JOURNAL OF COMPUTER AND SYSTEM SCIENCES 50, 132-150 (1995)

On the Computational Power of Neural Nets*

Hava T. SIEGELMANN'

Department of Information Systems Engineering, Technion, Haifa 32000, Israel

AND

EpuarDO D. SONTAG?

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Received February 4, 1992; revised May 24, 1993

This paper deals with finite size networks which consist of inter-
connections of synchronously evolving processors. Each processor
updates its state by applying a “'sigmoidal”’ function to a linear com-
bination of the previous states of all units. We prove that one may
simulate all Turing machines by such nets. In particular, one can
simulate any multi-stack Turing machine in real time, and there is a net
made up of 886 processors which computes a universal partial-recur-
sive function. Products { high order nets) are not required, contrary to
what had been stated in the literature. Non-deterministic Turing
machines can be simulated by non-deterministic rational nets, also in
real time. The simulation result has many consequences regarding the
decidability, or more generally the complexity, of questions about
recursive nets. € 1995 Academic Press, Inc.

1. INTRODUCTION

We study the computational capabilities of recurrent
first-order neural networks, or as we shall also say from now
on, processor nets. Qur model consists of a synchronous
network of processors. Its architecture is specified by a
general directed graph. The input and output are presented
as streams. Input letters are transferred one at a time via M
input channels. A similar convention is applied to the
output, which is produced as a stream of letters, where each
letter is represented by p values. The nodes in the graph are
called “neurons.” Each neuron updates its activation value
by applying a composition of a certain one-variable func-
tion with an affine combination (i.e., linear combination
and a bias) of the activations of all neurons x;, j=1, .., N,

* This research was supported in part by U.S. Air force Grant AFOSR-
91-0343.

? E-mail: iehava @ ie.technion.ac.il. Work done while at Dept. of Com-
puter Science, Rutgers University.

3 E-mail: sontag@control.rutgers.edu

0022-0000/95 $6.00

Copyright ¢ 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

and the external inputs u,, k = 1, ..., M, with rational valued
coefficients—also called weights—--(a,, b, ¢;). That is, each
processor’s state is updated by an equation of the type

N Af
x,-(t+l)=a(z agx,(1)+ Y b,juj(t)+c,-), i=1,.., N
j=1 J=1
(1)

In our results, the function ¢ is the simplest possible
“sigmoid,” namely the saturated-linear function

0 if x<O
olx):=<(x 1f0<xx<l (2)
1 if x>1.

This function has appeared in many applications of neural
nets (e.g., [Bat91, BV88, Lip87, ZZZ92]). We focus on this
specific activation function because it makes theorems
easier to prove, and also because, as it was proved in
[SS94], a large family of sigmoidal type activation func-
tions result in models which are not stronger computa-
tionally than this one.

The use of simoidal functions—as opposed to hard
thresholds— is what distinguishes this area from older work
that dealt only with finite automata. Indeed, it has long been
known, at least since the classical papers by McCulloh and
Pitts [WM43] and Kleene [Kle56]), how to simulate finite
automata by such nets.

As part of the description, we assume that there is singled
out a subset of the N processors, say x,,, .., X,,; these are the
p output processors, and they are used to communicate the
outputs of the network to the environment. (Generally,
the output values are arbitrary reals in the range [0, 1], but
later we constrain them to binary values only.)

132

THE COMPUTATIONAL POWER OF NEURAL NETS

We state that one can simulate all (multi-stack) Turing
machines by nets having rational weights. The rational
numbers we consider (as weights, not those numbers arising
as intermediate values of computation) are simple, small,
and do not require much precision. Furthermore, this
simulation can be done with no slow down in the computa-
tion. In particular, it is possible to give a net made up of 886
processors which computes a universal partial-recursive
function. Non-deterministic Turing machines can be
simulated by non-deterministic nets, also in real time.

We restrict to rational (rather than real) states and
weights in order to preserve computability. It turns our that
using real valued weights results in processor nets that can
“calculate” super-Turing functions; see [SS94].

1.1. Related Work

Most of the previous work on recurrent neural networks
has focused on networks of infinite size. As each neuron is
itself a processor, an infinite net is effectively equivalent to
an infinite automaton, which by itself has unbounded
processing power. Therefore, infinite models are less
challenging for the investigation of computational power,
compared to our model which has only a finite number of
neurons and is bounded computationally.

There has been previous work concerned with computa-
bility by finite networks, however, starting with the classical
work of McCulloch and Pitts, cited above, on finite
automata. Another related result was due to Pollack
[Pol87]. Pollack argued that a certain recurrent net model,
which he called a “neuring machine,” is universal. The
model in [Pol87] consisted of a finite number of neurons of
two different kinds, having identity and threshold respon-
ses, respectively. The machine was high-order ; that is, the
activations were combined using multiplications, as
opposed to just linear combinations (as in Eq. (1)). That is,
the value of x, is updated by means of a formula of the type

x,.(t+1)=a< >

(lol + 1By <k

a; ., px“(1) u"(t)), i=1---N,
(3)

where w, # are multiindices, “| |” denotes their magnitudes
(total weights), k < oc, and
XO=xPx, ub=ub.yby

Pollack left as an open question whether high-order connec-
tions are really necessary in order to achieve universality,
although he conjectured that they are. High order networks
(cf. [CSSM89, Elm90, GMC *92, Pol87, SCLG91, WZ891)
have been used in applications. One motivation often cited

for the use of high-order nets was Pollack’s conjecture
regarding their superior computational power. We see that

133

no such superiority of computational power exists, at least
when formalized in terms of polynomial-time computation.

Work that deals with infinite structure is reported
by Hartley and Szu [HS87] and by Franklin and
Garzon [FG90, GF89], some of which deals with cellular
automata. There one assumes an unbounded number of
neurons, as opposed to a finite number fixed in advance. In
the paper [Wol917], Wolpert studies a class of machines
with just linear activation functions and shows that this
class is at least as powerful as any Turing machine (and
clearly has super-Turing capabilities as well). It is essential
in that model, again, that the number of “neurons” be
allowed to be infinite—as a matter of fact, in [Wol91]
the number of such units is even uncountable—as the
construction relies on using different neurons to encode
different possible stack configurations in multi-stack Turing
machines.

The idea of using continuous-valued neurons in order to
attain gains in computational capabilities as compared with
threshold gates had been investigated before. However,
prior work considered only the special case of feedforward
nets—see, for instance, [Son92] for questions of approxi-
mation and function interpolation and [MSS91] for
questions of Boolean circuit complexity.

The computability of an optical beam-tracing system
consisting of a finite number of elements was discussed in
[RTYS0]. One of the models described in that paper is
somewhat similar to ours, since it involves operations which
are linear combinations of the parameters, with rational
coeflicients only, passing through the optical elements and
having recursive computational power. In that model,
however, three types of basic elements are involved, and the
simulated Turing machine has a unary tape. Furthermore,
the authors of that paper assume that the system can instan-
taneously differentiate between two numbers, no matter
how close, which is not a logical assumption for our model.

1.2. Consequences and Future Work

The simulation result has many consequences regarding
the decidability, or more generally the complexity, of ques-
tions about recursive nets of the type we consider. For
instance, determining if a given neuron ever assumes the
value “0” is effectively undecidable (as the halting problem
can be reduced to it); on the other hand, the problem
appears to become decidable if a linear activation is used
(halting in that case is equivalent to a fact that is widely con-
Jjectured to follow from classical results due to Skolem and
others on rational functions; see [BR887], p. 75]), and is
also decidable in the pure threshold case (there are only
finitely many states). As our function ¢ is in a sense a com-
bination of threshold and linear functions, this gap in
decidability is perhaps remarkable. Given the linear-time
simulation bound, it is of course also possible to transfer

134

NP-completeness results into the same questions for nets
(with rational coefficients). Another consequence of our
results (when using the halting problem) is that the problem
of determining whether a dynamical system of the particular
form

x(t+ 1)y =a(Ax(t) +¢)

ever reaches an equilibrium point, from a given initial state,
is effectively undecidable. Such models have been proposed
in the neural and analog computation literature for dealing
with content-addressable retrieval and optimization,
notably in the work of Hopfield (see, e.g., [HT85]. In
associative memories, for instance, the initial state is taken
as the “input pattern” and the final state, as a class repre-
sentative. All convergence results currently known assume
special structure of the 4 matrix—for instance, that it is
symmetric—but our undecidability conclusion shows that
such results will not be possible for general systems of the
above type.

Another corollary is that higher order networks are com-
putationally equivalent, up to a polynomial time, to first-
order networks. {A finite network with rational weights is
finitely describable and can be efficiently simulated by a
Turing machine, which in turn can be simulated by first-
order networks.)

Many other types of “machines” may be used for univer-
sality (see [Son 90, especially Chap. 2] for general defini-
tions of continuous machines). For instance, we can show
that systems evolving according to equations x(f+1)=
x(t)+ 7(Ax(t) + bu(t) + ¢), where 7 takes the sign in each
coordinate, again are universal in a precise sense. It is
interesting to note that this equation represents an Euler
approximation of a differential equation; this suggests
the existence of continuous-time simulations of Turing
machines, quite different technically from the work on
analog computation by Pour-El [PE74] and others. A dif-
ferent approach to continuous-valued models of computa-
tion 1s given in [BSS89] and other papers by the same
authors; in that context, our processor nets can be viewed as
programs with loops in which linear operations and linear
comparisons are allowed, but with an added restriction on
branching that reflects the nature of the saturated response
we use.

The rest of this paper is organized as follows. Section 2
provides the exact definitions of the model and states the
results. It is followed by Section 3, which highlights the
main proof. Details of the proof are provided in Sections 4
to 7. In section 8, we describe the universal network, and we
end in Section 9, where we briefly describe the non-deter-
ministic version of networks.

2. THE MODEL AND MAIN RESULTS

We model a net, as described in the introduction, as a
dynamical system. At each instant, the state of this system is

SIEGELMANN AND SONTAG

a vector x(t) € QY of rational numbers, where the ith coor-
dinate keeps track of the activation value of the ith pro-
cessor. Given a system of equations such as (1), an initial
state x(1), and an infinite input sequence

u=u(l), u(2), ..,

we can define iteratively the state x(7) at time ¢, for each
integer ¢ > 1, as the value obtained by recursively solving the
equations. This gives rise, in turn, to a sequence of output
values, by restricting attention to the output processors; we
refer to this sequence as the “output produced by the input
u” starting from the given initial state.

We want to define what we mean by a net computing a
function

¢ {01} * {0, 1} ",

where {0, 1} * denotes the free semigroup of binary strings
(excluding the empty string). To do so, we must first define
what we mean by a formal network, a network which
adheres to a rigid encoding of its input and- output. We
define formal nets with two binary input lines. The first of
these is a data line, and it is used to carry a binary input
signal; when no signal is present, it defaults to zero. The
second is the validation line, and 1t indicates when the data
line is active; it takes the value “1” while the input is present
there and “0” thereafter. We use “D” and “V” to denote the
contents of these two lines, respectively, so that

u(t)=(D(1), V(1)) {0, 1}?

for each 7. We always take the initial state x(1) to be zero
and to be an equilibrium state. We assume that there are
two output processors, which also take the role of data and
validation lines and are denoted by “G” and “H,” respec-
tively. The output of the network is then given by

yty=(H(1), G(1))e {0, 1}2

(The convention of using two input lines allows us to
have all external signals be binary; of course many other
conventions are possible and would give rise to the same
results, for instance, one could use a three-valued input, say
with values { —1, 0, 1}, where “0” indicates that no signal is
present, and +1 are the two possible binary input values.)

In general, our discrete-time dynamical system (with two
binary inputs) is specified by a dynamics map

F.QVx{0,1}2— Q"

One defines the state at time t, for each integer ¢ > 1, as the
value obtained by recursively solving the equations:
x(1) ;= x™"C

x(t+1):=F(x(t),u(t)), t=12, ...

THE COMPUTATIONAL POWER OF NEURAL NETS

For each N e N, we denote the mapping

(G915 s gn) = (0(qy), s (gn))

o,y QY- QY

and we drop the subscript N when clear from the context.
(We think of elements of Q" as column vectors, but for dis-
play purposes we somtimes show them as rows, as above. As
usual, @ denotes the rationals, and N denotes the natural
numbers, not including zero.) Here is a formal definition.

DerFmnITION 2.1. A g-processor net A" with two binary
inputs is a dynamical system having a dynamics map of the
form

F(x,u)=0(Ax+b,u, +bu,+c),

for some matrix 4 € QV*" and three vectors b,, b,, ce Q%

The “bias” vector ¢ is not needed, as one may always add
a processor with constant value 1, but using ¢ simplifies the
notation and allows the use of zero initial states, which
seems more natural. When b, = b, = 0, one has a net without
inputs. Processor nets appear frequently in neural network
studies, and their dynamic properties are of interest (see, for
instance, [MW891).

It is obvious that—with zero, or in general a rational,
initial state— one can simulate a processor net with a
Turing machine. We wish to prove, conversely, that any
function computable by a Turing machine can be computed
by such a processor net. We look at partially defined maps

¢:{0, 1} > {0, 1} *

that are recursively computed. In other words, maps for
which there is a multi-stack Turing machine .# so that,
when a word we {0, 1} * is written initially on the input/
output stack, .# halts on w if and only if ¢(w) is defined,
and ¢(w), in that case, is the content of that stack when the
machine halts.

For each word

w=w; -0, e{0,1}*
with

#w)=pF,---B,€{0, 1} * or undefined

and each r e N (/ is called the length of the responsefoutput
and r is called the response time, the time it takes to provide

135
the first output bit), we encode the input and output as

follows. Input is encoded as

u, (ty=(V,(1), D,(1)), t=1,..,

where
1, ifr=1, ..,k
Vlt) = {0, otherwise,
and
wy, if r=1, .., k,
D, (t)=
ol1) {O, otherwise.

Output is encoded as

Yo ()=(G,, (1), H, (1)), t=1,.,

where

1, ife=r, ., (r+l-1),
G =
w.r (1) {0, otherwise,
if the output ¢(w) is defined, and is 0 when ¢(w) is not
defined, and finally

B M= (r 1,
He., (D= {O, otherwise,
if the output ¢(w) is defined, and is 0 when ¢(w) is not
defined.

TheoREM 1. Let ¢:{0,1}* = {0,1}* be any recur-
sively computable partial function. Then, there exists a
processor net A" with the following property

If A is started from the zero (inactive) initial state, and the
input sequence u,, is applied, A" produces the output y,, ,
(where H,, , appears in the “output node,” and G, , in the
“validation node”) for some r.

Furthermore, if a p-stack Turing machine .# (of one input
stack and several working stacks) computes ¢(w) in time
T(w), then one may take r(w) = T(w) + O(|w}).

Note that in particular it follows that one can obtain the
behavior of a universal Turing machine via some net. An
upper bound from the construction shows that N = 886 pro-
cessors are sufficient for computing such a universal partial
recursive function.

2.1. Restatement: No I/O

It will be convenient to have a version of Theorem 1 that
does not involve inputs but rather an encoding of the initial
data into the initial state. (This would be analogous, for

136

Turing machines, to an encoding of the input into an input
stack rather than having it arrive as an external input
stream.)

For a processor net without inputs, we may think of the
dynamics map # as a map Q" — Q. In that case, we
denote by F* the kth iterate of #. For a state e Q", we
let &/:=F/(£). We now state thatif ¢: {0,1} * - {0, 1} *
is a recursively computable partial function, then there
exists a processor net .+~ without inputs, and an encoding of
data into the initial state of .47, such that: ¢(w) is undefined
if and only if the second processor has activation value
always equal to zero, and it is defined if this value ever
becomes equal to one, in which case the first processor has
an encoding of the result.

Given w=a,---a,€{0,1}*, we define the encoding
function
k
olay---a) =Y 2a,+

i=1

(4)

4

(Note that the empty sequence gets mapped into 0.)

THEOREM 2. Let M be a p-stack Turing machine comput-
ing $: {0, 1} * — {0, 1} * in time T. Then there exists a pro-
cessor net N without inputs so that properties (a) and (b)
below hold. In both cases, for each we {0, 1} *, we consider
the corresponding initial state

Ew) :=(6[w], 0, ..., 0) e QY.

(a) If ¢(w) is undefined, the second coordinate (w)4, of
the state after j steps is identically equal to zero, for all j. If
instead ¢(w) is defined and computed in time T, than there
exists 7 = O(T) so that

Ew)s =0,

Ew)] =1,

j=0,., 7 —1,

and f(w),f =d[dw)}]. (This is a linear time simulation.}
(b) Furthermore, if one substitutes é in Eq. (4) by a new
map J, as

£ 10p2— 1 +4pla,— 1)
5[al"'ak]p:= 2 (lop2)1

i=1

) (5)

then the construction can be done in such a way that 7 =T.
(This is a real time simulation.)

The next few sections include the proofs of both theorems.
We start by proving Theorem 2, and then obtain Theorem 1
as a corollary. As the details of the proof of Theorem 2 are
very technical, we start by sketching the main steps of the
proof in Section 3. The proof itself is organized into several
steps. We first show how to construct a network .4" that
simulates a given multi-stack Turing machine M in time

SIEGELMANN AND SONTAG

J =47 (T is the computation time of the Turing machine).
This is done in Sections 4 and 5. In Section 6, we modify the
construction into a network that simulates a given multi-
stack Turing machine with no siow down in the computa-
tion. This is done in three steps and is based on allowing for
large negative numbers to act as inhibitors.

After Theorem 2 is proved, we show in Section 7 how to
add inputs and outputs to a processor net without
input/output, thus obtaining Theorem 1 as its corollary.
This ends the proofs.

3. HIGHLIGHTS OF THE PROOF

This section is aimed at highlighting the main part of the
proof of Theorem 2. We start with a 2-stack machine; this
model is obviously equivalent to a 1-tape (standard) Turing
machine [HU79]. Formally, a 2-stack machine consists of
a finite control and two binary stacks, unbounded in length.
Each stack is accessed by a read-write head, which is
located at the top element of the stack. At the beginning of
the computation, the binary input sequence is written on
stack,. The machine at every step reads the top element of
each stack as a symbol xe€ {0, 1, #} (where # means that
the stack is empty), checks the state of the control
(se{l,2,..,1S]}), and executes the following operations:

1. For each stack, one of the following manipulations is
made:
(a)

(b) Pushing an extra element on the top of the stack
(either 0 or 1).

()
2. Changing the state of the control.

Popping the top element.

No change 1n stack.

When the control reaches a special state, called the “halting
state,” the machine stops. Its output is defined as the binary
sequence on stack,;. Thus, the I/O map or function,
computed by a 2-stack machine, is defined by the binary
sequences on stack | before and after the computation.

3.1. Encoding the Stacks

Assume that we were to encode a binary stream
w=w,w, - w, into the number

]

w;
oy 2
Such a value could be held in a neuron, since it ranges in
[0, 1]. However, there are a few problems with this simple
encoding. First, one cannot differentiate between the strings
“f” and “f-0,” where “.” denotes the concatenation
operator. Second even when assuming that each binary
string ends with 1, the continuity of the activation function
o makes it impossible to retrieve the most significant bit (in

THE COMPUTATIONAL POWER OF NEURAL NETS

radix 2) of a string in a constant amount of time. (For exam-
ple, the values 0.100000000000 and 0.011111111111111 are
almost indistinguishable by a net.) In summary, given
streams of binary input signals, one does not want them to
be encoded on a continuous range, but rather to have gaps
between valid encodings of the strings. Such gaps would
enable a quick decoding of the number by means of an
operation requiring only finite precision or, equivalently,
reading the most significant bit in some representation in a
constant amount of time.

On the other hand, if we choose some set of “numbers
with gaps” to encode the different binary strings, we have to
assure that various manipulations on these numbers during
the computation leave the stack encoding in the same set of
“numbers with gaps.”

As a solution, the encoding of stacks is chosen to be as
follows. Read the binary elements in each stack from top to
bottom as a binary string @ = w,w, --- @,. We encode this
string into the number

This number ranges in {0, 1), but not every value in [0, 1)
appears. If the string starts with the value 1, then the
associated number has a value of at least %, and if it starts
with 0, the value is in the range [, 1). The empty string is
encoded as the value 0. The next element in the stack
restricts the possible value further.

The set of possible values is not continuous and has
“holes.” Such a set of values “with holes” is a Cantor set. Its
self-similar structure means that bit shifts preserve the
“holes.” The advantage of this approach is that there is
never a need to distinguish among two very close numbers
in order to read the most significant digit in the base-4
representation.

3.2. Stack Operations

We next demonstrate the usefulness of our encoding of
the stacks:

1. Reading the top. Assume that a stack has the value
w=1011; that is, it is encoded by the number g = 0.3133,.
As discussed above, the value of ¢ is at least 2 when the
top of the stack is 1, and at most } otherwise. The linear
operation

4 -2

transfers this range to at least 1| when the top element is 1,
and at most 0 otherwise. Thus, the function top(g),

top(g) = o(4g —2),

provides the value of the top element.

137

2. Push. Pushing 0 onto the stack w = 1011 changes the
value to w = 01011. In terms of the encoding, g =0.3133, is
transferred to ¢ =0.13133,. That is, the suffix remains the
same and the new element is entered in the most significant
location. This is easily done by the operation

+

=
N

(which is equivalent to a(g/4+ }), given that ge[0, 1).)
Pushing the value 1 onto the stack can be implemented by
q/4+3.

3. Pop stack. Popping a stack transfers w= 1011 to
011, or the encoding from g =0.3133, to 0.133,. When the
top element is known, the operation

49— (2top(q) + 1)

(or equivalently o(4q —(2top(q) +1))) has the effect of
popping the stack.

4. Non-empty stack. The predicate non-empty indicates
whether the stack w is empty or not, which means in terms
of the encoding, whether ¢g=0 or ¢>0.1,. This can be
decided by the operation

o(4q).

3.3. General Construction of the Network

From the above discussion, we construct a network
architecture which has three neurons per stack. One neuron
holds the stack encoding (¢), one holds top(q), and one
indicates whether the stack is empty. In addition, the
architecture has a few neurons which represent the finite
control (this is the old McCulloh and Pitts result [WM431])
and a set of neurons which take their input both from the
stack-reading neurons and from the finite control neurons
and “compute” the next step.

3.4. P Stack Machines

It is known that p-stack machines (p > 2) are polyno-
mially equivalent to 2-stack machines [HU79]. However,
simulating a p-stack machine by a 2-stack machine involves
a super-linear slowdown in the computation. It is interesting
to note that in our neural network, we are able to simulate
any p-stack machine (for any p) in real time. That is, for us,
there is no slowdown in passing from one model to the
other, and they are linear-time equivalent rather than poly-
nomially equivalent. To emphasize this attractive property,
and as it does not reduce the simplicity of the proof, we
provide our simulation in terms of p-stack, rather than
2-stack, machines.

138

3.5. Real Time Simulation

The above-suggested encoding and the use of the lemma
result in a Turing machine simulation that requires four
steps of the network for each step of the Turing machine. To
achieve a “step per step” simulation, a more sophisticated
encoding is required, which relies upon a Cantor set with a
specific size of gaps. Then, we use large negative numbers as
inhibitors, and attain in this manner the desired simulation
in real time. We turn now to the formal proof.

4. GENERAL CONSTRUCTION OF THE SIMULATION

As a departure point, we pick p’-tape Turing machines
with binary alphabets. We may equivalently study push-
down automata with p=2p’ binary stacks. We choose to
represent the values in the stacks as fractions with
denominators which are powers of four. An algebraic
formalization is as follows.

4.1. p-Stack Machines

Denote by ¥ the “Cantor 4-set” consisting of all those
rational numbers g which can be written in the form

=R

<
If
I =

with 0 < k < o and each a, =1 or 3. (When k =0, we inter-
pret this sum as ¢ =0.) Elements of ¥ are precisely those of
the form d[w], where J is as in Eq. (4).

The instantaneous description of a p-stack machine, with
a control unit of n states, can be represented by a (p+ 1)-
tuple

(s, 0[], 0l w;], .., 6[w,]),

where s is the state of the control unit, and the stacks store
the words w, (i=1, ..., p), respectively. (Later, in the simula-
tion by a net, the state s will be represented in unary as a
vector of the form (0,0, ..,0,1,0, .., 0).)

For any q € ¢, we write

{0, if g<3,
C["]"{l, if g1,
(0, if g=0,
T[q]'_{l, if ¢ 0.

We think of {[-] as the “top of stack,” as in terms of the
base-4 expansion, {[¢]=0 when a,=1 (or ¢=0), and

SIEGELMANN AND SONTAG

{[q] =1 when a, =3. We interpret 7[-] as the “nonempty
stack” operator. It can never happen that {[¢g]=1 while
7[¢} =0; hence the pair ({[g¢], t{q]) can have only three
possible values in {0, 1}%

DerINTION 4.1. A p-stack machine .# is specified by a
(p +4)-tuple

(S, 57,8y, 0,,0,,0,,..,0,),

ey Up

where S is a finite set, 5, and s, are elements of S called the
initial and halting states, respectively, and the 8,’s are maps
as follows:
0p: Sx{0,1}* -8
6,: Sx{0,1}% —{(1,0,0),(%,0, %), (
(4, =2, — 1)}

A
<
-
END™
—

for i=1,..,p.

(The function £, computes the next state, while the func-
tions #; compute the next stack operations of stack,, respec-
tively. The actions depend only on the state of the control
unit and the symbol being read from each stack. The
elements in the range

(1’ 0, 0)’ (!Z’ Os %)’ (}3» 0» %)9 (45 —2, _l)

”

of the 8, should be interpreted as “no operation,” “push0,”
“pushl,” and “pop,” respectively.}
The set ' := S x %7 is called the instantaneous description

set of .#, and the map
PA-X

defined by

P8, 4155 q,)
=[0(s,{[q1], - Mg,) 2l 1, - tlg, 1),
HIT(S’ C[ql]: ey ([qp]’ T[Qx]’ “res r[qp]) : (ql’ c[ql]’ l)»

HZ(S’ ([ql]’ ey C[qp]ﬂ T[ql]’ ety T[qp]) ‘ (qp’ c[qp]5 1)]'

where the dot “-” indicates inner product, is the complete
dynamics map of .#. As part of the definition, it is assumed
that the maps 8, (i=1, .. p) are such that 6,(s, {{q,], ...,
g[qp]’ 0’ T[qZ:]’ ey T[qp])’ Hz(ss C[‘h], el C[qp]s t[‘]l]? Ov
t[g5]), .. 1{q,])--- #(4, =2, —1) for all 5, ¢, .., g, (that
1s, one does not attempt to pop an empty stack).

Let we {0,1}* be arbitrary. If there exists a positive
integer k, so that starting from the initial state, S,, with

THE COMPUTATIONAL POWER OF NEURAL NETS

[w] on the first stack and empty other stacks, the machine
reaches after k steps the halting state 54, that is,

PX(s;, 0[w], 0, .y 0) = (54, 6[@,], [w,], ..., 6[w,])

for some k, then the machine .# is said to halt on the input
. If w 1s like this, let k be the least possible number such
that

PX(s;, 0[w], 0, ..., 0)

has the above form. Then the machine .# is said to output
the string w,, and we let ¢ _,(w) := w,. This defines a partial
map

410,137 > {0,1} 7,

the i/o map of #.

Save for the algebraic notation, the partial recursive func-
tions ¢: {0, 1} * — {0, 1} * are exactly the same as the maps
¢ 4: € — € of p-stack machines as defined here; it is only
necessary to identify words in {0, 1} * and elements of € via
the above encoding map d. Our proof will then be based on
simulating p-stack machines by processor nets.

5. NETWORK WITH FOUR LEVELS:
CONSTRUCTION

Assume that a p-stack machine .# is given. Without loss
of generality, we assume that the initial state s, differs from
the halting state s, (otherwise the function computed is the
identity, which can be easily implemented by a net), and we
assume that §:= {0, ..., s}, with s,=0 and s, = 1. We build
the net in two stages..

» Stage 1. Asan intermediate step in the construction,
we shall show how to simulate .# with a certain dynamical
system over Q°*”. Writing a vector in Q**7 as

(xl’ wers xsa qu seey qp)’

the first s components will be used to encode the state of the
control unit, with 0 € S corresponding to the zero vector
x =...=x,=0and ieS, i#0, corresponding to the ith
canonical vector
e;=(0,.,0,1,0,..,0)

(the “1” 1s in the ith position). For convenience, we also use
the notation e, := 0 € Q°. The ¢,’s will encode the contents of
the stacks. For notational ease, we substitute {[¢,] and [7,]
by a; and b,, respectively. Formally, define

B,:{0,1}% {0, 1} (6)

139
forie{l,..s},je{0, .. s}, and

vy {0, 1} = {0, 1}
forie{l, .., p},je{0,.,s},k=1,2,3,4as

ap by, by oy by) =1
a,, by, b,y,..b,)=i

ﬂv(a] > oy s

= 04J,a,,as, ..,

(intuitively, there is a transition from state ;j of the control
part to state i iff the readings from the stacks are: top of
stack, is @, ; and the nonemptyness test on stack, gives b,).
i is zero except in the following cases:

=1

yilay, azs s @yy by, by, s b))

< 0,(j,ay,ay,..,4,,b,,b,5,..,b,)=(1,0,0)

(if the control is in state j and the stack readings are
a,,a,, .., a,, by, by, .., b,, then stack 7 will not be changed);

a,, b, by, ., b,)=1

2
yilan, az,

< 0,(j,a,,a;,..,0a,b,by,...b,)=(5,0,%)

(if the control is in state j and the stack readings are a,,
ay, .., a,, by, by, .., b,, then operation Push0 will occur on
stack 7);

a,, by, by, ., b,)=1

3
y.’j(al > A2y ey

= 0,(j,a,,8y,...a,,b,,b,,...5,)=(3,0,3%)

(if the control is in state j and the stack readings are
a,a, ..,da, by, by, .. b, then operation Push1 will occur
on stack i);

ap, b], bz, PP bp) = 1

a,, by, by b,)=(4, =2, —1)

4
yij(al’ aZ’ Ty

©91’(]9 al’ aZa ey

(if the contol is in state j and the stack readings are
a, az, ... a,, by, by, .., b,, then operation Pop will occur on
stack 1).

Let 2 be the map Q°*7 — Q*+7,

(Xps s Xo @1y s @) (X x P g, q:),
where, using the notation x,:=1-37_, x,,

(8)

5
xt=Y Bay,..a,, by, ., b,)x;
j=0

140

fori=1, .., sand

q; = (Yovilay, . a,, by, b)) xj> q; (9.1)
J

+(3 yfj(a,, wn @y by b)) xj)

{9.2)

+(Z }';(alv wery a,,, b], eeey b[,) Xj>

j=0

1 3
x an+g) (9.3)
+(Z P ans e a, by b,,)xj>

j=0
x(4g,—~2{[¢q,]1—-1) (9.4)

fori=1, .., p
Letm: 2 =Sx %" — Q°** be defined by

n(l, gy, - q,) =€, qy,

It follows immediately from the construction that

P(nli, Gy, 4,) =1L, 1, s 4,))

for all (4, q,,...q,)€X.
Applied inductively, the above implies that

P (eq, 0[], 0, ..., 0) =n(P*(0, 5[@], 0, ..., 0))

for all k, so ¢(w) is defined if and only if for some k it holds
that 2%(e,, S[@], 0, ..., 0) has the form

(6’1, qd1s s qp)

(recall that for the original machine, s,=0 and sy =1,
which map respectively to e, =0 and e, in the first s coor-
dinates of the corresponding vector in @°*7). If such a state
is reached, then g, is in % and its value is [d(w)].

s Srage 2. The second stage of the construction
simulation the dynamics # by a net. We first need an easy
technical fact.

LEMMA 5.1. Let teN. For each function f:{0,1}' —
{0, 1} there exist vectors

2
Uy, Uy ooy Uy EZ'Y

SIEGELMANN AND SONTAG

and scalars
ClsCayoy CEL

such that, for each d,,d,,...d,, xe{0,1} and each
qe[0,1],

~

c,o(v, 1) (10)

and
ﬂ(dlst,--~,dl)xq=a<q+ z C,U(U,'ﬂ)—l>, (11)
r=1

where we denote p=(1,d,, d,, ..
product in 7'+ 2,

,d,,x) and “.” =dot

Proof. Write f§ as a polynomial

pd,, dy, ...dY=c,+cdy+ - +¢,,,d,

+c¢,,2ddy+ - +cudydy - d,, (12)
expand the product f(d,, d,, ..., d,)x, and use that for any

sequence /|, ..., /, of elements in {0, 1}, one has
1111\20'(11'*’ +1k_k+1)
Using that x = g(x), this gives that

ﬁ(d],d}_,..., d,)x
=C10'()C)+(‘20'(d1+.\’—1)+ e +C2tU
x(dy+dy+ - +d,+x—1)

20

= Z C,O'(U,‘ﬂ)

r=1

for suitable ¢,’s and v,’s. On the other hand, for each
1€{0, 1} and each ge [0, 1] it holds that t_=a(g+ 17— 1)
(just check separately for r=0, 1), so substituting the
above formula with 1 =8(d,, d,, .., d,)x gives the desired
result. |

Remark 5.2. The above construction overestimates the
amount of neurons necessary. In the case where t = 2p and
the arguments are the top and nonempty functions of the
stacks, the arguments are dependent, and there is a need for
just 37 terms in the summation, rather than 2%*. We
illustrate this phenomenon with the simple case of p=2,
that is, the case of two-stack machines. Here, when

(dla dZ’ d3a d4)
=(al’ a,, bl’ b2)(E(C[ql]s C[ql]! f[‘]l]’ T[q2]))’

THE COMPUTATIONAL POWER OF NEURAL NETS

one can easily verify that from the following nine elements

(a,,a3,b,,b,,a,a,,a,b,,a,b,,b,b,),

one can obtain—using a affine combinations only— the
value of the remaining seven elements

(a\b,,ayb,,a,a,b,,a,a,b,.a.b,b,, a,b, by, aiabb,).

Hence, a sum of the type in Eq. (10) requires in this case
only nine (3”) elements rather than sixteen (2%°).

We now return to the proof of the theorem. Apply
Lemma 5.1 repeatedly, with the “§” of the lemma corre-
sponding to each of the §,;’s and yﬁ,’s, and using variously
9=, 4=0q,+ %), 9= (39, +3), or g=(4¢,— 2A[q,] - 1).
Write also o(4g, —2) whenever {[¢;] appears (using that
{[q] =o(4q —2) for each g € ¥), and o(4q) whenever 7[q]
appears. The result is that & can be written as a com-
position

P=F,oF,oF,-F,

of four “saturated-affine” maps, ie., maps of the form
o(Ax+c) Fg Q" ->Q4 F,:Q*->Q"% F:Q"->0Q7
F: Q7"—> Q*+7, for some positive integers g, v, n. (The
argument to the function F,, called below z,, of dimension
(s +p), represents the s x;’s of Eq. (8) and the two g¢i’s of
Egs. (9). The functions F,, F,, F; compute the transition
function of the x,’s and g,’s in three stages.)

Consider the following set of equations, where from now
on we omit time arguments and use the superscript * to
indicate a one-step time increment:

z =F(z,)
2 =Fy(z,)
zy =Fi(z,
25 =Fyz)),

where the z,’s are vectors of sizes s + p, #, v, and y, respec-
tively. This set of equations models the dynamics of a
o-processor net, with

N=s+ptutv+tn

processors. For an initial state of type z, =(e,, 6[w], 0)
and z,=0, i=2, 3,4, it follows that at each time of the
form r=4k the first block of coordinates, z,, equals
P (e,, 6[w], 0).

All that is left is to add a mode-4 counter to impose the
constraint that state values at times that are not divisible by

141

4 should be disregarded. The counter is implemented by
adding a set of equations

¥ =a(yy),
¥y =oa(ys),
,V;- :U(Yzz),

yi=o(l—y,~ys—y,).

When starting with all y,(0)=0, it holds that y,(r)=1 if
t = 4k for some positive integer k, and is zero otherwise.

In terms of the complete system, ¢(w) is defined if and
only if there exists a time ¢ such that, starting at the state

zy=(ey,0[w],0),z;,=0,i=2,3,4y,=0,i=1,2,3,4,

the first coordinate z,,(¢) of z,(¢) equals 1 and also that
»ni(t)=y,(t—1)=1. To force z,,(¢) not to output arbitrary
values at times that are not divisible by 4, we modify it to

zhy=0a(- +ly,— 1)),

where “- .. ” is as in the original update equation for z,, and
/is a positive constant bigger than the largest possible value
of z,;. The net effect of this modification is that now
z11(2) =0 for all ¢ that are not multiples of 4 and for ¢ = 4k
it equals 1 if the machine should halt, and 0 otherwise. Reor-
dering the coordinates so that the first stack ((s + 1)th coor-
dinate of z;) becomes the first coordinate, and the previous
z,, (that represented the halting state s, of the machine .#)
becomes the second coordinate, Theorem 2(a) is proved. |

5.1. A Layout of the Construction

The above construction can be represented pictorially as
in Fig. 1.

For now, ignore the rightmost element at each level,
which is the counter. The remainder corresponds to the
functions F,, F;, F,, F,, ordered from bottom to top. The
processors are divided in levels, where the ouput of the ith
level feeds into the (i — 1) th level (and the output of the top
level feeds back into the bottom). The processors are
grouped in the picture according to their function.

The bottom layer, F,, contains 3+ p groups of pro-
cessors. The leftmost group of processors stores the values
of the s states to pass to level F,. The “zero state” processor
outputs 1 or 0, outputting 1 if and only if all of the s pro-
cessors in the first group are outputting 0. The “read stack
i” group computes the top element {[¢,] of stack #, and
[4,1 € {0, 1}, which equals 0 if and only if stack i is empty.
Each of the p processors in the last group stores an encoding
of one of the p stacks.

Layer F; computes the 2?7 terms o(v, -) that appear in
Eq. (10) for each of the possible s + 1 values of the vector x.

142

OO

s state neurons

1
ole)

s state neurons

s states + state 0

FIG. 1.

Only 37(s + 1) processors are needed, although, since there
are only three possibilities for the ordered pair ({{q,],
7[4;]) for each of the two stacks; this was explained in
Remark 5.2. (Note that each such g contains {[¢,], ..,
{lq,), t[q:),..t[q,]), as well as x,,.., x,, that were
computed at the level F,.) In this level we also pass to level
F, the values {[¢,], {[¢,] and the encoding of the p stacks,
from level F,. As a matter of fact, 3”s+ 1 neurons may
substitute the s7(s+ 1), as the O state requires one neuron
only.

At level F, we compute all the new states as described in
Eq. (8) (to be passed along without change to the top layer).
Each of the four processors in the “new stack i” group com-
putes one of the four main terms (rows) of Egs. (9) for one
stack. For instance, for the fourth main term we compute an
expression of the form:

s 22
a(4q,—2c[q.-]—1+z v c,jow,-m—l)

Jj=0 r=1

(obtained by applying Eq. (11)). Note that each of the terms
g:, [4:], o(v, - u) has been evaluated in the previous level.

oo}

read"

SIEGELMANN AND SONTAG

....I..............

p stacks counter 1

p |

The universal network.

Finally, at the top level, we copy the states from level F;,
except that the halting state x, is modified by counter 2. We
also add the four main terms in each stack and apply o to
the resulit.

After reordering coordinates at the top level to be

(SN SN D PO

the data processor and the halting processor are first and
second, respectively, as required to prove Theorem 2. Note
that this construction results in values u=s5+3p+1,
v=37(s+1)+2p,and n=s5+4p.

If desired, one could modify this construction so that all
activation values are reset to zero when the halting
processor takes the value “1.” This is discussed more
thoroughly in Remark 7.1.

6. REAL TIME SIMULATION

Here, we refine the simulation of Section § to obtain the
claimed real-time simulation. Thus, this section provides a
proof of Theorem 2(b). This part is both less intuitive and
less crucial for the main result.

THE COMPUTATIONAL POWER OF NEURAL NETS

We start in Subsection 6.1 by modifying the construction
given in Section 5 in order to obtain a “two-level” neural
network. At this point, we obtained a siow-down of a factor
of two in the simulation. In Subsection 6.2, we modify the
construction so that in one of the levels the neurons differ
from the standard neurons; they compute linear combina-
tions of their input with no sigma function applied to the
combinations. Finally, in Subsection 6.3, we show how to
modify the last network into a standard one with one level
only, thus achieving the desired real-time simulation of
Turing machines.

In Subsection 6.2, we substitute the 4-Cantor set
representation with a somewhat more complex Cantor set
representation (to be explained there), which has larger
gaps between consecutive admissible ranges of empty
stacks, stacks with 0 top, and stacks with 1 top. These gaps,
along with the use of large negative numbers as inhibitors,
will enable us to speed up the simulation.

6.1. Computing in Two Layers

We can rewrite the dynamics of the stack ¢, from Egs. (9)
as the sum of four components,

(13)

4
q;,= Z 9>

j=1

where g, represents the row (9.) in Egs. (9). We name
these g,; as the sub-stack elements of stack i. That is, g,, may
differ from O only if the last update of stack i was “no-opera-
tion.” Similarly, the components g,,, 4,4, 4., may differ from
0 only if the last update of the ith stack were “push0,”
“pushl,” or “pop,” respectively. We also define ¢; to be the
sub-top of the sub-stack element g;, and e; to be the sub-
nonempty test of the same sub-stack element. The top of
stack i can be computed by

(14)
and

(15)

As three out of the four sub-stack elements {gq,,, q,,,
g:3» 4iay Of each stack i=1, .., p are 0, and the fourth has
the value of the stack ¢,, it is also the case that three out of
four sub-top elements of 7; (and sub-nonempty elements
of e;) are 0, and the fourth one stores the value of the top
(nonempty predicate) of the relevant stack.

571;50/1-11

143

Using Eq. (8), we can express the dynamics of the state
constrol as

xF =3 Byt oo gy €114 oy €,0)X, (16)
j=0
for i=1, ..., s and the dynamics of the sub-stack elements as

)xk—l>

Z Yo tins o €,4) Xy — 1)

U(‘I. Z Yacltiy, €
a(%

a 4ql+ + Z V,k(tn,--, p4)xk)

m»—

qll =
tk =

q5=0 <4q.v—25[q.-] =14 Y yalti, e €ps) X — 1)

for all stacks ¢,,i=1, ..., p.
We introduce the notation

qi’ lszl’
1 1 o
_q,'+-, lf]:2,
next-gy =41 3 if j=3
4g,—-2[q,]—1, if j=4,

and summarize the above sub-stack dynamic equations by

q; —a<nextq,j+ PAE)xk—1> (17)

k=0

Similarly, the sub-top and sub-nonempty are updated by
;=0 <4 Iinext-q,-j+ Y YR) X —]]—2>,
k=0

ej = (4] nexta,+ 3 4rxe-1)
k=0

foralli=1,..,p,j=1,..,4

We construct a network in which the stacks and their
readings are not kept explicitly in values g¢,, ¢,, ¢, but
implicitly only via the sub-elements g, t;, ¢;, j=1, .., 4,
i=1, .., p. This will enable us a simulation of one step of a
Turing machine by a “two level” rather than a “four level”
network, as was suggested in the previous section.

By Lemma 5.1 and Eqgs. (14), (15), the functions 8, and
74, of Egs. (16)—(18) can be written as the combination

(18)

(19)

s 37
Z Z C‘:G’(Uf-ﬂ),

k=0 r=1

144

where

4 4 4 4
i=(1F e e T e 3)

/=1 j=1 j=1 =1
c¢ are scalar constants, v¢ are vector constants, and a
represents the multi-indices i for § and jjk for y. Thus, all
the updated equations of

x;, k=1 .,5 (states)

q; i=12 j=12734
ty, =12, j=1234,
e;,, =12 j=1273,4,

can be written as

o(lin. comb. of a(lin. comb. of tops (¢,)

and nonempty (¢,))),

that is, as what is usually called a “feedforward neural net
with one hidden layer.”

The main layer consists of the sub-elements g, ¢,;, ¢, and
the states x,. In the hidden layer, we compute all ¢lements
o{ ---) required by Lemma 5.1 to compute the functions f
and y. We showed that 37s+2 terms of this kind are
required. We refer to these terms as “configuration detec-
tors” as they provide the needed combinations of states and
stack readings. These terms are all that are required to com-
pute x,;' . We also keep in the hidden layer the values of g,
and ¢, to compute next-q,;.

The result is that & can be written as a composition

P=F,-F,

of two “saturated-affine” maps, ie, maps of the form
o(Ax+c) F: Q" - Q" F,: Q"> Q" for v=37s+2p+2
and n =5+ 12p.

In summary:

o The main layer consists of:

1. s neurons x,, k=1, .., 5, that represent the state of
the system unarily.

2. Foreachstack i, i=1, .., p, we have
(a) four neurons g,=g,,j=12,34,
(b) four neurons t};=t,,j=1,2,3,4
(c) four neuronse;=e,, j=1,2,3,4.

« The hidden layer consists of:

1. 375+2 neurons for configuration detecting. (The
additional two are for the case of s,.)

SIEGELMANN AND SONTAG

2. Foreachstack i, i=1, .., p we have
(a)
(b)

a neuron g’ =gq,,
a neuron 17 =1,.

6.2. Removing the Sigmoid from the Main Level

Here, we proceed by shrinking the network and showing
how to construct a network equivalent to the one above, in
which neurons in the main level compute linear combina-
tions only (and apply no o function to it). In the following
construction, we introduce a set of “noisy sub-stack”
elements {§,,, §.2, 4,3, 4.4} for each stack i=1, .., p. These
may assume not only values in [0, 1], but also negative
values. Negative values of the stacks are interpreted as the
value 0, while positive values are the true values of the stack.
As in last section, only one of these four elements may
assume a non-negative value at each time. The “noisy sub-
top” and “noisy sub-nonempty” functions applied to the
noisy sub-stack elements may also produce values outside
the range [0, 1]. ‘

To manage with only one level of ¢ functions, we need to
choose a number representation that enforces large enough
gaps between valid values of the stacks. We now abandon
the 4-Cantor set representation, using instead a slhightly
different Cantor set representation: If the network is to
simulate a p-stack machine, then our encoding is the 10p*-
Cantor set.

To motivate our new Cantor representation, we illustrate
it first with the special case p = 2. Here, the encoding is a 40-
Cantor set representation. We encode the bit 0 by ¢, =31
and 1 by e, = 39. We interpret the resulting sequence as a
number in base 40. For example, the stack w=1101 is
encoded by

g=-(39)31)(39)(39) 4.
In addition, we allow the empty stack to be represented by
any non-positive value of g, rather than 0 only. This is where

the sigmoids of the main level are being saved. The possible
ranges of a value ¢ representing the stacks are thus:

[—oc,0] empty stack

3,21 topofstackis0
[3,1] topofstackis 1.

Stack operations include push0O, which is implemented by
the operation ¢/40 + 3%; pushl, which is implemented as
q/40 + 2 ; and pop which is implemented by 40g — ¢, where
t is the top element of the stack. We can compute the top
and non-empty predicates by

top(q) := 5(40g — 38),
nonempty(q) := (40q — 30).

THE COMPUTATIONAL POWER OF NEURAL NETS

The ranges of the top values are [5,10], [—35, —30],
and [—oo, —190] for top =1, top =0, and empty stack,
respectively; and the ranges of the non-empty predicate are
[9,10],[1,2], and [oc, —30], stated with the same order.
In particular, top is interpreted as being 1 when the function
top(q) is in the range [5, 10] and 0 for [oo, —30], while the
non-empty predicate is taken as 1 in the range [1, 10] and
0 in the range [— oo, —30]. The gaps between the positive
and negative ranges are large; in particular, the domain
values which represent the value 0 in both predicates are at
least 3 times larger than the domain values which represent
the value 1. The special encoding was planned to have this
property. In the case of p stack machines, we need an
encoding for which the values of the negative domain are at
least (2p — 1) times larger than the values of the positive
domain.

For the general p-stack machine, we choose the base
b=10p%. Denote c=2p+1, b=10p% &,=(10p*—1),
g, = (10p? —4p — 1). That is, O is encoded by &, 1 is encoded
by ¢,, and the resulting sequence is interpreted in base b.
The role of ¢ will be explained below. The reading functions
“noisy sub-top” and “noisy sub-nonempty” corresponding
to the noisy sub-stack element ve{§,li=1,..,p, j=
1, .., 4} are defined as

N-top(v) :=c(bv— (g, — 1)) (20)

N-nonempty(v) :=bv — (¢, — 1). (21

We denote 7,=N-top(§,) and &;=N-nonempty(g,) for
i=1.,pj=1.,4

We summarize dynamic equations of the noisy elements
by

di =0 (nexd, + ¥yl xe=1),
k=0

?,;.'=a(c [b (next-q,»j+ zj: y{;,c(')xk—l>—(el—1)]>,
k=0

eJ:a(b (next-q,-j-k i y{-}((~)xk—1>—(ao—-1)), (22)
k

=0

where
(4 if j=1
1 £ o
—-q,+—, fj=2
. <bq'+b ity
ext-¢; =
1 £ P
—g. X fj=3
bql+b’ 1 j
\bq.,— (e, — &) {[q.] —&, if j=4,

and ¢[g,] is the true binary value of the top of stack i.

145

The ranges of values of the noisy sub-top and sub-non-
empty functions are

N-top(v)

[2p+1,4p+2] when the top is “1”
e<[~8p*—2p+1, —8p*+2] when the top is “0”
[—oo, —20p* —10p? +4p+2] for an empty stack;

N-nonempty(v)

[4p+1,4p+2] when the top is “1”
e<[1,2] when the top is “0”
[—oc, —10p2+4p+2] for an empty stack;

(Note that the values of o(N-nonempty(v)) and

o(N-top(v)) provide the exact binary top and nonempty
predicates.) The union of these ranges is

U=[—0, —8p?2+21u[l,4p+2].

The parameter c is chosen so that to assure large gaps in the
range U.

Property. For all p>2, any negative value of the func-
tions N-top and N-nonempty has an absolute value of at
least (2p — 1) times any positive value of them.

The large negative numbers operate as inhibitors. We will
see later how this property assists in constructing the
network. As for the possibility of maintaining negative
values in stack elements rather than 0, Eq. (13) is not valid
any more. That is, the elements §,, j=1, .., 4, cannot be
combined linearly to provide the real value of the stack g;.
This is also the case with the top and nonempty predicates
(see Eq. (14), (15)).

In Lemma 5.1, we proved that for any Boolean function
of the type £:{0,1}"— {0,1} and xe{0, 1}, one may
express

2f

ﬂ(dl’ ¢ d{)x= z CrO'(U,~/l)

r=1

foru=(1,d,, .., d,, x), constants ¢, and constant vectors v,.
This was applicable for the functions f,; and yj in
Eqgs. (16)-(18). Next, we prove that using the noisy sub-top
7; and noisy sub-nonempty &; elements—rather than the
binary sub-top (o(f;)) and sub-nonempty (a(é;))
ones—one may still compute the functions 8,; and y}, using
one hidden layer only.

It is not true for any function S: U'+ {0,1} and
x€{0,1} that f(-)x is computable in one hidden layer
network; this is true in particular cases only, including ours.

146

DErFINITION 6.1.
sign-invariant if

A function B(v,,..,v,) is said to be

vi=sign(e) Vi=1, ., t=p(v, - v,)=pr], ., 0v)).

LEMMA 6.2. For eacht,reN, let U, be the range
[—oo, =224+2]U[1,2t4+2]
and let

S, ,={dld=(d\", ..d\" d", ..d", .4, .. d")

€R", andVi=1, ., tat mostoneof d!, .., d] is positive}.

We denote by I the set of multi-indices (i, ..., 1,), with each
i,€{0, 1, .., r}. For each function p: S, ,— {0, 1} that is sign
invariant, there exist vectors

{v,eZ'*? iel}
and scalars

{cieZ,iel}

such that for each (d'\", .., d'"")e S, ,yand any x € {0, 1}, we
can write

ﬁ(d”), ey d‘,”)x= Z C,-U(U,‘ ';Ui)s
iel
where
M=, =1L d\",d¥, . d", x)

and we are defining d° = 0. (23)

Here the size of 1is |I|\ =(r + 1), and “-” is the dot product
inZ'*2

Proof. As f is sign-invariant, we can write f when acting
on S, as

B, d?, ., d")=B(a(d'"), o(dD), .., a(d!")).

Thus, f can be viewed as a Boolean function on
{0,1}"+ {0, 1}, and we can express it as a polynomial (see
Eq. (12)):
Bd, dP, .., d\)
=c;+c0(d) +ey0(dP)+ - 4,1 0(d)7)
+crl+20(d(l”) c"'(‘1(2”)'*'
+cpyo(d?)a(d) - o(d).

SIEGELMANN AND SONTAG

(Note that no term with more than ¢ elements of the type
a(d!") appears, as most o(d") =0, by definition of S, ,.)
Observe that for any sequence /,, ..., [, of (k < t) elements in
U, and x€ {0, 1}, one has

o(ly) o(l)x=0(l;+ - + 1, +k(2t+2)(x—1)).

This 1s due to two facts:

1. The sum of k, kK <t elements of U, is non-positive
when at least one of the elements is negative. This stems
from the property that any negative value in this range is at
least (r — 1) times larger than any positive value there.

2. Each /; is bounded by (2r + 2).

Expand the product (d}, .., d’)x, using the above obser-
vation and the fact x = o(x). This gives that

B\, . d")x
=c,o(x)+c0(d\V + (2t +2)(x = 1)+ -
+ o (A7 4+ - d + 121+ 2)(x— 1))

= Z c;o(v;-u;),

iel

for suitable ¢,’s and v,’s, where y, is defined as in (23). |

Remark 6.3. Note that in the case where the arguments
are the functions N-top and N-nonempty, the arguments
are dependent and not all (r + 1)’ terms are needed.

We conclude that the noisy sub-stack elements §,; as well
as the next state control, are computable in the one hidden
layer network from 7, and &,. We next provide the exact
network architecture.

Network Description. The network consists of two
levels. The main level consists of both s state neurons
and noisy sub-stack neurons accompanied by sub-stack
noisy-readings neurons: §}, 7}, éni=1,.,p j=1,.,4
representing respectively noisy sub-stack-elements, noisy
sub-top elements, and noisy sub-nonempty elements.

For simplicity, we first provide the update equation of the
network which simulates a 2-stack machine, and later we
generalize it to p-stack machines. Recall that for a 2-stack
machine the encoding was a 40-Cantor set representation
with g, = 31 and ¢, = 39. We use the same notations for the
functions y; as in Eq. (9); let g, represent the ith stack, and
t, represents the true (i.e., clean) value of the top of the stack.
The noisy sub-stack §,;, updates for no-operation as in
Eq. (9.1),

gt =q.+ Z PaXe— 1

k=0

THE COMPUTATIONAL POWER OF NEURAL NETS

the noisy sub-stack §,, updates for pushO as in Eq. (9.2),

3t 2

7 _q’ =t Z V.Axk_l

92=40" %0
the noisy sub-stack §,, updates for pushl as in Eq. (9.3),

~1+:q, 39

93 20 40+ Z YeXe— 1

and the noisy sub-stack §,, updates for pop as in Eq. (9.4),

=40g,— 81, — 31+ Y, yix,—L

k=0

For general p-stack machines, the bases are 10p? and the
update equations are given by

q}jf =next-¢, + i VX — 1, (24)
k<0
t=(2p+1) [1()1;2 <next-q,j+ i y{kxk_1>
k=0
—(10p2—2):|, (25)
1+ — [0p? <next -Gyt Z VX — 1)
—(10p? —4p—2), (26)

where

q:, if j=1 (not updated)
1 10p%2—4p —1
+ /4 /4

1052 % 10p2
if j=2 (push0)
next-g,=¢ 1 0+ 10p% —1
10p> % 10p?

if j=3(pushl)
10p%g, — 4pt,— (10p> —4p — 1),
if j=4 (pop),

and q; and ¢, are the exact values of the stacks and top
elements. Using Lemma 6.2, all the expressions of the type
B(-)x and p(-)x can be written as linear combinations of
terms like o (linear combinations of 7}, &1). These G, 7,
and é; constitute the main level.

The hidden layer consists of both up to (5%s+ 2) con-
figuration detectors neurons (as proved in Lemma 6.2) and
the stack and top neurons,

2
qij’ 11],

i=1,.,pj=1,.,4

147

which are updated by the equations

Z q,,],

j=1

q;" =0(g;) [

Il
0=
~
RS
—

2t =o(fl),i=1,.,pj=1,.,4, |1
i i P

6.3. One Level Network Simulates TM

Consider the above network. Remove the main level and
leave the hidden level only, while letting each neuron there
compute the information that it received beforehand from a
neuron at the main level. This can be written as a standard
network. Note that as the net consists of one level only,
no “counters” are required. This ends the proof of
Theorem 2. |}

7. INPUTS AND OUTPUTS

We now explain how to deduce Theorem 1 from
Theorem 2. (We present details in the linear-time simula-
tion case only. The real-time case is entirely analogous, but
the notations become more complicated.) We first show
how to modify a net with no inputs into one which, given
the input »,,(-), produces the encoding J[w] as a state coor-
dinate and after that emulates the original net. Later we
show how the output is decoded. As explained above, there
are two input lines: D =u, carries the data, and V'=u,
validates it. In this section we concentrate on the function &,
thus proving that Theorem 2(a) implies a linear time
simulation of a Turing machine via a network with input
and output. A similar proof, when applied to Theorem 2(b)
(while substituting 6 by d,,) implies Theorem 1.

So assume that we are given a net with no inputs,

*=o6(Ax+c), 27)
as in the conclusion of Theorem 2. Suppose that we have

already found a net
+=0’(Fy+gu1+th) (28)

(consisting of five processors) so that, if u;(-)=D_(-) and

u,(-}=V,(-), then with y(0) =0 we have
ya(-)=0---00[w]00---, ys(-)=0---011-
lewl + 1 |wl+2
that is,
S[w], If t=|w|+2,
t)y=
yalt) {0, otherwise;

0, if t<|wl+2,
1, otherwise.

J’S(l‘)={

148

Once this is done, modify the original net (27) as follows.
The new state consists of the pair (x, y), with y evolving
according to (28) and the equations for x modified in this
manner (using A4, to denote the ith row of 4 and ¢, for the
ith entry of ¢):

xt=o(d,x+c,ys+y,)

xi+ = U(Al'x + Cin), I=2, .y A

Then, starting at the initial state y = x =0, clearly x,(f)=0
fort=0, .., |w| +2 and x,(|w| + 3) = §[w], while, fori> 1,
x(ty=0forr=0, .., ol + 3.

After time |w| +3 as ys=1 and u, =u, =0, the equa-
tions for x evolve as in the original net, so x(#) in the new
net equals x(¢ — [w| — 3) in the original one for = |w| + 3.
The system (28) can be constructed as

vy =a(%} +3u +Luy,— 1)
=0o(uy)
=0(y,—u,)
=0y, +y,—uy— 1)
ys —a(h+y5)

This completes the proof of the encoding part. For the
decoding process of producing the output signal y,, it will
be sufficient to show how to build a net (of dimension 10
and with two inputs) such that, starting at the zero state and
if the input sequences are x, and x,, where x, (k) =6[w] for
some k and x,(7) =0 for 1 <k, x,(k)=1 (x,(t)e[0, 1] for
t#k, x5(t)e [0, 1] for t > k), then for processors z,, 7}, it
holds that

1,
e

- Wy k35
=10 —
0’

One can verify that this can be done by

f k+4<t<k+3+ o,
otherwise;

-

if k+4<1<k+3+ o),
otherwise.

U(4—4+—]—2-2 3)
(16- —8.-7

+
4

28 =0(z4+z,— 2~ 1)
-+
I
+
z 3

625+ z¢)

SIEGELMANN AND SONTAG

In this case the output is y = (z,4, Z5).

Remark 7.1. If one would also like to achieve a resetting
of the whole network after completing the operation, it is
possible to add the processor

-t -
o =0(zy)

and to add to each processor that is not identically zero at
this point

4z —Iw) ve{x, yz},

“ s

where
processor.

is the formerly defined operation of the

8. UNIVERSAL NETWORK
The number of neurons required to simulate a Turing

machine consisting of s states and p stacks, with a slow-
down of a factor of two in the computation, is

s+12p+3%54+2+2p.

main layer hidden layer

To estimate the number of processors required for a
“universal” processor net, we should calculate the number s
discussed above, which is the number of states in the control
unit of a two-stack universal Turing machine. Minsky
proved the existence of a universal Turing machine having
one tape with four letters and seven control states
[Min 67]. Shannon showed in [Sha56] how to control the
number of letters and states in a Turing machine. Following
his construction, we obtain a 2-letter 63-state 1-tape Turing
machine. However, we are interested in a two-stack
machine rather than one tape. Similar arguments to the
ones made by Shannon, but for two stacks, leads us to
s = 84. Applying the formula 3%s + s + 14p + 2, we conclude
that there is a universal net with 870 processors. To allow
for input and output to the network, we need an extra
16 neurons, thus having 886 in a universal machine.
(This estimate is very conservative. It would certainly be
interesting to have a better bound. The use of multi-tape
Turing machines may reduce the bound. Furthermore, it is
quite possible that with some care in the construction one
may be able to drastically reduce this estimate. One useful
tool here may be the result in [ADO91] applied to the
control unit—here we used a very inefficient simulation.)

THE COMPUTATIONAL POWER OF NEURAL NETS

9. NON-DETERMINISTIC COMPUTATION

A non-deterministic processor net is a modification of a
determinstic one, obtained by incorporating a guess input
line (%) in addition to the validation and data lines. Hence,
the dynamics map of the network is now

F:QVx{0,1}' > Q"
Similarly to Definition 2.1, we define a non-deterministic
processor network as follows.

DEFINITION 9.1. A non-deterministic a-processor net A~
with two binary inputs and a guess line is a dynamical
system having a dynamics map of the form

F(x,u, g)=o(Ax+bu, +byu, +byg+¢),

for some matrix A€ @Nx Y and four vectors b , b s b;,
1 2 k
cE @N.

A formal non-deterministic network is one that adheres
to an input—output encoding convention similar to the one
for deterministic systems, as in Section 2. For each pair of
words w, y € {0, 1} *, the input to the network is encoded as

v, A)=(V, (), D,(1),%,(1)), t=1,.,

where the input lines V', and D, are the same as described
in Section 2 and ¥y is defined as

yl’ lf t= 13 hade] lyla
Z(1) = .
1) {0, otherwise.

The output ecoding is the same as the one used for the deter-
ministic networks.

We restrict our attention to formal non-deterministic
networks that compute binary output values only, that is,
¢ (@, y) € {0, 1}, where ¢ ,(w, y) is the function computed
by a formal non-deterministic network when the input is
we{0,1}* and the guess is y€ {0, 1} *. The language L
computed by a non-deterministic formal network in time B
is

L={we{0,1}* |Taguessy,, p(w,7,)
=1, |y, €T (@) < B(|lw])}.

Note that the input w and the guess y,, do not have to have
the same length; the only requirement regarding their syn-
chronization is that w(1) and y(1) appear as an input to the
network simultaneously. The function T ,- is the amount of
time required to compute the response to a given input w;

149

and its bound, the function B, is called the computation
time. The length of the guess, |y,|, is bounded by the
function T ,-.

When restricted to the case of language recognition
rather than general function computing, Theorems 1 and 2
can be restated for the non-deterministic model in which .4~
is a non-deterministic processor net and .# is a non-deter-
ministic Turing machine. The proofs are similar and are
omitted.

ACKNOWLEDGMENT

We thank Robert Solovay for his useful comments during the early
stages of this research.

REFERENCES
[ADO91] N. Alon, A. K. Dewdney, and T. J. Ott, Efficient simulation
of finite automata by neural nets, J. Assoc. Comput. Mach.
38, No. 2 (1991), 495-514.
R. Batruni, A multilayer neural network with piecewise-
linear structure and back-propagation learning, IEEE Trans.
Neural Networks 2 (1991), 395-403.
J. Berstel and C. Reutenauer, “Rational Series and their
Languages,” Springer-Verlag, Berlin, 1988,
L. Blum, M. Shub, and S. Smale, On a theory of computation
and complexity over the real numbers: NP completeness,
recursive functions, and universal machines, Bull. Amer.
Math. Soc. 21 (1989), 1-46.
J. R. Brown, M. M. Garber, and S. F. Vanable, Artificial
neural network on a SIMD architecture, in “Proceedings,
2nd Symposium on the Frontier of Massively Parallel
Computation, Fairfax, 1988,” pp. 43-47.
A. Cleeremans, D. Servan-Schreiber, and J. McClelland,
Finite state automata and simple recurrent networks, Neural
Comput. 1, No. 3 (1989), 372.
J. L. Elman, Finding structure in time, Cog. Sci. 14 (1990),
179-211.
S. Franklin and M. Garzon, Neural computability, in
“Progress in Neural Networks” (O. M. Omidvar, Ed.),
pp. 128-144, Ablex, Norwood, NJ, 1990.
M. Garzon and S. Franklin, Neural computability, in
“Proceedings, 3rd Int. Joint Conf. Neural Networks, 1989,
Vol. 2, pp. 631-637.
C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and
Y. C. Lee, Learning and extracting finite state automata with
second-order recurrent neural networks, Neural Comput. 4,
No. 3 (1992), 393-405.
R. Hartley and H. Szu, A comparison of the computational
power of neural network models, in “Proceedings, IEEE
Conf. Neural Networks, 1987,” pp. 17-22.
J. J. Hopfield and D. W. Tank, Neural computation of
decisions in optimization problems, Biol. Cybern. 52 (1985),
141-152.
J. E. Hopcroft and J. D. Ullman, “Introduction to Automata
Theory, Languages, and Computation,” Addison-Wesley,
Reading, MA, 1979.
S. C. Kleene, Representation of events in nerve nets and finite
automata, in “Automata Studies” (C. E. Shannon and

[Bat91]

[BR8S]

[BSS89]

[BVS8]

[CSSMS89]

[Elm90]

[FG90]

[GF89]

[GMC™*92]

[HS87)

[HTS85]

[HU79]

[Kles6]

150

[Lip87]

[Min67]

[MSS91]

[MW89]

[PE74]

[Pol87]

[RTY90]

[SCLG9Y1]

SIEGELMANN AND SONTAG

J. McCarthy, Ed.), pp.3-41, Princeton Univ. Press,
Princeton, NJ, 1956.

R. P. Lippmann, An introduction to computing with neural
nets, [EEE Acoust. Speech Signal Process. Mag. April (1987),
4-22.

M. L. Minsky, “Computation: Finite and Infinite Machines,”
Prentice~-Hall, Engelwood Cliffs, NJ 1967.

W. Maass, G. Schnitger, and E. D. Sontag, On the computa-
tional power of sigmoid versus boolean threshold circuits,
in “Proceedings. 32nd Annu. Sympos. on Foundations of
Computer Science, 1991.” pp. 767-776.

C. M. Marcus and R. M. Westervelt, Dynamics of iterated-
map neural networks, Phys. Rev. Ser. A 40 (1989),
3355-3364.

M. Pour-El, Abstract computability and its relation to the
general purpose analog computer, Trans. Amer. Math Soc.
290 (1974), 1-29.

J. B. Pollack, “On Connectionist Models of Natural
Language Processing,” Ph.D. thesis, Computer Science
Dept, Univ. of lllinois, Urbana, 1987.

J. H. Reif, J. D. Tygar, and A. Yoshid, The computability and
complexity of optical beam tracing, in “Proceedings, 31st
Annu. Sympos. on Foundations of Computer Science, 1990,
pp. 106-144.

G. Z. Sun, H. H. Chen, Y. C. Lee, and C. L. Giles, Turing

equivalence of neural networks with second-order connec-

[Shas6]

[SonS0]

[Son92]

[SS94]

[WM43]

[Wol91]

[WZ89]

(Z2ZZ92]

tion weights, in “Proceedings International Joint Conference
on Neural Networks, IEEE, 1991.”

C. E. Shannon, A universal turing machine with two internal
states, in “Automata Studies” (C. E. Shannon and
J. McCarthy, Eds.), pp. 156-165, Princeton Univ. Press,
Princeton, NJ, 1956.

E. D. Sontag, “Mathematical Control Theory: Deterministic
Finite Dimensional Systems,” Springer-Verlag, New York,
1990.

E. D. Sontag, Feedforward nets for interpolation and
classification, J. Comput. System. Sci. 45 (1992), 20-48.

H. T. Siegelmann and E. D. Sontag, Analog computation
via neural networks, Theoret. Comput. Sci. 131 (1994},
331-360.

W. Pitts and W. S. McCulloch, A logical calculus of ideas
immanent in nervous activity, Bull. Math. Biophys. 5 (1943),
115-133.

D. Wolpert, “A Computationally Universal Field Computer
Which Is Purely Linear,” Technical Report LA-UR-91-2937,
Los Alamos National Laboratory, 1991.

R. J. Williams and D. Zipser, A learning algorithm for
continually running fully recurrent neural networks, Neural
Comput. 1, No. 2 (1989).

B. Zhang, L. Zhang, and H. Zhang. A quantitative analysis
of the behavior of the pln network, Neural Networks 5
(1992). 639-661.

