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Abstract. For a general class of dynamical systems, this paper presents a necessary and sufficient charac-
terization of invariance of transient responses to symmetries in inputs. A particular example of
this property, scale-invariance or “fold-change detection” (FCD), has been shown to be exhibited
in biological sensory systems ranging from bacterial chemotaxis pathways to signal transduction
mechanisms in eukaryotes. The characterization is in terms of a notion of equivariance and amounts
to the solvability of an associated partial differential equation. For several simple system motifs that
are recurrent in biology, the solvability criterion may be checked explicitly.
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1. Introduction. We study in this paper certain properties of the responses of dynamical
systems to external inputs. Our results are purely mathematical and thus of wide applicability,
but our motivation arises from molecular systems biology. Indeed, the behavior, adaptability,
and survival of organisms depend critically upon their capability to formulate appropriate
responses to chemical and physical environmental cues. In particular, signal transduction
and gene regulatory networks in individual cells mediate the processing of measured chemical
concentrations and physical conditions, such as ligand concentrations or stresses, eventually
leading to regulatory changes in metabolism and gene expression. Often, the ultimate goal
of these changes is to maintain a narrow range of concentration levels of vital quantities
(homeostasis, adaptation) while at the same time appropriately reacting to changes in the
environment (signal detection). Much theoretical, modeling, and analysis effort has been
devoted to the understanding of these questions, traditionally in the context of steady-state
responses to constant or step-changing stimuli.

In this work, we are concerned with questions that complement the analysis of simple
temporal inputs and steady-state responses, focusing on certain properties of transient be-
haviors, both for simple stimuli like step changes and for more complex time-varying input
profiles. The study of transient responses is of central concern in cell biology, since behavior
at the time-scale of signaling may have important consequences for cell survival. Moreover,
typical signals encountered by cells in their natural environments may well exhibit interest-
ing temporal information, and thus characterizing responses to fluctuating temporal patterns
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may provide new insights regarding cell behavior. Such responses and the analysis of tran-
sient behavior can also help rule out postulated mechanisms when tested through modern
experimental tools which allow for fine spatiotemporal resolution in measurements. This type
of model falsification is of course routine, but the broader framework allows for testing of
a richer class of “phenotypes” and may thus help guide searches for yet-unknown molecular
mechanisms.

The immediate motivation for this work is the recent discovery of an important transient
property related to Weber’s law in psychophysics: fold-change detection (FCD) in adapting
systems is the property that scale uncertainty does not affect responses. FCD appears to
play an important role in key signaling transduction mechanisms in eukaryotes, including
the ERK and Wnt pathways, as well as in Escherichia ecoli and possibly other prokaryotic
chemotaxis pathways [8, 3, 32]. The mathematical analysis of FCD was started in [9, 32]. In
this paper, we provide further theoretical results regarding this property. Far more generally,
we develop a necessary and sufficient characterization of adapting systems whose transient
behaviors are invariant under the action of a set (often, a group) of symmetries in their
sensory field. A particular instance is FCD, which amounts to invariance under the action of
the multiplicative group of positive real numbers. Our main result is framed in terms of a
notion which considerably extends equivariant actions of compact Lie groups.

This paper is organized as follows. Section 2 introduces the main definitions and the
statement of the main result of this paper. Section 3 illustrates how the main result can be
used to check invariance in a number of simple examples. Section 4 has the proof of the main
theorem, as well as a self-contained review of some key concepts needed from nonlinear control
theory. Section 5 fills in a stability proof that is needed in order to justify that several of our
simple examples are indeed adapting systems. Section 6 compares feedforward and feedback
architectures in the context of the “internal model principle” of control theory. Section 7
provides a simple result showing that search strategies in sensory fields subject to symmetries
is invariant, provided that the underlying system itself is invariant.

2. Notation, definitions, and statement of main theorem. We study dynamical systems
with inputs and outputs:

(1) ż = F (z, u) , y = h(z) ,

where F , h are functions which describe respectively the dynamics and the read-out map.
Equation (1) is meant as shorthand for

dz

dt
(t) = F (z(t), u(t)) , y(t) = h(z(t)) .

Here, u = u(t) is a generally time-dependent input (also called, depending on the context, a
“stimulus” or “excitation”) function, z(t) is an n-dimensional vector of state variables, and
y(t) is the output (“response” or “reporter” variable).

The paradigm of studying systems in the form (1) is standard in control systems the-
ory [36].

Typically, y(t) is just a read-out of one of the components, zi(t), of z(t). However, it
is also sometimes more natural to take a more complicated function y(t) = h(z(t)) of the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYMMETRY INVARIANCE FOR ADAPTING BIOLOGICAL SYSTEMS 859

coordinates of z than to just pick an individual zi. For instance, suppose that z1(t) represents
the concentration of the free form of an enzyme E, that z2(t) is the concentration of E
complexed with some substrate, and that these two species are indistinguishable by a Western
blot assay measurement. Then the sum y = h(z) = z1 + z2 might be the reporter variable
of interest. More generally, the theory does not change substantially if we allow the output
variable y(t) to be a function of the current input as well as on the current state, y = h(z, u).
It is notationally and technically more convenient to take y = h(z), so we do that here. In
any event, one could add a new variable zn+1 to z = (z1, . . . , zn) and a differential equation
εżn+1 = h(z, u) − zn+1 which (provided 0<ε�1) quickly equilibrates to y = zn+1 = h(z, u),
and with this small modification, now y depends only on a single coordinate, zn+1, of an
extended state vector (z1, . . . , zn+1) and does not directly depend on the current input.

In order to describe positivity of variables as well as other constraints, we introduce the
following additional notation. States, inputs, and outputs are constrained to lie in particular
subsets, which we call Z, U, and Y, respectively, of Euclidean spaces Rn,Rm,Rq. For example,
U = R>0 means that the input values must be scalar (m = 1, U ⊂ R

1) and positive. The
functions F, h are differentiable. We will assume that for each piecewise-continuous input
u : [0,∞) → U, and each initial state ξ ∈ Z, there is a (unique) solution z : [0,∞) → Z of (1)
with initial condition z(0) = ξ, which we write as

ϕ(t, ξ, u) ,

and we denote the corresponding output y : [0,∞) → Y, given by h(ϕ(t, ξ, u)), as

ψ(t, ξ, u)

(see [36] for more discussion, properties of ODEs, global existence of solutions, etc.).
Since we are interested in adapting systems, we will assume that for each constant input

u(t) ≡ ū, there is a unique steady state of the system (which depends on the particular input).
We denote this steady state by σ(ū). In other words, z̄ = σ(ū) is the unique solution of the
algebraic equation F (z̄, ū) = 0. Finally, we will assume that this steady state is globally
asymptotically stable (GAS). This means that σ(ū) is Lyapunov stable and globally attracting
for the system when the input is u(t) ≡ ū:

lim
t→∞ϕ(t, ξ, u) = σ(ū)

for every initial condition ξ ∈ Z. Multistable systems may be considered as well, of course,
but the definitions to follow become very cumbersome.

We will illustrate our results using the two sets of examples that are shown in Figures 1
and 2. In the diagrams shown in these figures, normal arrows indicate activation effects, and
blunt edges denote inhibitions. In the respective equations, the vector z = (z1, z2) = (x, y)
has dimension n = 2, and the output is the second component, h(z) = y. In other words,
in these examples, F (z, u) = F (x, y, u) is a vector function with two components, which for
n = 2 we write as (f(x, y, u), g(x, y, u)). We have that f(x, y, u) is α(y − y0) in Figure 1(a,b),
αx(y − y0) in Figure 1(c,d), and αu − δx in Figure 2, and g(x, y, u) is βu − μx− γy in Fig-
ure 1(a), β lnu − μx− γy in Figure 1(b), β u

x − γy in Figure 1(c) and Figure 2(a), βux − γy
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(a) linear (b) loglinear (c) nonlinear I (d) nonlinear II

Figure 1. Integral feedback systems (assuming u > 0 in (b) and u, x > 0 in (c,d)).

ẋ = αu− δx

ẏ = β
u

x
− γy

(a) intermediate inhibits formation

u

x

y

ẋ = αu− δx

ẏ = βu− γxy

(b) intermediate promotes degradation

Figure 2. Incoherent feedforward loops (IFFLs) (assuming u, x > 0 in (a)).

in Figure 1(d), and βu − γxy in Figure 2(b). The constants α, β, . . . are positive numbers.
We emphasize that our theory is valid for any dimension n; these examples are picked only
for illustration.

2.1. Perfect adaptation.
Definition 2.1. The system (1) perfectly adapts to constant inputs provided that the steady-

state output h(σ(ū)) equals some fixed y0 ∈ Y, independently of the particular input value
ū ∈ U.

Adaptation (we will just say “adapt” instead of “perfectly adapt to constant inputs” in
what follows) means that the steady-state output value is independent of the actual value
of the input if the input is constant. This property may be achieved by differentiating the
input signal before it is further processed by the system. However, differentiation is very
sensitive to high-frequency noise, and in fact there is no need for differentiation to be explicitly
performed: there are several alternative mechanisms, such as those represented in Figures 1
and 2, integral feedback and incoherent feedforward (IFFLs) loops, respectively, that are also
capable of achieving adaptation.

In integral feedback systems, an internal “memory” variable keeps track of the accumulated
(i.e., integrated) difference between the current value y(t) of the response variable and its
desired steady-state value y0. A difference, or a nonlinear comparison such as a ratio, is
performed between this memory variable and the current input, thus providing an “error”
signal that is used to drive the feedback mechanism that brings the system back to its default
value. Integral feedback is recognized as a key feature of perfectly adapting biological systems,
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both at the physiological and cellular levels, such as, for example, in blood calcium homeostasis
[5], in neuronal control of the prefrontal cortex [25], in the regulation of tryptophan in E. coli
[43], and in E. coli chemotaxis [49].

Figure 1(a) shows the linear integral feedback configuration (PI, or proportional-integral,
control) that is classically treated in control theory. When u is constant, the unique steady-
state of this system is given by x̄ = (βu − γy0)/μ and ȳ = y0. Thus, this system adapts: the
steady-state value of y is independent of the input u. Moreover, since the eigenvalues of any
matrix of the form (

0 α
−μ −γ

)
are negative, it is clear that this system is globally asymptotically stable: x(t) → x̄ and
y(t) → ȳ = y0 as t → ∞. (Taking α and μ both negative instead of positive gives the
same conclusions.) Two other integral feedback configurations, also perfectly adapting, are
shown in Figure 1. In (b), a “loglinear system,” the only difference from (a) is that the
input is logarithmically preprocessed; this does not change the conclusions of adaptation and
stability. In system (c), the memory variable feeds upon itself, and the ratio u/x, instead of
a difference, is used to compare the current input and memory values. In system (d), the
memory variable also feeds upon itself, and the product ux is used in the feedback term to y.
Both (c) and (d) adapt (to ȳ = y0), and x̄ = βu/(γȳ) in (c), x̄ = γȳ/(βu) in (d). Stability
is a bit more subtle and is based on a control-Lyapunov approach [36] that recasts (c) as
a Hamiltonian system with added damping; see section 5. (The ratio “u/x” in (c) is not a
natural choice for biological models; however, one may think of this term as an approximation
of a Michaelis–Menten inhibition term u/(Km + x), with Km�1.)

A different type of architecture is based on feedforward as opposed to feedback intercon-
nections. Feedforward circuits are ubiquitous in biology, as emphasized in [1], where they
were shown to be overrepresented in E. coli gene transcription networks, compared to other
“motifs” involving three nodes. Similar conclusions apply to certain control mechanisms in
mammalian cells [20]. A large number of papers have been devoted to the signal-processing ca-
pabilities of the feedforward motif—notably [22], which looked into its properties as a “change
detector” (essentially, sensitivity to changes in the magnitude of the input signal), and [4],
which studied its optimality with respect to periodic inputs. Comparisons with other “three
node” architectures with respect to the trade-off of sensitivity versus noise filtering are given
in [12]. Other references on feedforward circuits include [31] (showing their overrepresentation
at the interface of genetic and metabolic networks), [45] (classification of different subtypes of
such circuits), and [15] (classification into “time-dependent” versus “dose-dependent” biphasic
responses, which are in a sense the opposite of adapted responses).

In particular, in incoherent feedforward loops (IFFL), as in Figure 2, the input u directly
helps promote formation of the reporter y and also acts as a delayed inhibitor, through an
intermediate variable x. This “incoherent” counterbalance between a positive and a negative
effect gives rise, under appropriate conditions, to adaptation. The reference [15] provides a
large number of incoherent feedforward input-to-response circuits, which participate in EGF
to ERK activation [30, 27], glucose to insulin release [24, 28], ATP to intracellular calcium
release [21, 23], nitric oxide to NF-κB activation [29], microRNA regulation [40], and many
others. Several varieties of IFFL circuits have been often proposed for perfect adaptation to
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u

t = 0 t

2 u (t) = p u (t)

1u (t)

1

Figure 3. Two scaled inputs.

constant signals in biological systems. Notably, the IFFL shown in Figure 2(b), often called the
“sniffer” [42, 38], appears in slightly modified forms in models for Dictyostelium chemotaxis
and neutrophils [48, 18], microRNA-mediated loops [47], E. coli carbohydrate uptake via the
carbohydrate phosphotransferase system [16], and other metabolic systems [44]. The work
[2] shows experimentally and analytically that IFFLs are especially well suited to controlling
protein expression under DNA copy variability. For both systems in Figure 2, the unique
steady state, when the input u is constant, has coordinates x̄ = αu/δ and ȳ = y0 = βδ/(αγ).
Since ȳ is independent of u, the system adapts. Global asymptotic stability for (a) follows
from the fact that the x-subsystem is linear and stable, and the y-subsystem is a stable linear
system driven by the converging signal u/x. For (b) (and several variations of this system),
the GAS property is studied in [38].

2.2. Invariance. As mentioned in the introduction, we wish to study the invariance of
outputs under input transformations. The original motivation was the study of the particular
case of scale invariance, which is described through the following thought experiment.

2.2.1. A special case: Scale-invariance (FCD). Suppose that a system that adapts has
had a chance to “preadapt” to a certain constant (“background”) level ū of the input, for
t < 0, and that now we present the system with the new input u(t), t ≥ 0. Let y1(t) be the
output function that results. Next imagine that we allowed the same system to preadapt,
instead, to pū for t < 0, and we now present the system with pu(t) for t ≥ 0, where p is some
positive scalar. Let y2(t) be the resulting output. Scale-invariance means that the outputs
of the two experiments should be the same: y1(t) = y2(t) for all t > 0. In other words,
for any two inputs u(t) and pu(t), as in Figure 3, and no matter what positive number or
“scale” p we picked, the entire shape of the response, including amplitude and duration, is
identical. As an example, a step change in input from, say, a constant level 2 to a constant
level 4 should result in precisely the same output as a step from constant level 5 to constant
level 10 (we scaled everything by p = 2.5); see Figure 4(d). On the other hand, a change
from, say, level 5 to 25 (which has a fold-change of 5 instead of 2) will typically lead to a
different response. Thus, another way to describe this invariance property is to say that the
only potentially detectable differences in response are due to fold changes, and this motivates
the name fold-change detection (FCD) [9, 32]. FCD represents a particular type of adaptation
in which there is with robustness to scale uncertainty, and it can be found at many levels
of biological organization. A weak version is present in the Weber–Fechner law logarithmic
sensing feature in psychophysics: many sensory systems (for weight, vision, hearing) produce
responses whose maximal amplitude depends only on the ratio between the stimulus and a
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2 u (t) = p u (t)1

1u (t)

u

t = 0 t t = 0 t

y

t = 0 t

y

t = 0 t

y

 y (t) = y (t)1 2

(a) scaled inputs (b) adapting system (c) Weber-like (d) FCD

Figure 4. In an adapting system, the response to scaled steps (a) returns to the same adapted value but
may differ in time (b) or may produce the same maximal response (c) or even identical transients (d)).

background or starting value, Figure 4(c). It was also recently discovered that the transient
responses of several biological cellular signaling systems [3, 8] display FCD features.

We can formally define the FCD property as follows. Denoting by “πu” the input t 	→ pu(t)
and by “πū” the constant pū, the equality of outputs

(2) ψ(t, σ(ū), u) = ψ(t, σ(πū), πu)

should hold for all possible p > 0, times t ≥ 0, and all constant inputs ū ∈ U and inputs
u = u(t) with values in U. (Observe that the requirement that ū and u take values in U serves
to impose constraints such as, for example, positivity.)

Equipped with this formalism, we may study a far more general question, namely, in-
variance with respect to any set of transformations—not merely scalings but also far more
general invariances to sensory field changes: translational, rotational, or reflection symmetries,
anisotropic dilations, projective transformations, and so forth.

2.2.2. General case. Suppose we are given a set P of continuous and onto input trans-
formations π : U → U:

{π : U → U , π ∈ P} .
For an input u(t), we denote by “πu” the function of time that equals π(u(t)) at time t. (For
notational simplicity, we write “πu” rather than “π(u)” when there is no risk of confusion,
but we emphasize that there is no requirement that the mapping π be linear.) The continuity
assumption is only made in order to ensure that πu is a piecewise-continuous function of
time if u is, as technically required when using it as an input to a differential equation. The
ontoness assumption, that is, πU = U, is made for technical reasons in the proof of the main
theorem.

Definition 2.2. The system (1) has response invariance to symmetries in P or, for short,
is P-invariant if (2) holds for all t ≥ 0, all inputs u = u(t), all constants ū, and all transfor-
mations π ∈ P.

Under the assumption that the action of P is transitive, i.e., for any two ū, v̄ ∈ U, there is
some π such that v̄ = πū, P-invariance implies perfect adaptation, because the outputs in (2)
must coincide at time zero, and any two inputs can be mapped to each other.

Some examples are as follows. In the special case of the transitive action with P = U = R>0

and πu = pu, we obtain the FCD property. Another example of a set of symmetries P is as
follows. Suppose that U = R

n and P consists of all the transformations πR(u) := Ru for
R ∈ SO (n), the special orthogonal group. That is, we transform inputs by multiplication
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with a rotation matrix R. In dimension 2 or 3, this can be used to impose the requirement
that a visual sensing system should react the same if the visual field is rotated. Another
slightly different example would be that in which R ∈ O(n), the orthogonal group, meaning
that we want invariance with respect to reflections as well as rotations.

2.3. Equivariances. We now introduce a concept that leads to an effective criterion for
checking FCD, and more generally arbitrary P-invariance, without having to compute the
solutions ψ(t, σ(πū), πu). We make the definition for arbitrary systems as in (1), ż = F (z, u),
y = h(z).

Definition 2.3. Given a system (1) and a set of input transformations P, a parametrized
set of differentiable mappings {ρπ : Z → Z}π∈P is a P-equivariance family provided that, for
each π,

(3) F (ρπ(z), πu) = ρ′π(z)F (z, u) and h(ρπ(z)) = h(z) for all z ∈ Z, u ∈ U

(ρ′π = Jacobian matrix of ρπ). If (3) holds, we say that the system is ρπ-equivariant under the
input transformation π.

The first part of (3) is a first order quasilinear PDE on the n components of the vector
function ρπ for each u ∈ U , and the second part is an additional algebraic constraint on these
components.

We omit the subscript π when clear from the context. Quasi-linear first order PDEs appear
in related questions in control theory, for instance [36], in the Hamilton–Jacobi–Bellman
approach to optimal control and in feedback linearization based on Frobenius’s theorem. They
may in principle be solved using the method of characteristics [6].

Our notion of equivariance generalizes a mathematical concept fundamental in group the-
ory, and specifically in the symmetry analysis of nonlinear dynamical systems [10, 11] with the
same name. A parametrized vector field F is said to be ρ-equivariant, or ρ is a symmetry of F ,
if, for each solution z(t) of ż = F (z, u), ρ(z(t)) is also a solution. This property is equivalent
to the PDE F (ρ(z), u) = ρ′(z)F (z, u) [10] that is part of the equivariance definition when
π = identity. We are generalizing this concept in several ways. First, we must consider the
far more general case π 
= identity; in fact, in our context, π = identity is not of any inter-
est whatsoever, since we are precisely interested in the effect of the input transformations.
Second, it is essential to our definition that we include the algebraic “boundary condition”
h(ρπ(z)) = h(z), Finally, in dynamical systems one typically studies equivariances only with
respect to Lie group actions. Moreover, since compact Lie groups acting on Euclidean space
can be identified with subgroups of the orthogonal group O(n), one finds in the classical
definitions [10] only linear maps ρ′(z) = γz with γ ∈ O(n) being considered (so ρ′(z) = γ).

2.4. Statement of main theorem. Our main result is as follows. It is proved in section 4.
Theorem 1. An analytic and irreducible system is P-invariant if and only if there exists a

P-equivariance family.
An analytic system is one for which all the functions defining the system are real-analytic

on the state coordinates. This means that they can be expanded into locally convergent power
series around each point. Every function made up of elementary algebraic compositions of
elementary functions is analytic; this includes all expressions involving polynomials and, more
generally, any well-defined (no poles) rational functions (so mass-action kinetics and Hill-
type models with any integer Hill coefficients are allowed) as well as trigonometric functions,
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exponentials, and logarithms in any combination. All our examples are analytic as long as we
restrict expressions such as u/x to x > 0 (or x < 0), so that there are no poles.

An irreducible system is one for which no conservation laws restrict motions to proper
submanifolds (accessibility property) and no pairs of distinct states give rise to the same
input/output behavior (observability property). We define precisely accessibility and observ-
ability in section 4. Irreducibility is a weak technical assumption; we will show that these two
properties hold for all the systems in Figures 1 and 2. Irreducible systems, which are also
called “minimal” or “canonical” in the control theory literature, are minimal in the sense that
no lower-dimensional subsystem has an identical input/output behavior [39, 34, 35, 36]. Anal-
ogous, but simpler, notions of irreducibility also appear in areas such as group representations
(Schur’s lemma).

3. Examples of finding symmetries using the main theorem. We show here how The-
orem 1 allows one to immediately determine invariance properties for large classes of two-
dimensional systems, including the integral feedback and feedforward examples shown in Fig-
ures 1 and 2. In all these cases, the PDE for equivariances, if there is one, can be easily
solved for in closed form. We consider two-dimensional systems with output equal to one of
the coordinates. We write z = (x, y), F (z, u) = (f(x, y, u), g(x, y, u)),

ẋ = f(x, y, u),(4a)

ẏ = g(x, y, u),(4b)

h(x, y) = y,(4c)

and we wish to determine for which possible input set mappings π : U → U there is an
associated equivariance ρ = ρπ. We drop the subscript and write ρ = (ρx, ρy). Since h(x, y) =
y, the condition h(ρ(x)) = h(x) says that ρy(x, y) = y. Thus finding ρ is equivalent to finding
its x-component, a function ρx that satisfies

f(ρx(x, y), y, πu) =
∂ρx

∂x
(x, y) f(x, y, u),

g(ρx(x, y), y, πu) = g(x, y, u)

(there is no derivative in the second equation because ∂ρy/∂y = 1). This is a scalar first order
quasi-linear PDE subject to a side algebraic “boundary condition.”

We concentrate next on two special cases that cover many examples of interest. Particular
instances of the first case are the systems in Figures 1(c), (d) and 2(a). A particular instance
of the second case is the system in Figure 1(a). We assume that the systems in both of the
next lemmas are irreducible. For all our examples, irreducibility is checked in section 4.

Lemma 3.1. Suppose that
g(x, y, u) = G(uβxμ, y)

and G(·, y) is one-to-one for each fixed y (assuming x > 0 if μ < 0 or u > 0 if β < 0). Then,
the only possible symmetries are fold-changes πu = pu. Furthermore, the system is invariant
under a set P of such symmetries if and only

p−β/μf(x, y, u) = f(p−β/μx, y, pu) for all x, y, u,

and each p in the set.
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In the special case in which β = 1 and μ = −1, that is, if g depends on the ratio u/x, this
means that f must satisfy

p f(x, y, u) = f(px, y, pu),

and in the special case β = μ = 1, f must satisfy p−1f(x, y, u) = f(p−1x, y, pu). In either
special case, if f is independent of u, then response-invariance to all scaling transformations
(P = R>0) is equivalent to the requirement that f be homogeneous of degree 1 in x.

Proof. Since G is one-to-one on y,

G
(
(πu)β(ρx(x, y))μ, y

)
= g(ρx(x, y), y, πu) = g(x, y, u) = G

(
uβxμ, y

)
for all x, y, u

implies that
(πu)β(ρx(x, y))μ = uβxμ for all x, y, u

or, equivalently, (πu
u

)β
=

(
ρx(x, y)

x

)−μ

for all x, y, u .

Define

p :=

(
πu0
u0

) 1
β

for any fixed but arbitrary element u0 ∈ U. It follows that

πu = pu and ρx(x, y) = p−β/μx for all x, y, u ,

from which all the conclusions are immediate.
Lemma 3.2. Suppose that

g(x, y, u) = G(μx+ βu, y)

and G(·, y) is one-to-one for each fixed y. Then, the only possible symmetries are translations
πu = p + u. Furthermore, the system is invariant under a set P of such symmetries if and
only if

f(x, y, u) = f(−(β/μ)p+ x, y, p+ u) for all x, y, u ,

and each p in the set.
Proof. Since G is one-to-one on y,

G (μρx(x, y) + βπu, y) = g(ρx(x, y), y, πu) = g(x, y, u) = G (μx+ βu, y)

implies that
μρx(x, y) + βπu = μx+ βu for all x, y, u

or, equivalently,

πu− u = −μ
β
(ρx(x, y)− x) for all x, y, u .

Define
p := πu0 − u0
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for any fixed but arbitrary element u0 ∈ U. It follows that

πu = p+ u and ρx(x, y) = −βp
μ

+ x for all x, y, u ,

from which all the conclusions are immediate.
We can now quickly classify the examples shown in Figures 1 and 2.
The linear integral feedback system in Figure 1(a) fits the form in Lemma 3.2, so it can only

be P-invariant with respect to transformations u 	→ p+u, and the only possible equivariance is
ρx(x, y) = x+βp/μ. Since f(x, y, u) is independent of x and u, this is indeed an equivariance.
This system is P-invariant with respect to translations.

The systems in Figure 1(c), (d) and Figure 2(a) all fit the form in Lemma 3.1, so they can
only be P-invariant with respect to scaling transformations u 	→ pu, and the only invariance
is equivalent to the condition

pεf(x, y, u) = f(pεx, y, pu),

where ε is +1 and −1 for the systems in Figure 1(c), (d), respectively, and is +1 for the
system in Figure 2(a). In Figure 1(c), (d), the value of ε is irrelevant, because f(x, y, u) is
independent of u and is homogeneous of degree 1 in x, so the property holds. In Figure 2(a),
f is homogeneous of degree 1 in x and u simultaneously, so again the property holds. In
summary, all three systems are P-invariant with respect to scalings P.

The log-linear system in Figure 1(b) is also P-invariant for the set of scalings. This may
be shown with the equivariance ρx(x, y) = x+ β ln p/μ.

We remark that, generalizing Figure 1(a) and Figure 2(a), any n-dimensional linear system
ẋ = Ax+ bu with a stable A and h(x) = cx such that cA−1b = 0 (i.e., its DC gain is zero) is
P-invariant for u 	→ p + u, with ρ(x) = x − A−1bp. The corresponding log-linear system, in
which ẋ = Ax+ b lnu, is invariant with respect to scalings.

Finally, we study the “sniffer” IFFL shown in Figure 2(b). The equation g(ρx(x, y), y, πu) =
g(x, y, u) means that βπu− γρx(x, y)y = βu− γxy for all x, y, u, and thus evaluating at y = 0
it follows that πu = u (assuming β 
= 0). So no nontrivial P-equivariance exists. By the ne-
cessity part of Theorem 1, we conclude that this system is not P-invariant for any possible P.

Remark 3.3. Although derived as necessary and sufficient for two-dimensional systems, the
conditions given in Lemmas 3.1 and 3.2 are sufficient for higher-dimensional systems as well.
For example, consider a system of the form shown in (4), except that now x has dimension
n− 1 (but the inputs and outputs u, y have dimension one). Suppose that

g(x, y, u) = G(uβxμ1
1 x

μ2
2 . . . x

μn−1

n−1 , y)

and pick β1, . . . , βn−1 such that
∑
βi = β. Consider the equivariance ρ(x, y) with coordinates

ρi(x, y) = p
− βi

μi xi , i = 1, . . . , n− 1,

and ρn(x, y) = y. It is then easy to check that, if the coordinates fi, i = 1, . . . , n − 1, of the
vector field f satisfy the homogeneity property

p
− βi

μi fi(x, y, u) = fi

(
p
−β1

μi x1, . . . , p
− βn−1

μn−1 xn−1, y, pu

)
,

then the system has scale-invariance (FCD with respect to πu = pu).
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Often, higher-dimensional systems can be simplified, using model reduction techniques
such as singular perturbation, to lower dimensional systems. This is a standard procedure in
molecular biology, for example, where different processes (such as signaling and transcription)
operate at very separated time scales. If a symmetry invariance property holds for the reduced
system, one may expect an approximate symmetry condition to hold for the original system.
The next remark illustrates this principle.

Remark 3.4. Interestingly, although not invariant, the system in Figure 2(b), as well as
many other examples from [38], satisfy an “approximate” invariance property in the following
sense. Suppose that the y variable varies faster than the x variable, so that one may make
a quasi–steady-state approximation βu − γxy = 0. This allows one to reduce to a one-
dimensional system ẋ = αu − δx with output y = (β/γ)(u/x). Scalings u 	→ pu and x 	→ px
preserve the equations, thus showing that the reduced system is P-invariant with respect to
scaling. (More generally, given a linear system with an output that depends on the ratio xi/xj
of two variables xi and xj, one obtains scale-invariance.) This means that the original system
is “close” to having the scale-invariance property. A precise statement can be made using
singular perturbation theory. This observation was made several years ago in the context of
models of Dictyostelium chemotaxis and neutrophils [13].

Remark 3.5. An example with vector inputs is as follows. Suppose that we consider a
vector integral feedback system of the following form:

ẋ = (y − y0)x,

ẏ = G(〈u, x〉, y)

with output y. The state-space Z is R
n+1: x and u are n-dimensional real vectors and y is

scalar, and 〈u, x〉 denotes the inner (dot) product of x and u. We claim that this system is
P-invariant with respect to the rotation group P = SO (n). Indeed, for each R ∈ SO (n)
we may define the equivariance ρR(x, y) by mapping (x, y) to the n + 1-vector with the
first n components Rx and the last component y. Since ρR is linear, its partial derivative
with respect to y is 1, and its Jacobian with respect to the x variables is R, we need only
check that R(y − y0)x = (y − y0)Rx, which is true because y − y0 is a scalar, and that
G(〈Ru,Rx〉, y) = G(〈u, x〉, y), which is true because R is a special orthogonal matrix. The
exact same proof works for the larger orthogonal group (reflection/rotations) O(n). We can
also generalize to the case when P consists of completely arbitrary nonsingular transformations
(R ∈ GL(n)). In that case, we would take ρR(x) = (Rt)−1x (inverse transpose) and use that
〈Ru, (Rt)−1x〉 = 〈u, x〉.

4. Details and proof of main theorem. The main theorem is stated for systems that are
irreducible, meaning that both the accessibility and the observability properties must hold.
We define precisely and discuss these two properties next.

4.1. The accessibility property and the accessibility Lie algebra. In order to define
accessibility, we will need to employ the notion of the accessibility Lie algebra associated to
a system (1), which we briefly review here; see [36] for further details and basic properties.
Recall first the notion of the Lie bracket of two vector fields on a manifold, specialized here
to open subsets of Euclidean space R

n: for any two differentiable vector fields f, g : Z → R
n
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defined in an open set Z ⊆ R
n, their Lie bracket is the new vector field

[f, g] : Z → R
n

defined by the formula

[f, g] :=
∂g

∂x
f − ∂f

∂x
g .

When f, g are twice differentiable, [f, g] is again differentiable, and one can take further
brackets such as [[f, g], g]. More generally, if the vector fields are smooth (that is, infinitely
differentiable), one may take any number of iterated brackets.

For any subset of smooth vector fields F on Z, the Lie algebra generated by F , denoted
as Fla, is defined as the intersection of all the Lie algebras of vector fields which contain F .
(The set of all such algebras is nonempty, since it includes the algebra of all vector fields on
Z.) Since the intersection of any family of Lie algebras is also a Lie algebra, it follows that
Fla is the smallest Lie algebra of vector fields which contains the set F , and it coincides with
the set obtained as follows. Denote F0 := F and, recursively, Fk+1 := {[f, g] | f ∈ Fk, g ∈ F},
k = 0, 1, 2, . . . , as well as F∞ :=

⋃
k≥0Fk. Then, Fla is equal to the linear span of F∞.

(See [36, Lemma 4.1.4] for a proof of this equality.) In summary, every element in the Lie
algebra generated by the set F can be expressed as a linear combination of iterated brackets
of the form

[f�, . . . , [f3, [f2, f1] . . . ]]

for some fi ∈ F .
If the system (1) is such that the state-space Z is an open subset of Rn and all the vector

fields F = {f(·, u), u ∈ U} are smooth, we define its accessibility Lie algebra as Fla. For each
z0 ∈ Z, one may consider the subspace Fla(z0) := {X(z0),X ∈ Fla} of Rn. The accessibility
rank condition is said to hold for the system if

Fla(z0) = R
n for every z0 ∈ Z .

For analytic systems, the accessibility condition is equivalent to the property that the set of
points reachable from any given state z has a nonempty interior, as follows by a result of
Sussmann [39] that generalizes Nagano’s theorem [26] on integrability of involutive families of
vector fields; see a proof and more details in the textbook [36].

In the special case of input-affine systems, i.e., those defined by differential equations

(5) ż = g0(z) + u1g1(z) + · · ·+ umgm(z),

where gi, i = 0, . . . ,m are m+1 vector fields, it is not necessary to use all the vector fields in
F when generating Fla, since Fla(z0) = {g0, . . . , gm}

la
(z0) for all z0. See [36, Lemma 4.3.3]

for a proof. (The technical condition in that lemma that zero must belong to the input set U
fails when inputs are asked to be strictly positive, as in many of our applications. However,
the lemma also holds when U consists of positive inputs, since a continuity argument makes
clear that one obtains the same spans if 0 is added to U.)

For example, we show next that all the systems in Figures 1 and 2, which are all input-
affine (with m = 1), satisfy the accessibility rank condition.
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ẋ = α(y − y0), ẏ = βu− μx− γy. Here

g0 =

(
α(y − y0)
μx− γy

)
, g1 =

(
0
β

)
, [g0, g1] =

( −αβ
γβ

)
.

Since the determinant of (g1, [g0, g1]) equals αβ
2 
= 0 at every x, the accessibility rank condition

holds.

ẋ = α(y − y0), ẏ = β lnu − μx − γy. This is the same as the previous case, in so far as
the accessibility condition is concerned, because the set of vector fields F is identical to the
previous one.

ẋ = αx(y − y0), ẏ = β u
x − γy. Here

g0 =

(
αx(y − y0)

−γy
)
, g1 =

(
0
β
x

)
, [g0, g1] =

( −αβ
−αβ

x (y − y0) +
βγ
x

)
.

Since the determinant of (g1, [g0, g1]) equals αβ2/x 
= 0 at every x, the accessibility rank
condition holds.

ẋ = αx(y0 − y), ẏ = βux− γy. Here

g0 =

(
αx(y − y0)

−γy
)
, g1 =

(
0
βx

)
, [g0, g1] =

( −αβx2
αβx(y − y0) + βγx

)
.

Since the determinant of (g1, [g0, g1]) equals αβ2x3 
= 0 at every x, the accessibility rank
condition holds.

ẋ = αu− δx, ẏ = β u
x − γy. Here

g0 =

( −δx
−γy

)
, g1 =

(
α
β
x

)
, [g0, g1] =

(
αδ

βδ
x + βγ

x

)
.

Since the determinant of (g1, [g0, g1]) equals
αβγ
x 
= 0 at every x, the accessibility rank condition

holds.

ẋ = αu− δx, ẏ = βu− γxy. Here

g0 =

( −δx
−γxy

)
, g1 =

⎛
⎝ α

β

⎞
⎠ ,

[g0, g1] =

(
αδ,

αγy + βγx

)
, [g1, [g0, g1] =

(
0

2αβγ

)
.

Since the determinant of (g1, [g1, [g0, g1]]) equals 2α
2βγ 
= 0 at every x, the accessibility rank

condition holds.
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4.2. The observability property. A system (1) is said to be observable, or to have the
observability property, if no two distinct states can give rise to an identical temporal response
to all possible inputs. Formally,

ψ(t, z0, u) = ψ(t, z̃0, u) for all u, t ⇒ z0 = z̃0 .

For analytic input-affine systems (5) with output h = (h1, . . . , hp), one can restate the observ-
ability property as follows. The observation space O associated to the system is the vector
space spanned by the set of all functions of the type

(6) Lgi1
. . . Lgik

hj

(called the elementary observables of the system) over all possible sequences i1, . . . , ik, k ≥ 0,
out of {0, . . . ,m} and all j = 1, . . . , p, where LXH = ∇H · X is the directional or Lie
derivative of the function H with respect to the vector field X and one understands LY LXH
as the iteration LY (LXH). We include the case in which k = 0, in which case the expression
in (6) is simply hj . Two states z1 and z2 are said to be separated by O if there exists some
H ∈ O such that H(z1) 
= H(z2). Observability is equivalent to the property that any distinct
two states can be separated by the observation space. See [36, Remark 6.4.2] for a proof and
discussion.

For example, it is very easy to see that all the systems in Figures 1 and 2, which are all
input-affine (with m = 1 and p = 1), satisfy the observability condition. We must prove that
if H(z1) = H(z2) for every elementary observable (6), then z1 = z2. Since already with k = 0
we have that y1 = h(z1) = h(z2) = y2, it remains only to show that some linear combination
of observables gives a one-to-one function of x. Note that ∇h = (0, 1), so the dot product
LgH = ∇H.g simply picks out the second coordinate of g.

ẋ = α(y − y0), ẏ = βu− μx− γy. Here

g0 =

(
α(y − y0)
μx− γy

)
, g1 =

(
0
β

)
, Lg0h = μx− γy .

Since Lg0h+ γh = μx is one-to-one on x, the observability condition holds.

ẋ = α(y− y0), ẏ = β lnu−μx− γy. This is the same as the previous case, in so far as the
observability condition is concerned, because ψ(t, z0, u) is the same as ψ(t, z0, log u) for the
previous system.

ẋ = αx(y − y0), ẏ = β u
x − γy. Here

g0 =

(
αx(y − y0)

−γy
)
, g1 =

(
0
β
x

)
, Lg1h =

β

x
.

Since Lg1h is one-to-one on x, the observability condition holds.

ẋ = αx(y0 − y), ẏ = βux− γy. Here

g0 =

(
αx(y − y0)

−γy
)
, g1 =

(
0
βx

)
, Lg1h = βx .

Since Lg1h is one-to-one on x, the observability condition holds.
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ẋ = αu− δx, ẏ = β u
x − γy. Here

g0 =

( −δx
−γy

)
, g1 =

(
α
β
x

)
, Lg1h =

β

x
.

Since Lg1h is one-to-one on x, the observability condition holds.

ẋ = αu− δx, ẏ = βu− γxy. Here

g0 =

( −δx
−γxy

)
, g1 =

(
α
β

)
, Lg0h = −γxy , Lg1Lg0h = −αγy − βγx .

Since Lg1Lg0h+αγhy = −βγx is one-to-one on x, the observability condition holds. (Observe
that we cannot argue simply with Lg0h, because the function −γxy is not one-to-one on x in
the special case y = 0.)

4.3. Proof of Theorem 1. We must prove that, for analytic and irreducible systems,
existence of a P-equivariance family is sufficient as well as necessary for P-invariance.

Sufficiency. Suppose we are given a π ∈ P and an associated equivariance ρ = ρπ. We
claim that the steady-state mapping σ interlaces π and its associated ρ = ρπ in the sense that

ρ(σ(ū)) = σ(π(ū))

for every ū ∈ U. Indeed, from the property F (ρ(z), πu) = ρ′(z)F (z, u), applied with any
constant input u(t) ≡ ū, and z = σ(ū), it follows in particular that F (ρ(σ(ū)), πū) =
ρ′(σ(ū))F (σ(ū), ū). Now, F (σ(ū), ū) = 0, by definition of σ(ū), so also F (ρ(σ(ū)), πū) = 0,
which means that ρ(σ(ū)) is the steady state σ(πū) corresponding to the constant input πū,
as we claimed.

Now suppose that z(t) = ϕ(t, σ(ū), u) solves ż = F (z, u) with initial condition z(0) = σ(ū).
Consider z∗(t) = ρπ(z(t)). Computing the derivative ż∗(t) and using the chain rule,

ż∗(t) = ρ′π(z(t))ż(t) = ρ′π(z(t))F (z(t), u(t)) = F (ρπ(z(t)), πu(t)) = F (z∗(t), πu(t)).

Moreover, z∗(0) = ρπ(σ(ū)) = σ(πū) by the interlacing property. It follows that z∗ is the
solution with initial condition corresponding to the “preadapted” value σ(πū) and the input
π(u(t)), i.e., z∗(t) = ϕ(t, σ(πū), πu). We conclude that

ψ(t, σ(ū), u) = h(z(t)) = h(ρπ(z(t))) = ψ(t, σ(πū), πu).

Necessity. Suppose we are given an analytic and irreducible system that is P-invariant.
Fix any π ∈ P. We must find a differentiable mapping ρ = ρπ : Z → Z such that (3) holds:
F (ρ(z), πu) = ρ′(z)F (z, u) and h(ρ(z)) = h(z). Let us consider a modified system in which
G(z, u) = F (z, πu) and with the same output k(z) = h(z). Then (3) asks that

(7) ρ′(z)F (z, u) = G(ρ(z), u) , k(ρ(z)) = h(z) for all z ∈ Z , u ∈ U .

In the language of [39], property (7) says that ρ should be an isomorphism between the two
systems

(8) ż = F (z, u) , y = h(z)
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Figure 5. Equivariance as commutative diagram.

and

(9) ż = G(z, u) , y = k(z)

or, equivalently, that the diagram in Figure 5 should be commutative, where we write “z · ut”
and “z · πut” to denote the states φ(t, z, u) and φ(t, z, πu), respectively.

Paraphrased in our language, Theorem 5 in [39] asserts the following. Suppose we are
given any two analytic and irreducible systems (8) and (9), and two initial states z0 and z̃0,
respectively, with the property that the input/output behaviors are the same:

ψ(t, zo, u) = ψ̃(t, z̃o, u)

for all t and all inputs u (where we use tildes for the ψ map of the second system). Then,
there exists an isomorphism ρ (that is, (7) holds) such that also ρ(zo) = z̃0. To apply this
theorem to our case, we need to show that the modified system, with G(z, u) = F (z, πu),
is irreducible (it is clearly analytic, since the original system is), and we must find, for our
original system and for G(z, u) = F (z, πu), two respective initial states z0 and z̃0 that lead
to the same input/output behavior. This latter requirement is achieved by taking z0 = σ(u)
for any fixed u, and z̃0 = σ(πu) for the same u. The definition of P-symmetry is precisely
the statement that the two input/output behaviors are identical. We next verify that the
modified system with G(z, u) = F (z, πu) is irreducible.

Accessibility. Since π is onto, the set of vector fields {F (·, u), u ∈ U} is included in the set
of vector fields {F (·, πu), u ∈ U}. Thus, the accessibility Lie algebra of the modified system
can only be larger, and hence the accessibility property for the original system guarantees
that of the modified system.

Observability. Suppose that two different states z1, z2 give rise to different outputs in
the original system, when the input is u(t). Since π is onto, there is an input v such that
u(t) = π(v(t)) for all t. This means that the outputs corresponding to the initial states z1
and z2 in the modified system, under the input v, will be different. This argument can be
applied for any two distinct states. Thus, the observability property for the original system
guarantees that of the modified system.

This completes the proof of the main theorem.
Remark 4.1. The intuitive idea of the construction of ρ is not difficult to understand and

is standard in control theory [39, 34, 35, 36]: given an initial state x0 = σ(ū), input u,
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and time t > 0, we look at the state z = ϕ(t, x0, u) and the state z̃ = ϕ(t, x0, πu), and
define ρ(z) = z̃. The accessibility property says that this map is defined on an open subset
of the state space. The interlacing property represented by Figure 5 is checked by seeing
that the states ρ(z) · ut and z · πut are not distinguishable by any input/output experiments,
and hence by observability must be the same. The technical difficulties arise in proving the
differentiability of ρ and its definition on the entire state space, not merely a subset, and this
was one of the main contributions of [39].

Remark 4.2. In the proof of the theorem, we only needed to know the existence of some
two initial states z0 and z̃0 that lead to identical behaviors. This means that, if we define a
“weakly invariant” system as one for which there exists some constant ū such that (2) holds,
ψ(t, σ(ū), u) = ψ(t, σ(πū), πu) for all inputs u and all t ≥ 0 (instead of asking that this holds
for every ū), then weak invariance implies the existence of an equivariance, and hence also
invariance. (The irreducibility property plays a subtle role in this argument.)

5. Stability result for nonlinear integral feedback systems. We wish to show the global
asymptotic stability (GAS) of the unique steady states (βu/(γy0), y0) and (γy0/(βu), y0),
respectively, of the two nonlinear integral feedback systems in Figure 1:

ẋ = αx(y − y0) ,

ẏ = β
u

x
− γy

ẋ = αx(y0 − y) ,

ẏ = βux− γy

for any constant input u, where we assume that x(t) > 0 and u > 0.
Lemma 5.1. Consider any two-dimensional system evolving on R

2 having the following
“nonlinear damping” form:

ẋ = g(y) ,

ẏ = −f(x)− k(y) ,

where f, g, k are functions that have positive derivatives. Suppose that (x0, y0) is a steady
state. Then this is the unique steady state of the system, and it is globally asymptotically
stable.

Corollary 5.2. Consider any two-dimensional system evolving on R>0 × R and having the
following form:

ẋ = xg(y) ,

ẏ = −f(x)− k(y) ,

where k has positive derivatives and either (a) both f and g have positive derivatives or (b)
both f and g have negative derivatives. Suppose that (x0, y0) is a steady state. Then this is
the unique steady state of the system, and it is globally asymptotically stable.

Proof. Suppose first that both f and g have positive derivatives. We transform the system
into one in R

2, using variables y and z = lnx:

ż = g̃(y) ,

ẏ = −f̃(z)− k(y) ,

where g̃(y) = g(y) and f̃(z) := f(ez). This functions defining this system have positive
derivatives, as required in Lemma 5.1. Moreover, the transformed system has the steady state
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(lnx0, y0), which is therefore globally asymptotically stable (and unique). Transforming back
to the original coordinates, we proved our claim. Now suppose that case (b) holds instead:
both f and g have negative derivatives. We pick z := − lnx. The equations transform as
above, except that now g̃(y) = −g(y) and f̃(z) := f(e−z). Since these now have positive
derivatives, the same argument as in case (a) applies.

The nonlinear integral feedback systems discussed earlier are particular cases of the above
form. The linear function k(y) = γy is increasing. When g(y) = αx(y − y0), g is increasing,
and when g(y) = αx(y0 − y), g is decreasing. The function f(x) = −βu/x (where u is any
positive constant) is increasing, while f(x) = −βux is decreasing.

Proof of Lemma 5.1. Uniqueness: since g is strictly increasing, y0 is uniquely determined,
and it then follows that x0 is also uniquely determined (because f is increasing) as the solution
of f(x) = −k(y0).

At the steady state (x0, y0), we may assume without loss of generality that f(x0) = 0 and
k(y0) = 0 (as well as g(y0) = 0). Indeed, let c := f(x0) = −k(y0). Redefining f̃(x) := f(x)− c
and k̃(y) := k(y) + c, we have that f̃(x0) = 0 and k̃(y0) = 0, and the differential equations
have not changed, since −f̃(x)− k̃(y) = −(f(x)− c)− (k(y) + c) = −f(x)− k(y). Since f is
strictly increasing, its values are positive when x > x0 and negative otherwise, and similarly
for g, k with respect to y0. Let us define

V (x, y) :=

∫ x

x0

f(r) dr +

∫ y

y0

g(r) dr .

By definition, V (x0, y0) = 0 and V (x, y) > 0 for all (x, y) 
= (x0, y0). As ∂2V
∂2x

= f ′(x) > 0,
∂2V
∂2y

= g′(y) > 0, and mixed second derivatives are zero, it follows that the Hessian matrix of
V is positive definite everywhere. Thus, V is strictly convex, and it follows that V is a proper
function: V (x, y) → ∞ as ‖(x, y)‖ → ∞. In conclusion, V is a Lyapunov function candidate
function. To conclude global stability based on the LaSalle invariance principle [36], we must
show that the derivative of V along trajectories,

V̇ (x, y) :=
∂V

∂x
(x, y)g(y) +

∂V

∂y
(x, y) [−f(x)− k(y)] ,

has the properties that V̇ (x, y) ≤ 0 for all (x, y) and that (x(t), y(t)) ≡ (x0, y0) is the only
solution with V̇ (x(t), y(t)) ≡ 0. Now,

V̇ (x, y) = f(x)g(y) + g(y) [−f(x)− k(y)] = −g(y)k(y) ≤ 0

because g and k have everywhere the same sign (positive if y > y0 and negative if y < y0).
Suppose that a solution satisfies that V̇ (x(t), y(t)) ≡ 0. Then y(t) ≡ y0, so that also ẏ(t) ≡ 0,
which substituted into the second equation gives 0 = −f(x(t)) − 0, which implies that x(t)
≡ x0.

Observe that the only place where k appears in the proof is in the statement that g and k
have everywhere the same sign; thus the same proof works if instead of assuming that k has
everywhere positive derivatives, we assume that f(x0) = 0 and (y−y0)k(y) > 0 for all y 
= y0.
Note that V would be a Hamiltonian for the system if k ≡ 0, so the system can be thought of
simply as adding damping to a conservative system.
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6. Comparing feedforward and feedback structures. We make several remarks in this
section concerning the relations and comparisons between adapting feedforward and feedback
architectures.

6.1. Internal model principle. The “internal model principle” (IMP) in control theory
states that one should be able to recast any system which adapts to steps as a system which
integrates an “adaptation error” signal (integral feedback). For example, it should be possible
to rewrite the feedforward system in Figure 2(a) in such a manner. In this section, we review
one precise statement of the IMP and apply it to this example.

Adaptation is called “disturbance rejection” in control theory [36] (not to be confused with
a different topic, “adaptive control”). A key mathematical idea, the IMP states that, to be
able to adapt to all signals in a given class of inputs U , the system must include an “internal
model”: a subsystem which is driven by the “error” in adaptation, and whose solutions
when the error is zero (that is, when the system has perfectly adapted) are the possible
signals in U . Intuitively, an internal representation of the external signal is memorized, and
adaptation performance is constantly evaluated; any error in adaptation is used to form a
better estimate of this external signal. For example, for adaptation to constant signals, the
IMP requires integral feedback, as in Figure 1: U = all constant signals, the error is y − y0,
and solutions of ẋ = 0 are precisely the constant signals. In systems biology, the IMP suggests
biochemical structures, thus guiding modeling and experiments as well as interpretation of
the role of various regulatory and signal processing motifs. For instance, the relevance of the
IMP to E. coli chemotaxis was remarked on in [49]: the methylation state can be viewed
as a memory (integrator), and the “error” is the average kinase activity relative to its basal
value. The IMP encompasses adaptation also with respect to richer classes of signals U—
not just constant ones. For example, one might speculate [37] that circadian rhythms might
have evolved as an IMP mechanism to allow adaptation to day/night light and temperature
cycles: a harmonic oscillator with period T is predicted by the IMP when a system adapts to
U = all signals of the form A sin(2πt/T + ϕ). The IMP was proved as a theorem for linear
dynamics by Francis and Wonham in the mid 1970s [7, 46]. It remains an open problem
to find ultimate nonlinear generalizations, but there are some partial extensions known. For
example, using “zero dynamics” ideas from [14], a theorem was given in [37] that shows, under
appropriate technical assumptions, the existence of coordinate changes, generally nonlinear,
that exhibit an internal model. Using this theorem, one should expect to find coordinate
changes transforming IFFL circuits into integral feedback form, and this is indeed true. We
first describe the comparatively trivial case of linear systems and then discuss how to obtain
an analogous result for nonlinear IFFL systems.

As a simple first illustration, consider the following feedforward linear system:

ẋ = −x+ u , ẏ = −x− y + u ,

which perfectly adapts to y = y0 = 0 but is not in integral feedback form. We may perform a
simple change of coordinates, representing the system using the state variables (x = x− y, y)
instead of the original (x, y). In this new set of coordinates, we have

(10) ẋ = y , ẏ = −x− 2y + u ,
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which is now an integral feedback system (the variable z integrates the “error” y). We next
review the main theorem from [37] and then work out the application to the nonlinear feed-
forward system in Figure 2(a).

The general setup in [37] is as follows. The systems studied are scalar-input scalar-output
n-dimensional systems for which the input appears to first order:

(11) ż = f(z) + ug(z) , y = h(z) .

The vector fields f and g are smooth, and h is a smooth function. We assume that z = 0 is a
steady state when u = 0, f(0) = 0.

We will say that the system (11) adapts to inputs in a class U if for each u ∈ U and each
initial state x0 ∈ R

n, the solution of (11) with initial condition x(0) = x0 exists for all t ≥ 0
and is bounded, and the corresponding output y(t) = h(x(t)) converges to a fixed value y0 ∈ Y

(which does not depend on the particular input u ∈ U) as t→ ∞.
In control theory, it is standard to describe the class of inputs U with respect to which

adaptation holds through the specification of an “exosystem” that produces these inputs. An
exosystem is simply any autonomous system Γ,

(12) ẇ = Q(w) , u = θ(w) ,

with the following property: the input class U consists exactly of the functions u(t) = θ(w(t)),
t ≥ 0, for each possible initial condition w(0). For example, if we are interested in step
responses, we pick ẇ = 0, u = w. This means that the possible signals are the solutions of
ẇ = 0, i.e., the constant functions of time; that is, U is the set of functions u(t) for which
u(t) = ū for all t for some ū ∈ U. On the other hand, if we are interested in sinusoidals
with frequency ω, then we use ẋ1 = x2, ẋ2 = −ω2x1, u = x1. A technical assumption is that
the signals in U do not grow without bound. Specifically, one assumes that the exosystem is
Poisson-stable, meaning that for every state w0, the solution w(·) of ẇ = Q(w), w(0) = w0

is defined for all t > 0 and it satisfies that w0 is in the omega-limit set of w (recall that this
means that there is a sequence of times ti → ∞ such that the sequence w(ti) converges to w

0

as t→ ∞). In other words, the exosystem is almost periodic in the sense that trajectories keep
returning to neighborhoods of the initial state. Both the constant and sinusoidal examples
mentioned above are generated by Poisson-stable systems. In contrast, ramps (linearly growing
signals) are not generated by Poisson-stable systems, since they require an unstable second-
order system ẇ2 = 0, ẇ1 = w2, u = w1 to generate them. Thus, the phenomenon of adaptation
to ramps is not included in the scope of the theorem to be stated. The exosystem is assumed
to have states that evolve on some differentiable manifold, Q is a smooth vector field, and θ
is a real-valued smooth function.

The IMP claims that a copy of this exosystem must be embedded in the system (11). More
precisely, one says that the system contains an output-driven internal model of U if there is a
change of coordinates which brings (11) into the block form

(13)
ż1 = f1(z1, z2) + ug1(z1, z2) ,
ż2 = f2(y, z2) ,
y = κ(z1) ,
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so that the subsystem with state variables z2 is capable of generating all the possible functions
in U : for some function ϕ(z2), and for each possible u ∈ U , there is some solution of

(14) ż2 = f2(y0, z2)

which satisfies ϕ(z2(t)) ≡ u(t). “Change of coordinates” means that there is some integer
r ≤ n and two differentiable manifolds Z1 and Z2 of dimensions r and n− r, respectively, as
well as a smooth function κ : Z1 → R and two vector fields F and G on Z1 × Z2 which take
the partitioned form

F =

(
f1(z1, z2)

f2(κ(z1), z2)

)
, G =

(
g1(z1, z2)

0

)

and a diffeomorphism Φ : Rn → Z1 × Z2, such that

Φ′(x)f(x) = F (Φ(x)) , Φ′(x)g(x) = G(Φ(x)) , κ(Φ1(x)) = h(x)

for all x ∈ R
n, where Φ1 is the Z1-component of Φ and prime indicates Jacobian. Intuitively,

the signal z2 computes an integral of a function of the output y(t), and when y(t) ≡ y0, z2
is (up to the mapping ϕ, which may be interpreted as a sort of rescaling) a signal in U . For
example, if U consists of constant functions (adaptation to steps), then for y ≡ y0 one obtains
(for different initial conditions) the possible constant signals.

In order to prove a theorem justifying the IMP, several technical conditions are imposed
in [37]. The first is a signal detection or “sensitivity” property: (1) for some positive integer
r, called in control theory a finite uniform relative degree,

LgL
k
fh ≡ 0 , k = 0, . . . , r − 2 , and LgL

r−1
f h(x) 
= 0 for all x ∈ Z .

As in the section on observability, generally, LXH denotes the directional or Lie derivative
of a function H along the direction of a vector field X, (LXH)(x) = ∇H(x) ·X(x), and one
understands LY LXH as the iteration LY (LxH). (In the special case that Lgh(x) 
= 0 for all
x, the relative degree is r = 1, since the condition for k < r − 1 is vacuous.) Given that the
relative degree is r, one may consider the following vector fields:

g̃(x) =
1

LgL
r−1
f h(x)

g(x) , f̃(x) = f(x)−
(
Lr
fh(x)

)
g̃(x) , τi := adi−1

˜f
g̃, i = 1, . . . r ,

where adX is the operator adXY = [X,Y ] = Lie bracket of the vector fields X and Y , and
adi−1

˜f
is the iteration of this operator i − 1 times (when i = 1, τi = g̃). One says that a

vector field X is complete if the solution of the initial value problem ẋ = X(x), x(0) = x0 is
defined for all t and for any initial state x0. Two vector fields X and Y are said to commute
if [X,Y ] = 0. The final assumptions, then, are that (2) τi is complete for i = 1, . . . , r and
(3) the vector fields τi commute with each other. (In the special case r = 1, condition (3) is
automatic, since every vector field commutes with itself.) These assumptions are satisfied for
linear systems. They are also satisfied, for example, for the feedforward system in Figure 2(a):

(15) ẋ = αu− δx , ẏ = β
u

x
− γy
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with h(x, y) = y. In vector form, this is ż = f(z) + ug(z), where the vector fields are

(16) f(x, y) =

( −δx
−γy

)
and g(x, y) =

(
α
β/x

)
.

Since Lgh = (0, 1) · (α, β/x)t = β/x is everywhere nonzero, we have that r = 1. Thus we
need only check that

τ1 = g̃ =
1

Lgh(x)
g(x) =

x

β
g(x) =

( α
βx

1

)

is complete, which is true because g̃ is a linear vector field.
The main theorem in [37] says the following: Suppose that assumptions (1)–(3) hold for

the system (11). If (11) adapts to inputs in a class U generated by a Poisson-stable exosystem,
then it contains an output-driven internal model of U .

The proof of the theorem consists of showing that there is, under the stated conditions,
a change of variables as claimed. The map producing the change of variables is obtained by
solving a first-order PDE.

6.2. Illustration of IMP for the feedforward system in Figure 2(a). We consider the
system (15), or (16) in vector form. We already checked properties (1)–(3), and the system
adapts to steps (constant inputs), so the theorem says that it should be possible to recast it
in integral feedback form. The proof in [37] asserts the existence of a mapping ϕ(x, y) whose
Lie-derivative along g solves the following first order linear PDE:

Lgϕ = ∇ϕ · g = αϕx(x, y) +
β

x
ϕy(x, y) = 0 .

Generally, such an equation may be solved using the method of characteristics. However, in
our example the solution is immediate: ϕ(x, y) = αy − β log x. The map

(x, y) 	→ (z1, z2) = (y, ϕ(x, y)) = (y, αy − β log x)

is a diffeomorphism whose inverse is y = z1 and x = e(αz1−z2)/β . We obtain the following
equations in the new coordinates (z1, z2):

ż1 = βue(z2−αz1)/β − γz1 ,

ż2 = βδ − αγz1

with output y = z1. This has the desired internal model form ż1 = f1(z1, z2) + ug1(z1, z2),
ż2 = f2(y, z2), y = κ(z1), if we define f1(z1, z2) = −γz1, g1(z1, z2) = βe(z2−αz1)/β , f2(y, z2) =
f2(y) = βδ − αγy, and κ = identity. Thus z2 is the variable that integrates the error: when
y = y0 = 1, the equation for z2 becomes ż2 = 0, whose solutions are all the possible constant
signals. We can also write this system in terms of the coordinates x = ez2/β , y = z1 as

(17) ẋ = x

(
δ − αγ

β
y

)
, ẏ = βuxe

−α
β
y − γy ,

which has the generic form ẋ = xF (y), ẏ = G(ux, y) of nonlinear integral feedback systems
considered in Lemma 3.1.
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6.3. What are the relative advantages of different architectures? Both integral feed-
back and IFFL circuits allow adaptation, as well as, for appropriate models, symmetry in-
variance to scalings. Thus, it is natural to ask what the relative merits of each of these
architectures are: what fitness-conferring signal processing and control properties are special
for them? We view this as a question for further research and limit ourselves here to a few
remarks.

In a certain sense, the question is meaningless, since feedforward networks can often
be simulated by feedback networks, as just shown. Nonetheless, the variable x̃ = x − y
may well be merely a mathematical construct with no biological meaning. In addition, any
(linearized) system obtained by such a transformation from an IFFL is special: it can have only
real eigenvalues, while the more general integral feedback form may have damped oscillatory
behavior (depending on parameters).

This means that the feedback systems have a wider range of possible dynamical behaviors
and thus might be selected when it is desirable to meet specific performance objectives. In
addition, feedback confers a certain robustness to uncertainty. We illustrate this point by
comparing the feedforward system in Figure 2(a),

ẋ = αu− δx , ẏ = β
u

x
− γy ,

with its recasting in feedback form,

ẋ = x

(
δ − αγ

β
y

)
, ẏ = βuxe−

α
β
y − γy .

Both systems adapt (y(t) → βδ
αγ ). However, while in the feedback form, any perturbation of

the right-hand side ẏ = βuxe−
α
β
y − γy +Δ(x, y) does not alter the property that the steady

state must have y = βδ
αγ , no analogous simple statement can be made for the feedforward form.

Conversely, one may also speculate that biological or evolutionary factors could constrain
the value of feedback structures. As an example, the stability of feedback (but not feedforward)
systems is fragile to delays. Delays could arise from slower time scales for processes such as
transcription and translation, compared to protein modifications. As an illustration, Figure 6
shows oscillations arising from a delay from y to x in the linear integral feedback system (10),
and Figure 7 shows oscillations arising from a delay from y to x in the nonlinear integral
feedback system (17).

7. Invariant steering. As remarked in [32], motile systems that measure a field in order
to determine their velocity of movement have the property that their entire search patterns,
as a function of time, are invariant to scale, if their sensory systems have the FCD property.
We now discuss a precise formulation of this fact for arbitrary systems and symmetries.

We think of a system that, through its output y(t), drives a steering mechanism (“motor
complex”), resulting in a new position r(t). We model this by a system with inputs, which is
a way of saying that the position is computed by a dynamical system that keeps track of the
past history of y:

q̇ = Q(q, y) , r = R(q) ,
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Figure 6. Oscillations in ẋ(t) = y(t− h), ẏ(t) = −x(t)− 2y(t) + u(t) using u ≡ 0 and h = 5.
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r(t) = position            at position r

I(t,r) = unscaled intensity

u(t) = sensed input y(t) = steering command
system

symmetry π

Figure 8. Closed-loop diagram for search under symmetry uncertainty for inputs.

where q(t) is the internal state of the steering mechanism. At position r(t) in space, an “inten-
sity” (e.g., light or nutrient concentration) is queried, and the result is a sensed input I(t, r(t)).
The intensity field I(t, r) could well be time- as well as space-dependent. Finally, the loop is
closed by the system measuring I(t, r(t)), except that we are interested in understanding how
the system behaves if it measures πI(t, r(t)) instead of I(t, r(t)), where π ∈ P is a symmetry.
See Figure 8 for an illustration. We want to study the invariance of behavior of this system,
and in particular of its position r(t) as a function of time, under the assumption that the
system had preadapted to a constant environment I(t, r) ≡ I0 when t < 0 before being placed
in the current environment.
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Formally, we start with a system that adapts and is invariant with respect to a set of
symmetries P, and we consider the following extended system:

ż = F (z, u) , u = I(t, r) ,

q̇ = Q(q, y) , y = h(z), r = R(q) .

We let (z, q) be the solution with initial conditions z(0) = σ(I0) and q(0) = q0, where
Q(q0, y0) = 0, that is, q0 is a steady state that corresponds to the adaptation value y0 of
the original system. Also, for any given π ∈ P, we consider the solution (z̃, q̃) of the system
with initial conditions z(0) = σ(πI0) and q(0) = q0 and intensity field πI(t, r):

˙̃z = F (z̃, ũ) , ũ = πI(t, r̃) ,
˙̃q = Q(q̃, ỹ) , ỹ = h(z̃), r̃ = R(q̃) .

We claim that ỹ(t) = y(t), ũ(t) = πu(t), r̃(t) = r(t), and q̃(t) = q(t) for all t ≥ 0.
To prove the claim, we consider the solution of the system

ẋ = F (x, πu(t)) ,

ṡ = Q(s, h(x))

with initial conditions x(0) = σ(πI0) and s(0) = q0. By definition of P-invariance, we know
that h(x(t)) = h(z(t)) for all t ≥ 0. Thus, since the initial conditions on q and s are the same,
it follows that also s(t) = q(t) for all t ≥ 0. Therefore, u(t) = I(t, r(t)) = I(t, R(q(t))) =
I(t, R(s(t))) for all t ≥ 0. It follows that ẋ = F (x, πI(t, r)). We conclude that (x, s) and (z̃, q̃)
solve the same initial-value problem, and thus x(t) = z̃(t) and s(t) = q̃(t) for t ≥ 0, from
which y(t) = h(z(t)) = h(x(t)) = h(z̃(t)) = ỹ(t), and the claim is proved.

A converse of this result holds as well, and it is described next. In combination with the
main theorem in this paper, we have a complete characterization of those systems for which
search patterns are identical under symmetries in spatial sensory fields.

Remark 7.1. Suppose that, for every possible field I, the above system results in the same
r(t) when started from z(0) = σ(I0) as when starting from z(0) = σ(πI0) but using input
πI(t, r). This property then holds, in particular, when the field I(t, r) is independent of
position r, that is, I is merely an arbitrary open-loop input. We would like to conclude
that y(t) = ỹ(t) from r(t) = ρ(t), which means, since the input is arbitrary, that the original
system must be invariant under π. This conclusion will hold provided that the steering system
has the following property: if we solve q̇ = Q(q, y) with initial condition q(0) = q0 and two
inputs y1 and y2, and the resulting solutions satisfy R(q1(t)) = R(q2(T )) for t ≥ 0, then
y1(t) = y2(t) for t ≥ 0. In control-theoretic terms, this input reconstruction property is stated
as the requirement that the system q̇ = Q(q, y) with output R(q) be input-observable, which
is a property closely related to right-invertibility, inverse dynamics, and “output to input
observability” [14, 19]. Observability is almost enough to guarantee input-observability: if the
system is observable, then q1(t) = q2(t) for t ≥ 0, so it is only needed that Q(q(t), y1(t)) =
Q(q(t), y2(t)) imply y1(t) = y2(t), which is a weak nondegeneracy property.

Remark 7.2. In many applications, the system output y(t) drives a stochastic steering
mechanism: the system producing the location r(t) is subject to randomness, For example,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYMMETRY INVARIANCE FOR ADAPTING BIOLOGICAL SYSTEMS 883

in bacterial chemotaxis, y(t) may represent a signal, such as the level of phosphorylated
protein CheY, which serves to bias the random switches between tumbling and swimming
behavior. One way to represent this probabilistic behavior is to model the dynamical system
that computes the position from the history of y(t) as

q̇ = Q(q, y,X) , r = R(q) ,

where X is a random process: X = {Xt(ω), t ≥ 0} is defined on a probability space (Ω,F , P ),
where Ω is a sample space, F is a σ-algebra of events, and P is a probability measure;
P (X=v(t)) is the probability of a given outcome (sample path) of this process. Under such a
formalization, and assuming appropriate technical conditions, all the variables

z(t), u(t), r(t), q(t), y(t)

are themselves stochastic processes defined on the same probability space Ω. (Technical con-
ditions need to be imposed to ensure the existence of solutions of the differential equations.
We proceed intuitively, assuming that X has piecewise continuous sample paths, thus avoiding
complications of Itô calculus.) Now, given any fixed ω ∈ Ω, we may view q̇ = Q(q, y,X) as a
time-varying system q̇(t) = Q(q(t), y(t), t), where we have substituted X = Xt(ω) along this
sample path. The previous proof extends, with no changes, to such a time-varying system.
It follows that identical r(t) (as well as y(t) and q(t)) are obtained, whether using the field
I or using the changed field πI, so long as the initial condition z(0) has also been modified
by π. This holds for each ω ∈ Ω. Thus, as a random variable, r(t) is invariant under P. In
particular, all statistics of r remain invariant.

We may apply this result to the Tu–Shimizu–Berg E. coli chemotaxis model [41]. This
model (see [32] for more details) may be formulated as

ṁ = F0(y) ,

ẏ = G
( u

eαm

)
− y ,

h(x, y) = y ,

where F0 is a decreasing function which crosses zero at some value y = y0. (More commonly,
one considers the singularly perturbed version in which the output is at equilibrium: y =
G(u/eαm).) Letting x := eαm, we may transform to (another) integral feedback form:

ẋ = xF (y) ,

ẏ = G
(u
x

)
− y ,

h(x, y) = y.

This is homogeneous, and the unique solution of the equivariance PDE is

ρ(x, y) =

(
px
y

)
.

(Global asymptotic stability is easy to show by a LaSalle invariance argument.)
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One can then predict scale-invariance behavior. Indeed, the groups of Roman Stocker
(MIT) and Tom Shimizu (AMOLF, The Netherlands) have now confirmed this prediction [17],
using both molecular level analysis of intracellular signaling (FRET experiments) and mea-
surements of swimming behavior at the level of individual cells and populations (in microfluidic
environments).

8. Conclusions. Motivated by the recent discovery of the important transient property of
fold-change detection (FCD) in certain signaling transduction mechanisms, this paper studied
the more general problem of invariance under symmetries in inputs. A necessary and sufficient
characterization was provided of those adapting and irreducible systems whose behaviors are
invariant. This characterization is through equivariances that solve a certain PDE and can be
explicitly tested on several system motifs that are recurrent in biology. These motifs can be
broadly classified into feedforward and feedback systems. Transformations that help connect
these two types of systems, and their relative merits, were briefly analyzed. Finally, it was
shown that invariance to symmetries in inputs is closely related to the invariance of search
patters for motile systems under sensory field transformations.

We conclude that testing for invariance is feasible for several important classes of models
of biological systems. A challenging question for further research is to better understand situ-
ations in which invariance holds mathematically in only an approximate sense. We showed an
example of systems that exhibit approximate invariance, and a similar approach was recently
taken [33] to classify those three-node enzymatic networks that exhibit FCD (scale-invariance).

Acknowledgments. O.S., E.S., and U.A. participated in defining the questions, the ex-
amples, and their analysis; E.S. wrote the proofs.
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