then the continuous-time
sign-linear system (A, B, C)s is observable.

Proof. We will prove this by studying the associated sampled system. Using
the notations and terminology in {12, §2.10], for each § > 0, the é-sampled system
corresponding to ¥ is

z¥ = Fz+ Gu,

RS A

where F = %4 |G = A® B, and A®) = f(f el6=9)4ds. We want to show that there is a
6 > 0 so that if (A, B, C) has property P then the §-sampled system satisfies condition
2 of Theorem 3.4. If this is true then the sampled system would be observable (clearly
det e4 # 0). Hence, X is observable using only piecewise constant controls that are
constant on intervals of length 6, and the result is proved.

Apply Kalman’s sampling theorem (see [12, Prop. 5.2.11]), to the pair (4,C)
obtained by dropping the rows of C not in I(.A). For any § satisfying

(14) §(A— p) # 2mik, k=+1,4+2,+3,...,

for every two eigenvalues A, u of A, we have that

N ker(C;(e*4)9) = {o0}.
JEI(A)
q=0,...,n—1

What is left is to show that
I(A) = I(As5),

where Aj is the Markov sequence of (e4, A®)B,C). Note that I(As) C I(A) is
always true for any 6, so the other inclusion is the interesting one. We will prove
that if the kth row .A* of A is nonzero then the kth row A¥ of As is nonzero for all
& satisfying (14). This will be done by showing the stronger result that A% and A%
have the same Hankel rank.
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Fix a k € I(A). By restricting our attention to the linear system described by
(A, B, Ct), whose Markov sequence is .A* and sampled-Markov sequence is A%, we
may, and will, assume without loss of generality that A is a sequence with p = 1
and C has only one row. Thus we need to show that if A is a Markov sequence with
p = 1 represented by the triple (A4, B,C) and if § satisfies (14) then A5, the Markov
sequence of (e®4, A®) B, C), has the same Hankel rank as A.

So let 6,4, As and (A, B,C) be as described. Next define a sequence A(®) as
follows. If

ti—l

K(t) = Z-&m,

then the output function for ¥ = (4, B,C) is y(t) = fot K(t — s)u(s)ds. If we restrict
to sampled controls of length 8, then '

-1

(G+1)6
y(16) =Y [ / ) K16 — s)ds] Ujy1-

=0

Letting

J

s (74+1)6
A(.’=/ K(I6 —s)ds, j=0,1,2,...
/s

we get

-1
y(16) = 3 A .

Jj=0

Look at any linear representation of the Markov sequence A. Take the §-sampled
system for that representation. The Markov sequence for the é-sampled system is
A®)_ In particular, applied to the given triple (4, B, C), this means that

A® = A,

Take now a canonical representation (A€, B¢, C¢) of A of dimension n¢. Its eigenvalues,
i.e., the eigenvalues of the matrix A°, are among the eigenvalues of the (possibly non-
canonical) original triple (A, B,C). Thus, 6 also satisfies (A — p) # 2wik, k =
+1,4+2,43,..., for any two eigenvalues A and p of A°. Then controllability and
observability of (A€, B¢, C°) are preserved by sampling at this §; and thus the sampled
triple (e?4°, (A4°)®) B¢, C*) is itself canonical and is a linear representation of As =
A® . The rank of a Markov sequence is equal to the dimension of a canonical linear
representation of that sequence ([12, Cor. 5.5.7]). Therefore,

rank A®) = n° = rank A,

as desired. O
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