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Abstract. An equivalence is shown between realizability of input/output (i/o) operators by
rational control systems and high-order algebraic differential equations for i/o pairs. This gen-
eralizes, to nonlinear systems, the equivalence between autoregressive representations and finite-
dimensional linear realizability.
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1. Introduction. In this paper we prove an equivalence between realizability of
input/output (i/o) operators by rational control systems and the existence of high-
order algebraic differential equations relating derivatives of inputs and outputs.

In many experimental situations involving systems, it is often the case that one
can model system behavior through differential equations, which are referred to as i/o
equations in this work, of the type

(1)

where u(-) and y(.) are the input and output signals, respectively, and E is a polyno-
mial. An i/o operator F: u(.) -, y(.) is said to satisfy (1) if the equation holds for
each sufficiently differentiable input u and the corresponding output y F[u] of F.
(Precise definitions are given later.)

The functional relation E is usually estimated, for instance, through least squares
techniques, if a parametric general form (e.g., polynomials of fixed degree) is chosen.
For example, in linear systems theory, we often deal with degree-one polynomials E,
below:

y(k)(t) aly(t) +... + ay(-l)(t) + blu(t) +... + bku(-l)(t)

(or their frequency-domain equivalent, transfer functions; the difference equation ana-

logue is sometimes called an "autoregressive moving average" representation). In the
linear case, such representations form the basis of much of modern systems analysis
and identification theory.

State-space formalisms are more popular than i/o equations in nonlinear control,
however. There, we assume that inputs and outputs are related by a system of first-
order differential equations

(3) x’(t) f(x(t)) + G(x(t))u(t) y(t) h(x(t)),

where the state x(t) is now a vector, and no derivatives of controls are allowed.
These descriptions are central to the modern nonlinear control theory, as they permit
the application of techniques from differential equations, dynamical systems, and
optimization theory. Thus a basic question is that of deciding when a given i/o
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1127

operator admits a representation of this form. This is the area of realization theory,
which is closely related, especially when stochastic effects are included, to systems
identification. Roughly speaking, if such a state space description does exist for a
given i/o operator, then we say that the i/o operator is realizable. More precisely,
we are interested in realizations in which the entries of f and G, as well as the
function h, can be expressed in terms of rational functions of the state, but, due to
the technical problems that arise in the definition because of possible poles of these
rational functions, we give the precise definition in terms of "singular polynomial
systems," and we also study realizability by (nonsingular) polynomial systems.

We know that an equation such as (2) can be reduced by adding state variables for
enough derivatives of the output y to a system (3) of first-order equations, with f(x)
linear and G(x) constant, i.e., a linear finite-dimensional system. In frequency-domain
terms, rationality of the transfer function is equivalent to realizability. (For references
on the linear theory, see, e.g., [14], [23], and [32].) One of the methods for obtaining a
linear realization from a given linear i/o equation relies on Lord Kelvin’s principle for
solving differential equations by means of mechanical analogue computers (cf. [14]).
The principle, which was suggested 100 years ago, provided a way for simulating a
system without using differentiators.

For nonlinear systems, this reduction presents a far harder problem, one that is,
to a great extent, unsolved. The problem is basically that of, in some sense, replacing
a nontrivial equation (1) by a system of first-order equations (3), which does not
involve derivatives of the inputs. A number of results were already available about
the relation between (1) and (3); see, for instance, [4], [12], or [26]. It is easy to show,
by elementary arguments involving finite transcendence degree, that any i/o operator
realizable by a rational state space system satisfies some i/o equation of type (1),
with E a polynomial. In [6] it was remarked--as a consequence of theorems from
differential algebra--that to characterize the i/o behavior of a state space system
uniquely, we must add inequality constraints to (1). In [18] and [27] it was shown
that, under some constant rank conditions, the outputs of an observable smooth state
space system can be described by an equation of type (1) for which E is a smooth
function, and local i/o equations were shown to exist, for generic initial states of (3)
in [3].

1.1. Our approach. The discrete-time work reported in [20] and [21] provided
one approach to relating these two types of representations--with difference equa-
tions appearing instead--based on the idea of dealing with existence of realizations
separately from the question of "wellposedness" of the equation (in the sense to be
described). This work has been developed further, and it was, for example, used as a
basis of identification algorithms by other authors; see, for instance, [15] and [5]. (The
former reference shows also how to include stochastic effects.) These results have re-
cently been extended to continuous-time for the very special case of bilinear systems:
A theorem showed that realizability by such systems is equivalent to the existence of
an E of a special form, namely, affine on y (.see [22]). However, the techniques in [22]
were linear-algebraic and hence not powerful enough to handle the extension of [21]
to the general nonlinear case. The present work completes the development of the
extension of the main realizability result in [21] to continuous-time.

The separation into "wellposedness" and realizability can be illustrated with the
simple example u(t)y’(t) 1. This can never be satisfied by all the i/o pairs cor-
responding to a state space system, as remarked in [22]. Moreover, it cannot even
be satisfied by any "input/output map" of the type that we consider, realizable or
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1128 YUAN WANG AND EDUARDO D. SONTAG

not. Indeed, our main result shows that if the equation is well posed, in the sense
that it is an equation satisfied by all i/o pairs corresponding to what we call a Fliess
operator--i.e., one described by a convergent generating series--and if E is a poly-
nomial, then it is always realizable by a singular polynomial system, or a rational
system with possible poles. (Singular systems appear naturally in control theory, for
instance, in robotics; see [17] for many examples.) In the special case when (1) is
recursive--i.e., the coefficient of the highest derivative of y in (1) does not depend
on the lower derivatives of y--our construction provides a polynomial realization (no
poles).

Our formalism is based on the generating series suggested by Fliess in the late
1970s, who was, in turn, motivated by Chen’s work on power series solutions of
differential equations. The i/o operators induced by convergent generating series form
a very general class of causal operators, capable of representing a variety of nonlinear
systems. We call them "Fliess operators." For instance, any i/o operator induced by
an initialized analytic state space system affine in controls can be described in this
manner. In [29], we develop the basic analytic properties of Fliess operators, and
results from there are freely used here.

The proofs are based on a careful analysis of the concept of observation space,
introduced in [16] (and [21] for discrete-time), developed further in [11], and later
rediscovered by many authors. One of the central technical results relates two different
definitions of this space: one in terms of smooth controls, and another in terms of
piecewise constant ones. These two definitions are seen to coincide. One of them
immediately relates to i/o equations, while the other is related to realizability through
the notion of observation algebras and observation fields. The latter are the analogues
of the corresponding discrete-time concepts studied in [21]. For differential equations,
they were first employed in [1] and [2]; the results there related finiteness properties
of the various algebraic objects to realizability, in strict analogy to the relations that
hold in discrete time [21].

In addition to single operators, it is also natural to study families Of i/o maps,
defined by a family of convergent generating series. To study a single i/o map is
natural as a formal description of a initialized black box, but, in general, a system
may induce more than one i/o map. For example, a system described by an ordinary
differential equation on a manifold may induce infinitely many i/o maps, each of
them corresponding to some initial state. We should study all the i/o maps induced
by the system simultaneously rather than individually, unless a fixed initial state is
of particular interest. This leads to the concept of families of i/o maps. One question
arises naturally: When can a family of i/o maps be realized by one state space system;
i.e., when can all the members of the family be realized by some singular polynomial
system in such a way that each member of the family is associated to some initial
state of the system? We prove that a family of i/o maps is realizable in this sense if
and only if all the members of the family satisfy a common i/o equation.

The paper is organized as follows. After introducing an algebraic structure on se-

ries, the shuffle product, we consider observation spaces. Then we study i/o equations
satisfied by i/o operators, showing that the existence of an i/o equation implies that
the observation field is a finitely generated field extension of IR. In the next section,
realizability by polynomial systems and singular polynomial systems is considered;
the result there is that realizability by singular polynomial systems is guaranteed by
the condition that the observation field is a finitely generated extension of IR. The
approach pursued there is to use the generators of the field as state variables and use

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1129

the equalities that hold among the generators to construct the needed vector fields. In
the main section, based on the previous results, we establish the equivalence between
equations and realizability. We also show there that a special kind of equations, recur-
sive i/o equations, lead to realization by polynomial systems. However, as opposed to
the general case, the converse of this fact is not true in general, and a counterexample
is provided to illustrate the fact that realizability by a polynomial system may not
lead to a recursive i/o equation. Finally, we extend our main result to families of i/o
operators.

This paper is heavily algebraic. All analytic properties needed are quoted from
[28] and [29] and are not proved here. The latter paper also shows how, using ana-
lytic function theory, as well as differential-geometric nonlinear realization tools, an
analogous theory can be developed for local realizability provided that an equation
with E analytic (not necessarily polynomial) exist for the given operator.

2. Preliminaries. Let m be a fixed integer and consider the "alphabet" set

P= {rio, ril, "", rim}

and P*, the free monoid generated by P, where the neutral element of P* is the empty
word, denoted by 1, and the product is concatenation. Let

for each k >_ 0. We define T’ to be the ]R-algebra generated by P*, i.e., the set of
all polynomials in the variables rii’s. A power series in the noncommutative variables
rio, ril,’", ri, is a formal power series

where ri riilrii....rii, if ii2...it, and (c, ri) E ]R for each multi-index .
Note that c is a polynomial if and only if there are only finitely many (c, ri)’s that
are nonzero. A power series is nothing more than a mapping from I* to ]R; as we
see later, however, the algebraic structures suggested by the series formalism are very
important. We use S to denote the set of all power series (over a fixed but arbitrary
alphabet P).

For c, d E and " ]R, c + d is the series defined as follows:

With these operations, 8 forms a vector space over ]R. In addition, we can introduce
an algebra structure on by defining the shuffle product on 8. First, we define the
shuffle product on words

inductively on length in the following way:

1,,,ri-riml-ri for any riP,

(5)
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1130 YUAN WANG AND EDUARDO D. SONTAG

It can be proved by induction that an equivalent way to define the shuffle product is
to replace (5) by the following:

rhrli,,,r/j (rh,,,//j)/i + (rhr/i,,,r/)r/j for any h,r/ e P*,r/i,/j e P.

Then we extend the shuffle product to power series in the following way. For

we define

(7)

With the operations "+" and ",,," defined as above, S forms a commutative
IR-algebra.

Remark 2.1. We can also define a comultiplication M $ -- 8 and a counit
over S. First, for z E P*, define

M(z) (Zl, z2),
Zl Z2=Z

0 if z # 1,
1 ifz-- 1.

Then extend M and e to S. It can be shown that ,S forms a Hopf algebra with the
antipode a defined by

for any s and 1 n2"" "r/i E P* (cf. [25]). Though 8 possesses both an algebra
structure and a coalgebra structure, in this work, however, only the algebra structure
of S is studied.

LEMMA 2.2. The algebra 8 is an integral domain.

Proof. First, we order the basis elements (il ,..., ik of P* lexicographically
with respect to k, il, i2,"’, ik. Then take two nonzero series c and d and let

zl=il...i, and z2=?j,"’r/jn

be the smallest basis element of P* appearing in c and d, respectively, with nonzero
coefficients. Let w r/l ...r/l.+ be the smallest basis elements of P* appearing in

zl z2. Then the coefficient of w in c,,, d is

(c,,, d, w) (c, rh)(d, r/)( ’q, w).

Using the minimality property of w, Zl, z2, we obatin that

(c,,,d, w)= (c, zl)(d, z2)(z,,,z2,

which is nonzero, since (c, z), (d, z2), (z ,,,z2, w) are all nonzero.
The method used in the above proof is similar to the method used in [19], where

the author proved that the ring of polynomials in %, ,..-, ?m is an integral domain.

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1131

In [19] the author used the greatest basis elements (the "degree") for polynomials,
while here we use the smallest basis elements (the "order") for power series. Alter-
natively, we could prove this elementary fact by establishing an isomorphism with a

ring of power series in (infinitely many) commuting variables, along the lines of the
discussion in pp. 46-47 in [21].

To define operators associated to series, we need a notion of convergence. We
follow [8], [13], and [29] and say that c is convergent if there exist some nonnegative
real numbers K and M so that the estimate

(8) I(c, 7)1 <- KMkk!
holds for each multi-index E Ik and each k _> 0. As in [29], we denote by//T the set
of all essentially bounded measurable functions u [0, T] - lR", for each fixed T > 0.
It is convenient to think of b/T as a space with the L1 norm (llulll :- max{llull
1 _< i _< m}), but we also, at times, use the norm u max{llul]o 1 _< _< m}.

By induction of l, we define, for each input u E b/T, and each I,
(9) V 1, V1...,.+1 [u](t) u (s)V2...z+ (s) ds.

Here u denotes the ith coordinate of u, if 1, 2,..., m, and we make the convention

uo(t) =- 1. Using these notations, to each convergent power series c in 70, ,’", /m,
we can associate the i/o operator

(10)

This is well defined for any T admissible for c, i.e, T < (Mm +M)-; see for [8], [13],
and [29] for details (series (10) converges uniformly and absolutely for all t e [0, T]
and all those u e b/T such that Ilull < 1; we denote T {u e//T: IlUlI < 1}, the
set of all such controls).

The correspondence between series and operators is one-to-one in the following
sense. Assume that c and d are two convergent series and Fc coincides with Fd on

])T for some T > 0; then the two power series c and d coincide. See [30], [29] for these
facts as well as further properties of generating series and their associated operators.

Assume that c and d are two convergent power series and T is admissible for both
c and d; then T is admissible for both c + d and c,,, d (cf. [28]). Now for any positive
integer n, denote

C
n

CWCm mC,

and co 1. In [7] it was shown that, for any polynomial p E ]R[X, X2,’", Zs] and
any s convergent power series cl,..., c8,

(11) p (Fc, F2,..., F8) Fp(,c,...,8);

that is, the assignment c H Fc is a homomorphism from the set of all convergent
series, seen as an algebra under the shuffle product, into the set of i/o operators (more
precisely, identifying operators with their restrictions to smaller time intervals). By
the previous discussion, this homomorphism is one-to-one.

Assume that c is a convergent series and pick up a T admissible for c. We show in
[29] that F is a continuous operator from VT to C[0, T] with respect to the L norm
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1132 YUAN WANG AND EDUARDO D. SONTAG

in 12T and the CO norm in C[0, T]. Furthermore, Fc maps functions of class Ck- to
functions of class Ck, for all k 1, 2,..., and analytic functions to analytic functions.
See also [10] for the proof of the following formula:

(12)
d m

-Fc[ul(t) Fnjl[u](t + E uj(t)Fn21[u](t),
j=l

where (z-lc, rh) := (c, zy) is defined for each z e P* and each e P*. (It is known,
cf. [22], that z-lc is convergent if c is, and, in fact, the same T remains admissible.)

3. Observation space. In realization theory and many other areas of nonlinear
control, the concept of observation space plays a central role. Observation spaces
were first defined in [16] and [11] for continuous-time systems and, in [21], for discrete-
time. The solution of many problems for systems, such as the the "bilinear immersion"
problem treated in [11], are characterized by properties of these spaces. We may define
observation spaces in two very different ways, as discussed in this section. Roughly,
one possibility is to take the functions corresponding to derivatives with respect to
switching times in piecewise constant controls, and the other is to take high-order
derivatives at the final time, if smooth controls are used. We show, however, that
both definitions lead to the same concept, and this equivalence provides one of the
main technical tools that we use to establish the main result.

For each power series c, we define the first type of observation space ’1 as the
linear subspace of the set of all power series spanned by all the elements of the form
z-lc, i.e.,

(13) ’1(c) span{z-lc z e P*}.

Then F1 (c) consists of convergent series if c is a convergent series (cf. [22]).
For a convergent power series c, the elements of ’1(c) are closely related to the

derivatives of F[u] with respect to switching times in piecewise constant controls, in
the sense to be made precise next.

For any # E ]Rm, we define P" F - F, where F is the set of all germs of i/o
operators induced by convergent generating series, in the following way:

where #,.v denotes the concatenated control

u(a) if 0 _< a _< t,(u#tv)(a) v(a-t) if t<a_<T

for any u and v, and co’(T) #, a constant control. Note that (P" o Fc)[U] is defined if
u is in the domain of F. In fact, by formula (12), we have the following easy relation:

m

pL 0 FC FTIC + E PjFj1C’
j=l

for any #- (#l’#2"’"#m) E lRm"
For a convergent power series c, let 1 (C) be the smallest subspace of operators

that contains Fc and that is invariant under P for any # ]Rm. By Lemma 2.1 in

[30], 1 (c) is isomorphic to ’ (c).
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1133

To introduce the second type of observation space, we must introduce more no-
tations. Consider, for each q _> 1, the following set of 2 q matrices:

(14)
il i2 iq

i8,j8 E , 1 <_ i8 <_ m, j > 0, (1,0) < (il,jl) <"" <_ (iq,jq)}

where "<" is the lexicographic order on the set ((i, j)" i, j e Z). For each element

(jl j2 jq)il i2 iq

in Sq and each n > q + jr, we define

(15) ’"q 7](k) X(Jl) X(J2) )1Fil...iq (n) 7]il 7] 7]qX( X=l’
where k n-q- j. The evaluation is interpreted as follows. First, introduce a
new variable X, then perform all shuffles, and finally delete X from the result. Note
that (15) is different from 7]il 7]i. 7]iq; for example,

7]0 7] X x 710711 "nt- 27] 7]0,

while

7]0 w 711 710711 - 711710.

For any word w P* and each series c S, we define Co(w) w-lc, and, more
generally, for any polynomial d -.(d, 7]/7], we let

Now let Xj (Xu,... Xmj) be m indeterminates over JR, for j >_ O. For any n > O,
let

(16)
n

1
Cn(Xo’’’’’Xn-1) ’/)c(7]0(n)) - EE 81, c Fil...i (n) Xiljl "’’Xiqjq

q=l
8p!

where the second sum is taken over the set of all those

(jl j2 jq) Sq
il i2 iq

such that j + q <_ n, and where s,..., Sp are integers, so that

jl j2
il i2

Jq. o1 o1 012 (2 Olp (p
Zq ]

81 82 8p

and (o/1,1) < (C2,2) <--" < (Cp,p). For n 0, we simply define co c. It was
shown in [30] that, for each integer n and every u I;T such that T is admissible for
c, we have that

(17)
n

dtn
--Fc[u](t) Fc(u(t),...,u-l(t))[u](t).
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1134 YUAN WANG AND EDUARDO D. SONTAG

Hence, for any #0, "", tn-1 E ]pm,

(18)
n

dTn -=0+
gc[u#tw,](t - T) gcn(tto,...,ttn_l )[t](t),

where w.(t) #o + #1 t +"" + ts-1 (ts-1/(8 1)!).
The second type of observation space associated to c, $’2 (c), is defined as follows:

(19) 9C2(c) span {cn(tO, tn_1)" t e ]Ptm 0 < ( n 1 n > 0}

Let G2(c) be the subspace of operators spanned by Fcr(ttO#l...#n_l for all n and

all choices of #0, "", #n-l" Then -2(c) is isomorphic to G2(c) (cf. [30]).
Clearly, for any power series c, ’2(c) c_ 9r1(c), since, for each integer n,

Cn (Z0, Zn_l) is a polynomial on the Xi’s with coefficients belonging to $’1(c). A
less trivial conclusion is that ’1(c) C_ $’2(c). The following is an outline of the proof
of this conclusion; for the detailed proof, refer to [30].

For any fixed positive integers k and il, i2,.-., iq such that

let

1 _< _< i2 _<-.. _< iq _< m,

Sk(il,i2,’",iq)-- {a(O,’",O, il,i2,’",iq)
k

where n k + q and Sn is the permutation group on a set of n elements. Let

rk(il,i2,’",iq) {W--?]ll?]l "’’?]In" (/1,’’’,/n) sk(il,i2,’’’,iq)}
and order the elements of Tk(i,i2,...,iq) as W1, W2, ...,Wr. Then, for any
jl, jq given,

"FJI"’Jq FJl""Jq (jl +"" + jq + k + q)il...iq (k) il...iq

is a linear combination of the elements in Tk(il, i2,..., iq). We now define

Ak(i iq) T4l’’’jq }t "iq(k)" Js>-O’ 1 <_s<_q

Our conclusion can be proved by showing that every element of Tk(il, i2,..., iq)
is a linear combination of elements in Ak(il, i2,’’’, iq) for any i, ..., iq and k given.

For each fixed k and q and fixed il,i2,...,iq, we order the elements of
Ak(il,i2,’",iq) as Q1, Q2, Then, for each Qi, there exist aij,j 1,.-.,r such
that

j=l

Let A be the matrix of r columns and infinitely many rows whose (i, j)th entry is aij;
i.e., A (aij).
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1135

We claim that A is of full column rank in the sense that there is no nonzero vector
v E ]Rr such that Av 0. Suppose that there is some v 0 such that Av 0. Let a
be the polynomial defined by

a vW + vW + + vW,

where vi is the ith component of v. Then, for any w E P*,

(w-ia, ) # 0

if and only if w Wi for some i. Hence

if k, p t q, or st it for some t. In the other words, (20) holds if

T...,j jp(k) Ak(il, i2,""", iq)

For Qi Ak(i, i2,"" ,iq), we have that

j=l j=l j=l

By sumption, however, aijj 0 for any i. Therefore (20) holds for any choice
of Sl,...,sp, jl, "", jp, and any 1. It then follows directly from the definition of
a(X0,..., X_I)that

.1, 0

for any n and any value of 0,’",-, which, by (17), implies that

d
.1,

for any analytic control . Thus F[] 0 for any analytic control. It then follows
from the continuity of F and the density property of analytic controls in 1 controls
that F 0, which in turn implies that a 0, a contradiction to the assumption that
v 0. Hence A is of full column rank.

It is easy to see that there exists some submatrix A1 of A with finitely many rows
such that A is full column rank, which implies that each Wi is a linear combination
of finitely maw Q’s.

The above discussion shows the following conclusion.
TOaM a.1. For power series c, (c) (c).
4. /o equagons. In this section, we study high-order differential equations sat-

isfied by inputs and outputs arising from i/o operators. To perform this study, we find
it useful to introduce the algebraic concepts of observation algebra and observation
field corresponding to any given series c.

The obserwtion Mgebr (c) is defined the N-algebra generated by the ele-
ments of (c). By Lemma 2.2, (c) is an integral domain; so its quotient field is well
defined; we define the observation field of c as this quotient field. We see later that
elementary properties of these algebraic objects serve to characterize the existence of
i/o equations.
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1136 YUAN WANG AND EDUARDO D. SONTAG

4.1. Definitions. By an algebraic i/o equation of order k, we mean an equation
of the type

(22)

where

( ()(t)) 0,u(k)(t),y(t),..P u(t),.

P E lit[So,..., Sk, Lo,’.., Lk]
is a polynomial nontrivial in Lk, and S denotes the set of rn variables (Sli,’", Smi).

DEFINITION 4.1. We say that a polynomial P as above is
(a) rational when

(23)
P(So, Sk, Lo, Lk

Po(So,’",Sk-,Lo,’",Lk-1) Lk + PI(SO,’",Sk,Lo,’",Lk-1);

(b) recursive when

(24)
P(S0,’",Sk,L0,’",Lk)

P0(S0,""", Sk-1) Lk + PI(So,’", Sk, Lo,"’, Lk-1).

DEFINITION 4.2. Assume that c is a convergent power series. We say that the i/o
operator Fc satisfies an algebraic i/o equation (22) if (22) holds for every possible Ck

i/o pair

((t), (t)).= ((t), [u](t))
of Fc for all t E [0, T] and for any T admissible for c. In that case, (22) is called an

i/o equation of
An i/o operator F satisfies a rational i/o equation if P can be chosen rational,

so that P0 0 is not an i/o equation of F; in another words, there exists some i/o
pair (u, y) of F such that

(25) Po((t), u’(t), ...,u()(t), u(t), ’(t), ...,u(-)(t)) # 0

for some t. An i/o operator Fc satisfies a recursive equation if there is some such
equation for which P is recursive.

The following lemma was proved in [28]; a detailed proof in the more general
analytic case is given in [29].

LEMMA 4.3. F satisfies the i/o equation (22) if and only if

(26) P(#o,...,#k,F,Fc(o),...,F%(o,...,k_)) --0

for any #0, #1 ,’", #k ]Rm"

4.2. Properties of i/o equations. We now introduce the field

K IR({Sj, i= 1,-..,m,j >_ 1})
obtained by adjoining the indeterminates Sij to IR. Let .’K, ,AK be the K-space and
K-algebra generated by Cn(SO,"’,Sn-1) for all n. Let QK be the quotient field of
Jtg. Note that the field g is defined, since ,4K is an integral domain. The reason
for this is essentially because Jtg can be naturally identified to the tensor product
A2(R)K.

LEMMA 4.4. Let F be the i/o operator corresponding to the series c. The fol-
lowing properties then hold:
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1137

(a) If Fc satisfies a recursive i/o equation, then jiK is a finitely generated K-
algebra.

(b) If Fc satisfies an algebraic i/o equation, then g i8 a finitely generated field
extension of K.

Proof. Consider jg, the K-algebra generated by Fc(So,...,sn_l) for all n. The
assignment : c,(#o,... #n-l) H Fcn(t,o,...,t,_l is an isomorphism from Jt2(c) onto

J2(c), the ]R-algebra generated by Fc(,o,...,t,_l). Thus induces an isomorphism
from jtg onto fi.g. Consequently, g, the quotient field of g, is isomorphic to QK.
We prove conclusion (b) by showing that g is a finitely generated field extension of
K, when F satisfies some algebraic equation.

It is easy to show, by taking the derivative with respect to time t on both sides
of an algebraic i/o equation, that existence of an algebraic i/o equation for F implies
that F also satisfies a rational i/o equation. Thus

Po(u(t), ..., u(k)(t), y(t), ..., y(k-)(t)) y(k)(t)
(27) -P (u(t), ..., u(k) (t), y(t), ..., y(k-)(t)),
for some polynomials P0 and P1, where P0 0 is not an i/o equation of F. (See
[28] for details, as well as [29] for an analogous result for analytic i/o equations.) By
Lemma 4.3, we know that

Po (So,.. ",Sk-l,Fc,’"
=-P1 (So,’",Sk,

Note that, since P0 0 is not an i/o equation of F, there must exist some vector

(#0,""", #k-) such that

which, in turn, implies that

Po (So,..., # o
as a polynomial in So,’", Sk-. It follows from this discussion that

Fck(So, .,Sk_) E Kk-l,
where g denotes the field obtained by adjoining F, F(So), "", Fc(So,...,s_) to K.

Taking the derivative with respect to t on both sides of (27), we get that

(28)
Po(u(t), "", u(k)(t), y(t), "", y(k-1)(t)) y(k+l)(t)

P2(u(t),’", U(k+r)(t), y(t),’’’, y(k+r-1)(t)),
where P2 is some polynomial. By using the same argument as before, we show that

Fck+(So,...,S) E Kk C k-l"^K
By induction, we show that K LI" Since /--1 is a finitely generated field exten-
sion of K--the generators are the coefficients of Sij 1,..., rn; j 0, 1,---, k 2,
in F,F ,..., F_--we get the conclusion that QK is also a finitely generated field
extension of K. This completes the proof of (b); property (a) is proved in a similar
fashion. [:]

LEMMA 4.5. Let F be the i/o operator corresponding to the series c. The fol-
lowing properties then hold:
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1138 YUAN WANG AND EDUARDO D. SONTAG

(a) If AI( is a finitely generated K-algebra, then A2(c) is a finitely generated
]R-algebra;

(b) If g is a finitely generated field extension of K, then 2(c) is a finitely
generated field extension of ]R.

Proof. Again, we only provide the proof for part (b). Part (a) can be proved
similarly.

Assume that g is & finitely generated field extension of K. Then there exists
some n > 0, so that, for any r > 0, there exist two polynomials Q0, Q1 over K with

such that

Qo (120,121(1),""", 12n--1(0,""", n--2)) 0

Qo (co, c(So),"’, Cn--l(0,""", n--1) Cn+r(So,’", nTr--1)
Q1 (Co, Cl (S0),""", 12n--1 (SO, -1,""", qn--2)).

After clearing denominators and eliminating extra ttj ’s, we have an equation

Po (So,"", Sn+r-1,120,121(S0),""", 12n-1(S0,"" Sn-2)) 12n-{-r(S0,""" ,Snq-r-1)
Pl (So,..., Snwr-1,120, t21 (S0),""", 12n-1 (S0,""", Sn-2))

with

Po (So,’", Sn-{-r-1,120,121 (SO),’’’, 12n-1 (SO,’’’, Sn-2)) 0,

which implies that there exists some (#o,’", #n+r-,) so that

or, equivalently,

Po (lto," ,ltn+r_l ,Fc, Fci(#o)," ,Fcn_l(#o,...,#n_2)) 7 0.

This is an equation involving operators. It means that there exists some u E
where T is admissible to c, and t such that

Po (to, ,nTr_l,Fc[t](t), ,Fcn_l(#o,...,,n_2)[tJ(t)) O.

It follows from the fact that

P0 (t0,""" "ant_r_i, Fc[’tt](t), Fcn_l(#o,...,gn_2)[ul(t))
is a polynomial in #0, "", #n+r-1; the set

1 "’--{,n-t-r--1 Po (t(nnr-l),Fc[l,](),’",Fcn_l(#n-2)[u]()) O)
is dense in ]Rm(n+r), where tt (tt0, ttl) for any I. Define- {tnnur-l Po (#n+r-, co,’", 12n-l(tn-2)) 0}.
Then 1

__
’" Thus ft is dense in ]Rn+r.
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1139

Clearly, if #+r-1 E t, then Fcn+(,+-l) E T-I, the field obtained by adjoining
all the coefficients of Xj in cp(X1,..., Xp-1) for p <_ n- 1 to ]R. Applying Lemma
12.11 in [21], we see that Fc+(t,+-i Tn-1 for any #n+r-1 lRn+. Since r can
be chosen arbitrarily, it follows that Q2(c) Tn-1, from which it follows that Q2(c)
is a finitely generated field extension of lR.

Combining Lemmas 4.4 and 4.5, we get the main result of this section shown
below.

THEOREM 4.6. Let Fc be the i/o operator corresponding to the series c. The
following properties then hold:

(a) If F satisfies a recursive i/o equation, then Jt2(c) is a finitely generated
JR-algebra;

(b) If F satisfies an algebraic i/o equation, then Q2(c) is a finitely generated
field extension of lR.

Remark 4.7. Generally, a field extension over lR with finite transcendence degree
is not necessarily a finitely generated field extension of lR. By using Theorem 4.6,
however, we can show that if the transcendence degree of Q2(c) is finite, then it follows
that Q2(c) is a finitely generated field extension of IR. The reasoning is as follows.
Assume that trdegt Q2(c) < oc, where trdegc Q denotes the transcendence degree
of Q over/E for any fields Q and K:. Now let n be the set of all the coefficients of
c(S0,..., Sn-1), seen as a polynomial in So,’", Sn-1 over S, the ring of all series.
Let Un n. Then Q2(c) ]R(). On the other hand, Qg g(). Therefore
trdeg Q2(c) < oc implies that

(29) trdegg g <

If (29) holds, then there exists some n such that

C, C1(_0) ’’’, Cn(O,’’’,Sn_l)

are algebraically dependent over K; i.e., there exists some polynomial P over K such
that

P(c, Cl(S0),..., Cn(S0,’",Sn-1)) 0.

After clearing denominators and eliminating the extra Sij, we get the following equa-
tion:

(30) Q(So,...,Sk, C, cl(S0), ..., Cn(SO,’",Sn-1))-O.

Note that if a convergent series c satisfies (30), then (30) is an algebraic i/o
equation of F, which, by Theorem 4.6, implies that Q2(c) is a finitely generated field
extension of ]R.

5. Realizability. We wish to study realization by "rational" systems, such as
those studied in Bartosiewicz [1]. However, the question of possible poles in the right-
hand side of the equation is very delicate, and it seems better, instead, to study a

"singular" polynomial model, as we do next.
Just as i/o equations prove to be related to the structure of Jt2(c) and Q2(c),

realizability forces the study of the observation algebra and observation field corre-
sponding to the other type of observation space $-1(c). For a given power series c,
we associate with it an observation algebra 41 (c) defined as the ]R-algebra generated
by the elements of $’1 (c), and associate with it an observation field Ql(C) defined
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1140 YUAN WANG AND EDUARDO D. SONTAG

as the quotient field of J[1 (c). Again, we know that Q1 (c) is defined, since Jr1 (c) is
an integral domain. The result is, because of previous results, that Jr1 Jr2 and
Q1 Q2 for every c, but the facts in this section do not depend on the equality.
They are more readily understood in terms of ,41 and Q1.

DEFINITION 5.1. Suppose that c is a convergent series and T is admissible for
c. The i/o operator Fc is realizable by a singular polynomial state-space system

E ((go,’" ,gin), xo, q, h)

if there exists an integer n, some x0 E IRn, polynomial vector fields go, gl, "", g, on
]Rn, and two polynomial functions q, h lRn --, IR such that the following properties
hold:

(a) For each u E )T and y-- Fc[u], there is some absolutely continuous function
x(.) defined on [0, T] and satisfying x(0) x0 such that

m

q(x(t))x’(t) go(x(t)) + E ui(t)gi(x(t))
i--1

for almost all t e [0, T], and y(t) h(x(t)) for all t e [0, T].
(b) The solution x(.) in part (a) is of class C if u is of class C, and x(.) is of

class CTM if u is of class Ck.
(c) There holds the following regularity condition: There exists some set f of

analytic inputs that is dense in C[0, T] (with respect to the Whitney topology)
such that for any u ])T V1 gtm, there exists some C solution x(.) as in (a), so that
q(x(.)) # O.

If Fc can be realized by a singular polynomial system with q(x) 1, we say that

Fc is realizable by a polynomial state-space system.
It can be seen from Definition 5.1 that, if q(x) # 0 for any x lRn, then F is

realizable (globally) by an analytic system in the usual sense. If q(xo) O, then F
is realizable locally by an analytic system.

The nondegeneracy condition proves to be equivalent (as shown in the proof
below) to the fact that, for "almost every" i/o pair, q(x(t)) # 0 for almost every t. It
could happen, however, that q vanishes along some trajectories.

The following theorem is the main result of this section. It constitutes a converse
to Theorem 4.6, but in terms of different algebraic objects.

THEOREM 5.2. Let Fc be the i/o operator corresponding to the series c. The
following properties then hold:

(a) /f ,41(c) is a finitely generated lR-algebra, then Fc is realizable by a polynomial
system;

(b) If Q1 (c) is a finitely generated field extension of IR, then Fc is realizable by
a singular polynomial system.

Proof. As in the proof of Theorem 4.6, we only provide proof of part (b). Part
(a) can be proved by the same argument without involving the regularity property.

Suppose that Q1 (c) is a finitely generated field extension of JR; i.e., there exist
some cl, c2,. , cn such that

1(C) ]R(cl,c2,’",an).

Without loss of generality, we may assume that ci E 41 (C) for 1, 2,..., n and
cl c. For each ci and j, there exist some qij,gij IR[X1,X2,"’,Xn] such that

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1141

for i 1,2,-’-,n, j 0, 1,-..,m, and qij(Cl,C2,’’’,Cn) 0. Without loss of
generality, we may assume that qij q for all i, j. Otherwise, we may let

q(Cl, C2, "’’, Ca) H qij (Cl, 2, "’’,an)
i,j

and change the go accordingly. It follows from the fact that q is an integral domain
that

(31) q(cl, c2,..., Cn) # O.

For j 0, 1,..., m, let gj (glj, g2,"’, gnu)’, where "’ denotes the transpose.
Let xo ((Cl, >, (c2, >,..., (Cn, >)’ and h(x) Xl. For u E ];T, let

(32) x(t) (F[u](t), F.[u](t),..., F[u](t))’.

Then x(0) xo,

m

q(x(t))x’(t) go(x(t)) + E uy(t)gy(x(t))
j=l

for almost all t e [0, T], and y(t) h(x(t)). Thus the system

q(x)x’= go(x)+ E gj(x)uj,

x(0) xo,

y h(x)

realizes Fc if the regularity property of the system holds. To verify the regularity
condition for this realization, let d q(cl, c2,..., Ca). Then Fd O. Note that poly-
nomial controls are dense in IT with respect to the L1 norm, and Fd is a continuous
operator. Hence there is at least one polynomial control p ]R[t] such that Fd9] O.
It follows from the fact that, for any t, Fd](t) depends analytically on the coefficients
of t in p(t) (cf. [28]) that Fd[u] # 0 for all polynomial controls u in a dense set of YT,
which is the desired regularity property. [3

6. Main results. In this section we establish the equivalence between realizabil-
ity and the existence of i/o equations. Recall that any convergent series c induces
an i/o operator Fc on T for which T is admissible for c. The following is our main
result in this work.

THEOREM 6.1. Assume that c is a convergent power series, let T > 0 be admis-
sible for c, and let Fc be the i/o operator induced by c on ]?T. Then

(a) The following statements are equivalent:
(i) Fc satisfies an algebraic i/o equation;
(ii) F satisfies a rational i/o equation;
(iii) Fc is realizable by a singular polynomial system; and

(b) F is realizable by a polynomial system if Fc satisfies a recursive i/o equation.
The realizability implications follow from Theorems 3.1, 4.6, and 5.2. The con-

verses, i.e., the existence of equations assuming realizability, are quite straightforward
exercises in elimination theory, and the details are given next.

LEMMA 6.2. Assume that c is a convergent power series. Then F satisfies an
algebraic i/o equation if Fc is realizable by a singular polynomial system.
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1142 YUAN WANG AND EDUARDO D. SONTAG

Proof. Assume that c is a convergent power series. We must prove that Fc satisfies
some i/o equation

P (u(t), ..., u(k)(t), y(t), ...,y(k)(t)) 0()

valid for all Ck i/o pairs (u, y) with u ST, and any T admissible for c. We henceforth
fix such a T, and we assume that Fc is realized by the singular polynomial system

m

(a) q(x)x’ o(x) +, u (x), x e ,
j=0

(35) X(0) X0, X0 e ]Rn,
(36) y h(x), y e IR.

Assume for now that q(xo) =fi O. Then there exists some neighborhood Af of x0
in lRn such that q(x) : 0 for all x EAf. Note that, on Af, (34) can be written as

m

(7) ’ po(x) + u p(),
j=0

where pj gj/q for j 0, 1,..., m.
Let 99(t, x, u) denote the solution of (37) corresponding to the control u with the

initial condition x(0) x. Let yx(t) h(ga(t,x, u)). Then

(0), u’(0), ..., ()(0)
are rational functions of x over the field of K, the field obtained by adjoining #ij

(i 0,..-, n- 1, j 0, ..., m) to JR. Since the transcendence degree of K(x) over K
is n, the n + 1 rational functions yx(0), y(0), , y(n)(0) are algebraically dependent
over K; i.e., there exists some nontrivial polynomial Q over K such that

Clearing the denominators in the coefficients (rational functions in the variables
#0, "", #n-l), we obtain that

( ()(0)) 0,P #0," #n-l, y(0),...,

where P E IR[Y, #0, "", #-1] is some polynomial over JR. Note here that P is
nontrivial in Y, since Q is nontrivial.

Since P was chosen independent of the initial state x, it follows that, for any
u VT, there exists some 5 > 0 such that

(38) e ((t), ..., u(-) (t), (t), ..., ()(t)) o

for t < 5. By principle of analytic continuation, (38) holds for all t [0, T] and
analytic controls in ];T. Since analytic controls are dense in )T and Fc is continuous,
(38) holds for all controls in VT.

Finally, we show how to overcome the restriction q(xo) :/: O. Assume now that
q(xo) 0. Then, by definition, there exists a set t of analytic inputs in C, open
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1143

dense with respect to the Whitney topology, so that, for each u EFt 3 IT, there
exists some analytic function (t) satisfying (34) and (35) such that q((.)) #- 0 and
Fc[u](t) h((t)). It follows from analyticity that there exists some 5 > 0 such
that q((t)) 0 for t e (0, 5). From the previous argument, we see that (u(t), y(t))
satisfies (38) for any t e (0, 5). Using analyticity again, we know that (u(t), Fc[u](t))
satisfies (38) for all t e [0, T].

Since f is dense in C controls and C controls are dense in Cn controls with
respect to the Whitney topology, it follows that (38) holds for all Cn controls in

T" D
Note that, in contrast to the cases of the rational i/o equation, the converse of

part (b) does not hold in general:, i.e, realizability by polynomials system does not
necessarily imply the existence of a recursive i/o equation. This can be illustrated by
the following example.

Example 6.3. Consider the following system:

xl XlX2, x (O) xo 1;

x (0) 0;

y--xl.

Then there exists some T > 0 such that, for all u e PT, y(t) F[u](t), where c is
given by

(c, 11. ""l) Lg ...Lg.Lolh(Xo),
where go XlX2(O/Oxl), gl O/Ox2, and h(x) x (cf. [13]). In the other words,
F is realizable by the polynomial system (39).

To show that the operator F does not satisfy any recursive i/o equation, we must
first establish the following fact. To a general analytic state space system

m

(40) x’- x e
i--1

we associate an observation space F defined as ]R-space spanned by all the functions

LgiLg2 ...Lgkh(x), k > O, 0<i,i2,...,ik<m.

We define the observation algebra 4 of (40) as the ]R-algebra generated by the elements
of F1.

For each xo AA, let Ch be the generating series defined by

(41) <Ch, rlrl." "7> L...LLh(xo).
We say that system (40) is accessible at x0 if, for any neighborhood B of x0, there

exists an open subset of b/of B such that, for any p E L/, there exist some T > 0 and
some u e Lm [0, T] such that X(T, Xo, U) p. The following lemma is provided in [28].

LEMMA 6.4. Assume that the analytic system (40) is accessible at xo and that
]t/[ is connected. Let Ch be the series defined by (41). Then the observation algebra
jt (Ch) associated with Ch is isomorphic to the observation algebra Jt associated with
(40).

System (34) is accessible at x0 (1, O) since the accessibility rank condition (see,
for instance, [24]) holds, as follows:

rank (go(xo) [go, gll(x0)) 2.
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1144 YUAN WANG AND EDUARDO D. SONTAG

If Fc would satisfy some recursive i/o equation, then the observation algebra A2(c)
would be finitely generated, which, by Lemma 6.4, would imply that A is also finitely
generated as an ]R-algebra. This is false, however, as t is the algebra generated by

xl, xlx2, XlX, ..., xxk2, k>0.

Thus Fc cannot satisfy any recursive i/o equation, even though it is realized by the
polynomial system (39).

7. Families of i/o operators. In this section we study families of power series
and i/o operators. Let A be an index set. We say that c_ is a family of power series
(parameterized by A E A) if c {cA A E A}, where cA is a power series for each fixed
A. A family _c can also be viewed as a power series with coefficients belonging to a ring
of functions from A to ]R; i.e, _c (_c, h}h, where (c,
is a function defined on A.

Thus we may treat families of power series as power series over some ring R. We
use ,R to denote the set of all power series over R. Then SR is a ring with "+" and
",,," defined as the following:

7_c + d {7c+d" AA},

d A}c,,,A {c,,,_ A

for all c, d SR, "y IR.
Unlike the set S of power series over JR, ,R may not be an integral domain. This

is because ring R may not be an integral domain. However, by following the same
steps in the proof of Lemma 2.2, we can get the following conclusion.

LEMMA 7.1. The ring S1 is an integral domain if R is an integral domain.
It follows from the principle of analytic continuation that any ringof analytic

functions from a connected analytic manifold to ]R is an integral domain. So we have
the following fact.

COROLLARY 7.2. IfA is a connected analytic manifold and R is a ring of analytic
functions from A to JR, then SR is an integral domain.

DEFINITION 7.3. We say a family _c is a convergent family if
(a) Each member of the family is convergent;
(b) A is a topological space, (cA, rh) depends on A continuously, for each h P*,

and the constants K, M as in (8) can be chosen continuously depending on A.
Since each convergent series induces an i/o operator, each convergent family c of

power series induces a family of i/o operators {F A E A}, which we denote by Fc_.
The following result is provided in [28].

LEMMA 7.4. Assume that c is a convergent family. If T is admissible for c,
then T is admissible for cA for all in a small neighborhood of o, and F[u](t)
depends (jointly) continuously on t and .

7.1. Observation spaces for families of i/o operators. For a family _c of
power series, we define z-c to be the family {z-c A}, for any z P*. For
any n > 0, C_n(X0,... Xn-) is defined to be the family

{Cn(X0, "’’,xn_l) h},
where X (XI,’--, Xm) are m indeterminates over ]R, > 0.
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1145

As in the case of single power series, we associate to c two types of observation
spaces in the following way:

fi’l(_C) span {o/-1_ O/ E P*},

’2(_c) span t {-n(#0,""", n-1) #i E ]pm, 0

__
i

_
n- 1, n _> 0}.

Note here that the elements of 1 (_c) and ’2(_c) are families of series. For instance, if
_c is given by

C
A ,2 + 2 r/0 /1, AE]R,

then fi’l(_C) is spanned by three elements: _c, 2A, and A3; thus ’1(_c) is a three-
dimensional lR-space.

Treating families of series as single series over a ring and following the same steps
in the proof of Theorem 3.1, we can obtain an analogue of Theorem 3.1 for families,
shown in the following theorem.

oI
7.2. i/o equations for families of i/o operators. We say that a family Fc

satisfies an algebraic i/o equation of order k if there exists some polynomial P e
IRIS0, ..., Sk, Lo,’", Lk], nontrivial in Lk such that

(42) ( 0u(k)(t),y(t),P u(t), .,
is an i/o equation for Fc for each A A.

If (42) is recursive, then we say that Fc satisfies a recursive equation. We say
that (42) is a rational i/o equation for Fc if

P (So, "",Sk, Lo, "’, Lk)
P0 (So, "",Sk, L0, "", Lk-1) Lk + P1 (So, "",Sk, Lo, "", Lk-1)

for some polynomials P0 and P1, and P0 is not an i/o equation for Fc; i.e., there exists
some A e h and some i/o pair (u, y) of Fc that does not satisfy (42).

For a family of generating series c_, we associate with it an observation algebra
A2(c) defined as the JR-algebra generated by the elements of fi’2 (c). Recall that ’2 (_c)
is the IR-space generated by ca(#0,... #n-) for all n and all #.

To define the observation field, we need the assumption that J[2(c) is an integral
domain.

DEFINITION 7.6. We say that a convergent family _c {cA A A} is
an analytic family if A is a connected analytic manifold and (cA, rh) is an analytic
function defined on A for all E P*.

By Corollary 7.3, fi,2(c) is an integral domain; therefore, its quotient field is well
defined. For an analytic family _c, we define the observation field 2(_c) of c as the
quotient field of J2(c_).

By using the same ideas used in 4, we get the following conclusion.
THEOREM 7.7. Assume that c_ is an analytic family of power series. Then
(a) Jt2(_c) is a finitely generated JR-algebra ifc_ satisfies a recursive i/o equation;

(b) 2(_c) is finitely generated field extension of JR if c__ satisfies an algebraic i/o
equation.
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1146 YUAN WANG AND EDUARDO D. SONTAG

7.3. Realizability for families of i/o operators. DEFINITION 7.8. We say
that a family Fc of i/o operators is realizable by a singular polynomial state space
system

F ((go, gl,’",gm), X, q, h),

where go, gl, , g, are polynomial vector fields of IRn, X is a subset of ]Rn, q and
h are polynomial functions defined on lRn, if the following properties hold:

(a) For each A E A and each u E )T, where T is admissible for c, there exists
some absolutely continuous function x(.) defined on [0, T] satisfying x(0) x0 for
some x0 X such that

q(x(t)) (x(t)) go(x(t)) +
m

(x (t)
j=l

for almost all t G [0, T], and

Fc [u](t) h(x(t))
for all t [0, T] and all A A.

(b) The solution xX(.) in part (a) is of class C if u is of class C, and xX(.) is of
class Ck+l if u is of class Ck.

(c) There holds the following regularity condition: There exists some open dense
set A1 of A such that, for A E A1, there exists some set tx of analytic functions
that is dense in C[0, Tx] (with respect to Whitney topology) such that, for any
U e )Tx N n, there exists some C solution x(.) as in (a), so that q(x(.)) O. If
F can be realized by a singular polynomial system with

q(x) 1 for all x ][:n,

we say that Fc is realizable by a polynomial system, and, if, in addition, the vector
fields go, "", gm are linear in x, then we say that Fc is realizable by a bilinear system.

For an analytic family of power series _c, we associate with it an observation
algebra Ai (_c) defined as the ]R-algebra generated by the elements of/1(_c) and an
observation field Q1 (_c) defined as the quotient field of .41(c). Note here that the
analyticity of the family implies that the quotient field of .4 (c) is well defined.

By using the same techniques used in 5, we get the following conclusion.
THEOREM 7.9. Let c_ be an analytic family of power series. Then
(a) The family of i/o operators Fc is realizable by a polynomial system if ff[l(C)

is a finitely generated ]R-algebra;
(b) of i/o is   atiza t a  ot no. ia 

if Q (c_) is a finitely generated field extension of IR.
Combining all the results in this section, we see that the existence of i/o equations

implies realizability. On the other hand, if Fc is realizable by some singular polynomial
system, then, by using approximation arguments, we can show that Fc must satisfy
some algebraic i/o equation. Hence we have the following theorem.

THEOREM 7.10. Assume that c_ is an analytic families of series. Then
(a) The following statements are equivalent:

(i) Fc satisfies an algebraic i/o equation;
(ii) Fc satisfies a rational i/o equation;
(iii) Fc is realizable by a singular polynomial system; and
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ALGEBRAIC EQUATIONS AND RATIONAL SYSTEMS 1147

(b) Fc_ is realizable by a polynomial system if Fc__ satisfies a recursive i/o equation.
Remark 7.11. In the proofs of parts (a) of Theorems 7.9 and 7.10, we need

not assume that Jl(c) and J2(c) are integral domains. Hence part (b) of Theorem
7.10 also holds for continuous families; that is, for continuous families of operators,
existence of recursive i/o equation implies realizability by polynomial systems.

8. Closing remarks. We envision our results being used as follows (the idea is
very similar to that employed in the discrete case, and explored in some detail in [5]).
If there are reasons to believe that the system producing the observed data is well
posed, then an equation E may be fit to the data. We are assured that there is then a
realization of the type to be considered, and we then try to find this realization. We
are still very far from having constructive techniques for obtaining realizations; this
is a major topic for further research involving symbolic computation. The following
example illustrates the type of construction suggested by the proofs.

Consider the i/o equation

(43) uyr’ y2u2 - y’u’

and assume that it is "well posed" in the sense mentioned above; that is, there is a
Fliess operator y Fc[u] for which every pair (u, Fc[u]) satisfies the equation. Then
we know that Fc can be realized by some polynomial state space system

(44) x’ f(x) + g(x)u,
(45) y h(x)

with some fixed initial state. We now try to deduce what f, g, and h should be. We
have that

y’ Lfh(x) + Lgh(x)u,
2h(x)u2y" L2h(x) + (LfLgh(x) + Lgnih(x))u + L9 + n9h(x)u’.

Substituting y, y, yrr into (43), we get the following formulas:

(46) nih 0,

(47) LILgh + LaLIh h2,
2(48) Lah O.

Formulas (46) and (47) suggest that L2h 0 and LfLgh h2. Now let

Zl h(x), z2 Lgh(x).

Then, along any trajectory x(t) of (44),

z (t) nih(x(t)) + ngh(x(t))u(t) z2(t)u(t),
z(t) ningh(x(t)) + n2gh(x(t))u(t) zl(t) 2.

Hence Fc can be realized by the following polynomial system:

Z
2

Z Z2U, Z2 1 y Zl,

where the choice of initial state depends on additional data (such as the knowledge
of y(0) and y’(0) for some nonzero control).
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1148 YUAN WANG AND EDUARDO D. SONTAG

Of course, for practical applications, it is not clear when we would be justified in
assuming wellposedness. We take the position, however, that postulating wellposed-
ness is a far weaker assumption than assuming that the data was produced by a linear
system, an assumption that itself underlies most applications of control theory.

Sometimes, we impose a "causality" constraint on i/o equations, requiring that
the highest derivative of u be of lower order than derivatives of y. However, it is easy
to see (cf. [28]) that, for i/o behaviors described by generating series, an equation of
the type (1) always leads to an equation in which the highest order of derivative of
inputs is lower than the highest order of derivative of outputs, i.e., an equation of the
type

E (u(t),u’(t),u"(t),...,u(r-1)(t),y(t),y’(t),y"(t),...,y(r)(t)) O.

This is essentially a consequence of the fact that an i/o operator induced by a gener-
ating series must be causal in the sense that the kth-order derivatives of outputs do
not depend on the kth-order derivatives of inputs.

Though nonsingular systems are preferred, we do not yet know if there is always
a realization of that type (for nonrecursive equations). However, the analytic results
in [29] can be applied to prove that about every singular point of the realization
obtained here is another system, locally defined in terms of analytic functions, that
realizes (locally) the desired behavior. The picture that emerges then is that, at least,
we can cover the possibly singular part with local analytic realizations. In a computer
simulation, this would be achieved by passing to a subroutine to deal with trajectories
near this set.

As a final remark, we explain how this work relates to alternative foundations for
systems theory recently proposed by various authors. We may consider the behavior
w(.) (u(.), y(.)) associated to an i/o description. It has been proposed by [31] that
we should formulate systems modeling without a priori distinctions between input
and output signals. In these terms, an i/o equation takes the form

(49) E (w(t), w’(t), w"(t), w(r)(t)) O

One of the central questions in [31] and related works is that of, in some sense,
partitioning an abstract behavior w(.) into "inputs" and "outputs." Once this task
is achieved, however, and, provided that we may assume a suitable structure--in our
case, the existence of a Fliess-operator relationship between inputs and outputsit is
still important to be able to relate an abstract equation such as (49) to realizability,
and this is precisely what our result does. Similarly, the work [9] defined realizability
by the requirement that outputs be differentiably dependent on inputs; in other words,
an equation such as (1) hold. We showed that this is basically the same as realizability
in the more classical sense.
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