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Biological networks contain overrepresented small-scale topologies, typically called motifs.
A frequently appearing motif is the transcriptional negative-feedback loop, where a gene product
represses its own transcription. Here, using synthetic circuits stably integrated in human kidney
cells, we study the effect of negative-feedback regulation on cell-wide (extrinsic) and gene-specific
(intrinsic) sources of uncertainty. We develop a theoretical approach to extract the two noise
components from experiments and show that negative feedback results in significant total noise
reduction by reducing extrinsic noise while marginally increasing intrinsic noise. We compare the
results to simple negative regulation, where a constitutively transcribed transcription factor
represses a reporter protein. We observe that the control architecture also reduces the extrinsic
noise but results in substantially higher intrinsic fluctuations. We conclude that negative feedback
is the most efficient way to mitigate the effects of extrinsic fluctuations by a sole regulatory wiring.
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Introduction

Information in cells propagates through intricate, diverse
biochemical pathways. Within these complex networks
certain small-scale interaction patterns appear more
frequently than others (Milo et al, 2002; Alon, 2006, 2007).
The convergence of pathways to particular motifs may
be attributed to their inherent topological and functional
properties, with a range of theoretical and experimental results
supporting this hypothesis.

A network motif of particular interest is negative feedback,
which appears in high frequency in bacterial (Alon, 2006),
yeast (Lee et al, 2007), and mammalian cells (Odom et al,
2006). The negative-feedback loop consists of a single node
that represses its own synthesis, and has been shown to
accelerate transcriptional response time (Rosenfeld et al, 2002)
and reduce gene expression noise in bacteria and yeast
(Thattai and van Oudenaarden, 2001; Becskei and Serrano,
2002; Dublanche et al, 2006; Nevozhay et al, 2009).
Remarkably, theoretical and experimental results show that
negative feedback might either amplify or reduce noise in gene
expression (Thattai and van Oudenaarden, 2001; Simpson
et al, 2003; Austin et al, 2006; Cox et al, 2008; Nacher and

Ochiai, 2008; Singh and Hespanha, 2009; Marquez-Lago
and Stelling, 2010), highlighting the need for additional
experimental investigation, particularly in human cells.

Even though endogenous motifs are composed of relatively
few elements, they are typically embedded as ‘modules’ in
larger networks that exhibit complex behavior. Therefore,
synthetic gene circuits, orthogonal to endogenous cellular
processes, are a suitable experimental platform for elucidating
their topological and functional properties.

Events controlling synthesis and degradation are indepen-
dent for different proteins in a cell, and are often called
‘intrinsic’ or ‘local’ noise (Elowitz et al, 2002; Blake et al, 2003;
Paulsson, 2004; Raser and O’Shea, 2005). A strongly expressing
constitutive promoter is expected to have little intrinsic noise,
while a weak promoter will have high intrinsic noise (Bar-Even
et al, 2006; Newman et al, 2006). These variations propagate
along pathways, with the consequence that protein distribu-
tions along a pathway appear correlated (Swain et al, 2002;
Volfson et al, 2006). However, even proteins from different
regulation pathways may show correlation, owing to stochastic
variations in quantities that affect the regulation of all genes
(Swain et al, 2002; Volfson et al, 2006), such as polymerase
copies. As a consequence, two identical, independently
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regulated promoters are expected to have the same extrinsic
noise, which originates through global effects (Elowitz et al,
2002; Swain et al, 2002; Raser and O’Shea, 2005).

A two-reporter experimental platform (Elowitz et al, 2002)
has been instrumental for studying extrinsic and intrinsic
noise as well as pathway-specific effects (Colman-Lerner et al,
2005; Pedraza and van Oudenaarden, 2005). Results in
Escherichia coli and yeast cells show that extrinsic noise
dominates the total noise (Colman-Lerner et al, 2005),
especially at high protein abundances (Taniguchi et al, 2010),
whereas fluctuations at low-protein copy numbers are owing
to intrinsic noise. A limitation of this experimental platform is
the requirement for two identically regulated reporters with
equal variances. To overcome this constraint, we develop an
approach that permits intrinsic and extrinsic noise breakdown
for two non-identical reporters, and use this methodology to
study noise in synthetic mammalian transgene negative
autoregulation.

Results

Integration of the circuits and initial
characterization

We integrated the negative autoregulation and the control
architectures (Figure 1) in Tet-On immortalized human kidney
cells (Materials and methods, Generation of stable cell lines).
We originally engineered (Bleris et al, 2011) these architectures
using a bidirectional promoter that transcribes two genes fused
in multiple cloning sites (MCSI and MCSII) upstream from
minimal CMV promoters. The bidirectional promoter is
activated in the presence of Doxycycline (Dox) by the
transcription factor rtTA that, for all reported experiments, is
produced stably from the cell line.

For the implementation of the control architecture
(Figure 1A), we chose the transcriptional repressor LacI to
be cloned in the MCSI and we fused sequences containing a
tandem repeat of the wild-type LacO between the Pcmv region
and the start codon of the dsRed monomer reporter gene (fused
in the MCSII). We fused the zsGreen1 protein upstream from
LacI, using an internal ribosome entry site (IRES), a nucleotide
sequence that allows for translation initiation in the middle of
a messenger RNA (mRNA) sequence. We constructed the
transcriptional negative autoregulatory motif by inverting the
promoter region of the control motif copying the wild-type
LacO sequence (Figure 1B). As a result, the LacI protein
inhibits the transcription of its own mRNA (and the
co-expressed zsGreen1), and the constitutive output is now
measured by the dsRed fluorescent. The negative-feedback
strength can be tuned by IPTG induction.

Subsequently, we integrated the circuits stably in cells
(Materials and methods, Generation of stable cell lines). For
fixed Dox in a monoclonal cell population, the architecture
depicted in Figure 1A is a simple negative regulation and
serves as the control. We note that by changing the Dox levels,
the output of the control architecture (Figure 1A) will depend
on both X (rtTA) and Y (LacI) thereby emulating a Type I
incoherent feedforward architecture (Alon, 2006). Previously
(Bleris et al, 2011), we transiently transfected plasmids
carrying these circuits and studied the behavior of the reporter
proteins. Our experiments showed that the output node of
an incoherent feedforward motif is largely invariant to
the changes in the DNA fragment (i.e., primarily the copy
number).

We first induced the stable clones with a wide range of IPTG
and Dox concentrations, and the output was quantified after
24 h using flow cytometry (Materials and methods, Data
processing). A gate based on the forward and side scatter is
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Figure 1 The synthetic architectures integrated in human kidney cells. (A) The control architecture: the bidirectional promoter under the control of rtTA transcribes the
ZsGreen1–IRES–LacI and dsRed monomer transcripts. The dsRed monomer is inhibited by LacI. (B) The negative feedback: The bidirectional promoter under the
control of rtTA transcribes the ZsGreen1–IRES–LacI and dsRed monomer transcripts. The ZsGreen1–IRES–LacI transcript is inhibited by LacI.
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first used to select single cell events followed by a gate that
retains the constitutive protein-positive events (i.e., dsRed for
the negative feedback and zsGreen1 for the control architec-
ture) at the threshold of negative cells (Supplementary
Figure 1).

A Dox titration of the negative-feedback architecture shows
that the mean protein concentration increases for both the
constitutive side, dsRed, and the side controlled by negative
feedback. In the case of dsRed, we have a three-fold increase,
while for zsGreen1 we have a two-fold increase in the mean
protein concentration (Supplementary Figure 2a). For the
control architecture, the mean protein concentration increased
by five-fold the constitutive side (zsGreen1) and 2.5-fold the
regulated side, dsRed (Supplementary Figure 2b). These
results are in agreement with our transient transfection
experiments (Bleris et al, 2011), and show that the incoherent
feedforward architecture is superior to negative feedback in
controlling the output mean levels due to changes in the input.

We then performed IPTG titrations (0.0625–25 mM) at
two Dox concentrations, 625 ng/ml (defined as ‘low’) and
5000 ng/ml (defined as ‘high’). The Dox values were selected
in order to study the effect of the expression level on the total
noise, and to provide sufficient separation of the mean output
levels (Supplementary Figure 3). Importantly, the ability to
control the transcription levels of the transgene allows us to
emulate the effect of the variable transcriptional activity

expected at different genomic locations. Consistently with our
experiments (Supplementary Figure 3), previous experimental
(Bar-Even et al, 2006) and theoretical (Paulsson, 2004) studies
show that noise scales inversely with the protein abundance.

For the negative feedback, the titrations performed at low
and high concentrations of Dox show a corresponding five-fold
increase for the high Dox case and a three-fold increase in the
low Dox case in mean fluorescence of zsGreen1 (Figure 2A).
As expected, the dsRed protein levels remains constant over
the entire range of IPTG concentrations (Figure 2B). We
provide selected microscopy snapshots of the induced
negative-feedback populations in Figure 2C. The IPTG titra-
tions of the simple negative regulation clone result to a
four-fold and eight-fold increase in dsRed protein levels at
low and high Dox concentrations, respectively, whereas the
constitutively synthesized protein levels were unchanged
(Figure 2D and E, respectively). We provide selected micro-
scopy snapshots of the induced simple regulation populations
in Figure 2F. We also include all the flow cytometry data and
the corresponding histograms for the IPTG titrations for
both transgenes and two Dox conditions (Supplementary
Figures 4–7).

To further probe the behavior of the circuits, we quantified
the number of copies of integrations for our circuits using real-
time quantitative PCR (Materials and methods, and
Supplementary Material, Integration Copies). We found that
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Figure 2 IPTG titrations for the negative feedback and simple regulation transgenes. (A–C) The negative feedback: zsGreen protein in green (under negative
autoregulation) and dsRed in red (constitutively synthesized). Saturated Dox concentration with squares and low DOX concentration with diamonds. Error bars show the
s.d. of triplicate experiments. (A) The mean zsGreen fluorescence. (B) The mean dsRed fluorescence. (C) Microscopy images of IPTG titrations at high concentration of
Dox. (D–F) Simple regulation architecture: the dsRed in red (under regulation) and the zsGreen protein in green (constitutively synthesized); saturated Dox concentration
with squares and low DOX concentration with diamonds. Error bars show the s.d. of triplicate experiments. (D) The mean dsRed fluorescence. (E) The mean zsGreen
fluorescence. (F) Microscopy images of IPTG titrations at high concentration of Dox. Source data for this figure is available on the online supplementary information page.
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the negative-feedback clone is a single integration while the
simple negative regulation is two copies (Supplementary
Material, Table I). We created a new transgene of the
simple negative regulation with a single integration
and showed that their behavior is consistent (Supplementary
Figure 8).

Analysis of noise

After the initial characterization of the transgenes, our next
objective was to extract the two noise components from the
experimental data. The total noise observed in a fluorescent
reporter distribution arises through the combination of
global (extrinsic) fluctuations together with the fluctuations
in that protein’s local regulation machinery (intrinsic).
In the standard two-reporter formulation (Elowitz et al,
2002), the extrinsic noise becomes the normalized
covariance of the two reporters that are independently
regulated and identically distributed. We extend this analysis
to cases where it is not feasible to construct two identically
regulated reporters or it is impossible to obtain identical
reporter statistics.

We use a multiplicative noise model (Supplementary
Material, Theory), where the total fluctuations of one reporter
are the product of an extrinsic random variable and intrinsic
random variable, while the second reporter fluctuations
are the product of the same extrinsic random variable but its
own intrinsic random variable. The three-model components
are assumed independent. As described in detail in the
Supplementary Material, we convert this multiplicative model
to a linear model and show that the extrinsic noise is the
normalized covariance of two constitutive reporters and the
intrinsic noise is the difference between the observed CV
square and the extrinsic CV square. Importantly, to decouple
the extrinsic noise of the regulated and constitutive reporters,
we add the sensitivity coefficient a to the extrinsic random
variable for the regulated reporter.

We define as Y the constitutive reporter, X the regulated
reporter (controlled by an inducer, in our case IPTG), and a is
the coefficient that is 1 for two constitutive promoters with
identical reporter statistics but varies depending on the
regulation of X. Considering the case of negative feedback,
when LacI is fully inactivated by IPTG at saturation, both
reporters are equally sensitive to extrinsic fluctuations;
thereby the extrinsic noise will be the normalized covariance
as defined previously (Elowitz et al, 2002). We can safely
postulate that the unregulated reporter should have equal
sensitivity to extrinsic fluctuations for all IPTG conditions.
Consequently, we calculate the regulated reporter sensitivity
coefficient a for each sample in the IPTG titration such that the
extrinsic noise of the unregulated reporter is the same as
in the full IPTG well (Supplementary Material, Table II).
In summary, we use the following noise breakdown:

n2
extX¼ aiCovðXi;YiÞ ð1Þ

n2
intX¼n2

totX�n2
extX ð2Þ

n2
extY¼CovðXi;YiÞ=ai ð3Þ

n2
intY¼n2

totY�n2
extY ð4Þ

aN ¼
ntotX

ntotY
ð5Þ

ai¼
Cov Xi;Yið ÞaN

Cov XN ;YNð Þ ; i 6¼ N ð6Þ

where n2
totX and n2

totY are experimentally determined CV
squares of reporters X and Y, Cov(Xi,Yi) is the covariance of
the logarithms of X and Y, and the inducer concentrations are
indexed i¼ 1,2, y ,N, where well N is fully induced.

The effect of negative-feedback regulation on
noise

We next obtain the intrinsic, extrinsic, and total noise of the
two architectures (Figure 1) for the IPTG titrations of Figure 2.
The negative-feedback architecture experiments show that
stronger feedback (i.e., low IPTG concentration) reduces
extrinsic noise (and the total noise) but mildly increases
intrinsic noise (Figure 3A and D for high and low Dox,
respectively). As expected, the noise levels remain flat for the
control protein output (Figure 3C and F), with the extrinsic
noise significantly higher than the intrinsic noise. In addition,
for the negative-feedback architecture, when comparing the
high and low Dox cases (Figure 3A and D), we observe that
the strong induction leads to lower total noise. We also plot the
noise versus the mean levels of the output protein, to probe
directly the impact of negative feedback. Indeed, as illustrated
in Figures 3B and E the negative feedback reduces noise.
In contrast, the simple negative regulation remains in the same
range for decreasing mean (Figure 3H).

When we examine the noise breakdown of the simple
negative regulation architecture, we observe that the noise
scales with protein abundance (Figure 3G for high Dox and
Supplementary Figure 9 for low Dox). The effect is not as
pronounced as with the negative feedback but we partially
attribute this to a post-processing of the data, performed in
order to discard the portion of the events that merge with the
background signal (Supplementary Figures 6–7). The post-
processing is particularly necessary for the low Dox case and
although qualitatively consistent these results are not taken
into consideration (Supplementary Figures 7 and 9). We
emphasize that for the negative autoregulation there is no
post-processing beyond the constitutive protein gating
(Supplementary Figures 4–5).

For the simple negative regulation architecture, the results
show that stronger regulation (i.e., low IPTG concentration)
reduces extrinsic noise but significantly, as compared with the
negative feedback, increases intrinsic noise (Figure 3G),
resulting to approximately flat total noise. As expected, the
control constitutive protein noise breakdown remains flat for
high Dox (Figure 3I).

In order to validate our noise decomposition, we performed
alternative analyses of the raw experimental data and
simulations. First, we used a method to filter out extrinsic
noise, simply by processing the flow cytometry data using a
smaller forward versus side scatter gate (Newman et al, 2006).
This approach has been reported to filter out extrinsic noise in
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mammalian cells (Singh et al, 2010). Indeed, we find
(Supplementary Figure 10) that reducing the gate decreased
the total noise due to a decrease in the extrinsic noise, while
the intrinsic noise remains the same. Furthermore, the
overall trend of the drop in noise with decreasing concentra-
tions of IPTG did not change. We also used simulations to
gain additional insight into the ways our method is able
to decompose noise. Specifically, as discussed in the
Supplementary Material Theory section, we first vary the
strength of transcription of a single bidirectional promoter
coding for two fluorescent proteins, leading to perfectly
correlated fluorescence quantities, which our decomposition
shows to have only extrinsic noise and no intrinsic noise. Next,
we vary the transcriptional activity of two fluorescent genes

independently, which leads to uncorrelated fluorescence
quantities; our method returns only intrinsic noise and no
extrinsic noise. Subsequently, we show that the decomposition
is correct for mixtures of intrinsic and extrinsic noise.

Finally, in order to further validate the consistency of our
results, we examined the relationship between the chromo-
somal position of our transgene and the experimentally
observed phenotype. We created new integrations for the
negative feedback, selected three random colonies, and we
performed titrations of IPTG for high Dox levels. A direct
comparison between the main and new clones
(Supplementary Figure 11) shows that the overall behavior is
conserved with the absolute noise levels being marginally
different. This difference is expected considering that distant
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chromosomal sites often have significant differences in their
transcriptional activity (Dar et al, 2012).

Discussion

Investigating the relationship between regulatory systems and
cellular noise has inherently wide biological significance. Our
results shed new light on one of the most abundant biological
motifs, the negative-feedback loop. In particular, we used
synthetic circuits stably integrated in human kidney cells and
we studied the effect of negative feedback on cell-wide and
gene-specific sources of uncertainty.

We developed an approach to extract the extrinsic and
intrinsic noise contributions from experimental measurements
of two reporter proteins that are controlled by non-identical
promoters. Our experiments reveal that negative feedback
reduces extrinsic noise while slightly increasing intrinsic
noise. Importantly, negative feedback reduces the total noise.
By comparing these results to simple negative regulation,
we argue that negative feedback is the most efficient way to
reduce extrinsic fluctuations by introducing a sole additional
regulatory wiring.

It has been shown theoretically (Simpson et al, 2003) and
confirmed experimentally (Austin et al, 2006) that negative
autoregulation can filter out lower frequency noise. In
addition, it has been shown experimentally (Rosenfeld et al,
2005) that extrinsic fluctuations have lower frequency
components than intrinsic noise. It follows that negative
autoregulation would remove extrinsic noise. Our results
indeed show that negative autoregulation removes extrinsic
noise; however, we also observe that simple negative
regulation also removes extrinsic noise, de-correlating the
negatively regulated reporter from the constitutive reporter.
Time lapse experiments can be used to shed additional light to
the properties of these architectures.

To conclude, our analysis shows that negative feedback
reduces noise, but only from extrinsic sources, outside of the
genetic components of the feedback loop. Furthermore, we
show that the negative feedback raises intrinsic noise but the
cost of this regulation is small when compared with simple
negative regulation.

Materials and methods

Generation of stable cell lines

Tet-ON cells (Clontech), which stably express the transcription factor
rtTA, were used for all the experiments. Cells were grown in 12-well
plates (Greiner Bio-One) at 80% confluency and transfected
(LTX Transfection reagent, Invitrogen) with the plasmid carrying the
circuit and a Hygromycin linear selection marker (Clontech) in a 1:20
ratio. Cells were transferred to Petri dishes and incubated in 25mg/ml
hygromycin for a week. Hygromycin was then reduced to 15mg/ml and
cells were incubated until colonies developed. Colonies that were
positive for florescent signals were selected by microscopy and picked
using cloning rings and further expanded.

Cell culture

The cells were grown at 371C and 5% CO2. The cells were grown in
Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen, Cat # 11965-
11810) supplemented with 0.1 mM MEM non-essential amino acids

(Invitrogen, Cat # 11140-050), 0.045 units/ml of penicillin and
0.045mg/ml streptomycin (Penicillin–Streptomycin liquid, Invitro-
gen), and 10% fetal bovine serum (FBS, Invitrogen). The adherent
culture was maintained in this medium by trypsinizing with Trypsin–
EDTA (0.25% Trypsin with EDTAx4Na, Invitrogen) and diluting in a
fresh medium upon reaching 50–90% confluence.

Flow cytometry

The cells were prepared for flow cytometry by trypsinizing each well
with 0.5 ml 0.25% trypsin–EDTA, collecting the cell suspension,
and centrifuging at 4000 r.p.m. for 2 min. Trypsin was removed and
the pellet resuspended by short vortexing in 0.5 ml PBS buffer
(Invitrogen). Cells were run on a LSR Fortessa (BD Biosciences) Flow
cytometer equipped with the FACSDiva software program. One
hundred thousand cells were counted in each run. DsRed was
measured with a 561 nm laser and a 586 nm emission filter with a
582/15 band pass filter, and ZsGreen1 with a 488 nm laser and a
509 nm emission filter with a 515/20 band pass filter. Data analysis was
performed using FlowJo and Matlab.

Data processing

First, we use the constitutive fluorescence protein-positive population
of cells, based on a control experiment in which cells are uninduced
(Supplementary Figure 1). Second, to remove outliers (explained in
the supplement), we include cells that have a fluorescent intensity
equal to 2.5 times the s.d. of the population.

Microscopy

All microscope images were taken from live cells grown in multi-well
plates (Greiner Bio-One) in the DMEM supplemented with
non-essential amino acids, penicillin/streptomycin, and 10% FBS.
Cells were imaged using the Olympus IX81 microscope and a Precision
Control environmental chamber. The images were captured using a
Hamamatsu ORCA–03 Cooled monochrome digital camera. The filter
sets (Chroma) are as follows: ET470/50x (excitation) and ET525/50m
(emission) for ZsGreen1, ET560/40x (excitation) and ET630/75m
(emission) for DsRed. For the negative feedback, the exposure times
were ZsGreen1:500 ms and dsRed:1000 ms, while for the simple
negative regulation, the exposure times were ZsGreen1:400 ms and
dsRed:2000 ms. Data collection and processing was performed in the
software package Slidebook 5.0 and Adobe Illustrator.

Copy number using real-time PCR

We performed real-time quantitative PCR to determine the absolute
copies of integration for our circuits. The average copy numbers
of dsRed of all stable clones were estimated by the delta
delta Ct method as follows: 2�DDCt¼ ((1þEDsRED)�DCt,DsRED)/
((1þEBRCA1)

�DCt, BRCA1), where EDsRED is the PCR amplification
efficiency for dsRed and EBRCA1 for BRCA1 (endogenous reference
gene)(Zheng et al, 2011). A control stable HEK293 cell line was
generated by Flp-In system (Invitrogen) and contains a single copy of
dsRed transgene (Li et al, 2012). To determine the PCR amplification
efficiency, genomic DNAs from the control cell line were used to
generate the dilution curve of log2(DNA amount, ng) versus Ct. EDsRED

was calculated as 1.07, and EBRCA1 as 0.98. For each stable clone,
triplicates (50 ng of genomic DNA) were performed and the average
copy numbers were calculated as the mean±s.d.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Supplementary Material 

Supplementary Figures 

 

Supplementary Figure1. Flow cytometry data gating and processing. (a) A gate based on the forward 

and side scatter is first used to select single cell events. (b) The gated population is projected for dsRed 

and zsGreen. The particular case is a population of H293 cells without any fluorescence. Subsequently, 

we gated the constitutive protein positive events (e.g. dsRed for the negative feedback) at the threshold of 

negative cells. (c) The particular case is a population is the negative feedback. ■ 

 

 

 



  

Supplementary Figure 2. Doxycycline titrations for the negative feedback loop and the control 

architecture. The zsGreen protein in green diamonds and the dsRed in red squares. Error bars show the 

standard deviation of triplicate experiments. (a) Absolute change of mean fluorescent levels of dsRed and 

zsGreen for the NFL. (b) Absolute change of mean fluorescent levels of dsRed and zsGreen for the 

control architecture.■ 

 

 



 

Supplementary Figure 3. Coefficient of variation versus IPTG concentration for the negative feedback 

loop for various concentrations of doxycycline. ■ 

 

 

 

 

 

 

 



 

 

Supplementary Figure 4. IPTG Titrations for the negative feedback loop. The high Doxycycline 

case. DsRed positive cells are illustrated and the corresponding histograms for each output are also 

presented. ■ 

 

 

Supplementary Figure 5. IPTG Titrations for the negative feedback loop. The low Doxycycline case. 

DsRed positive cells are illustrated and the corresponding histograms for each output are also presented. 



 

Supplementary Figure 6. IPTG Titrations for the cascade. The high Doxycycline case. DsRed 

positive cells are illustrated and the corresponding histograms for each output are also presented.  ■ 

 

 

Supplementary Figure 7. IPTG Titrations for the cascade. The low Doxycycline case. DsRed positive 

cells are illustrated and the corresponding histograms for each output are also presented.  ■ 

 

 

 



 

 Supplementary Figure 8. Comparison of mean fluorescence and coefficient of variation between the 

main paper simple regulation clone and another simple regulation transgene.■ 

 

 



 

Supplementary Figure 9. Coefficient of variation for the control architecture.  Local, global and total 

noise in gene expression of the control architecture. (a) Coefficient of variation of dsRed protein for low 

DOX, (b) Coefficient of variation of zsGreen protein for low DOX.■ 



 

Supplementary Figure 10. Effect of forward scattering vs. side scatter gate on the extrinsic noise. The 

top panels (a and b) correspond to the original gate (SSC ~20k-120k and FSC ~20k-120k gate, 

supplementary figure 1) while panels c and d were prepared using smaller gate (SSC ~40k-50k and FSC 

~70k-80k gate).■ 

 



 

Supplementary Figure 11. Comparison of mean fluorescence and coefficient of variation between the 

main paper negative feedback clone and two different negative feedback transgenes.■ 

 

  



 

Supplementary Figure 12. Determination of PCR amplification efficiencies for DsRED and BRCA1 

gene targets. The dilution curves (DsRED and BRCA1) were plotted as log2(DNA amount, ng) versus Ct. 

The PCR amplification efficiency E was calculated as: 2
(-1/slope of the dilution curve)

-1. EDsRED was determined as 

1.07, and EBRCA1 as 0.98.■ 

 

 

Supplementary Figure 13. Simulations where the intrinsic and extrinsic noise change separately. (a) We 

vary the strength of transcription of a single bidirectional promoter coding for two fluorescent proteins, 



leading to perfectly correlated fluorescence quantities. (b) We vary the strength of transcription of two 

fluorescent genes independently.■ 

 

Supplementary Figure 14. Simulations where the intrinsic and extrinsic noise change simultaneously.■ 

 

 

 

 

 

 

 

 

 

 

 

 

 



Transgene copy number 

Real-time quantitative PCR has been used as an alternative to Southern blot or fluorescence in situ 

hybridization for detection of gene copy numbers
1
. Various studies demonstrated that this method is 

accurate enough compared to Southern blot. For example, in Table 2 from “Determination of Cytochrome 

P450 2D6 (CYP2D6) gene copy number by real-time quantitative PCR”
2
, the estimations of CYP2D6 

gene copies from real-time quantitative PCR match with those from Southern blotting. The average copy 

numbers of DsRED of all stable clones were estimated by the delta delta Ct method as follows: 2
-ΔΔCt

 = 

((1 + EDsRED)
-ΔCt,DsRED

) /((1+EBRCA1)
-ΔCt,BRCA1

), where EDsRED is the PCR amplification efficiency for 

DsRED and EBRCA1 for BRCA1 (endogenous reference gene)
3
.  

 The PCR primers are: DsRED forward primer: 5’- ctccaccacggtgtagtcct-3’; DsRED reverse 

primer: 5’- agaccgtgtacaaggccaag-3’; BRCA1 forward primer: 5’- gagcgtcccctcacaaataa-3’; and BRCA1 

reverse primer: 5’- tgctccgtttggttagttcc-3’. The control stable HEK293 cell line was generated by Flp-In 

system (Invitrogen) and contains one copy of DsRED transgene
4
. All genomic DNA samples were 

extracted using DNeasy Blood and Tissue kit (Qiagen). To determine the PCR amplification efficiency, 

genomic DNAs from the control cell line were used to generate the dilution curve of log2(DNA amount, 

ng) vs. Ct. EDsRED was calculated as 1.07, and EBRCA1 as 0.98. The PCR conditions were as: 95 degree for 3 

minutes, followed by 40 cycles of 95 degree for 15 seconds and 60 degree for 30 seconds. For each stable 

clone, triplicates (50 ng of genomic DNA) were performed and the average copy numbers were calculated 

as the mean ± SD. For statistical analysis, z scores were calculated against estimated integer copy 

numbers, and -1.96<z<1.96 was determined as no statistical difference (corresponding to 95% confidence 

interval). 

 

Determination of PCR amplification efficiency: 80 ng, 40 ng, 20 ng, 10 ng, 5 ng and 2.5 ng of genomic 

DNAs were extracted from the control cell line using DNeasy Blood and Tissue kit (Qiagen). The PCR 

primers are: DsRED forward primer: 5’- ctccaccacggtgtagtcct-3’; DsRED reverse primer: 5’- 



agaccgtgtacaaggccaag-3’; BRCA1 forward primer: 5’- gagcgtcccctcacaaataa-3’; and BRCA1 reverse 

primer: 5’- tgctccgtttggttagttcc-3’. The PCR conditions were as: 95 degree for 3 minutes, followed by 40 

cycles of 95 degree for 15 seconds and 60 degree for 30 seconds. The dilution curves were plotted 

(Supplement Fig. 12) as log2(DNA amount, ng) vs. Ct. The PCR amplification efficiency E was 

calculated as: 2
(-1/slope of the dilution curve)

-1. 

Supplementary Table I.  Transgene clones and the resulting number of integrations. 

Clone Gene Copy Average Standard Deviation 

Negative Feedback 

(NF Clone I: L6.89.14) 
1.026716891 0.205356713 

Simple Negative Regulation 

(SNR Clone I: V2.42.1) 
1.986616106 0.063272704 

Single integration clone 1.005016457 0.127722277 

Simple Negative Regulation 

(SNR Clone II: V2.52.2) 

1.024331368 0.09450017 

 

Supplementary Table II: The values for alpha obtained for the manuscript clones. 

IPTG 
(μM) 

Negative 

Feedback 

High Dox 

Negative 

Feedback 

Low Dox 

Simple Negative 

Regulation 

High Dox 

Simple Negative 

Regulation 

Low Dox 

50 1 1.22 1.11 1.28 

25 1.046293 1.280207 1.170337 1.332335 

12.5 0.986329 1.211581 1.232468 1.230991 

6.25 0.961434 1.195583 1.064725 1.084425 

3.125 0.847654 1.111019 0.868676 0.861535 

1.6 0.692237 0.864742 0.684977 0.626666 

0.8 0.64337 0.749677 0.548974 0.431871 

0.4 0.605457 0.677382 0.389802 0.303799 

0.2 0.568188 0.649937 0.323275 0.265747 

0 0.5828 0.630114 0.337724 0.23634 

 

 

 



Theory 

Stochastic events which govern the concentration of a single protein, such as the synthesis and 

degradation of that protein, are referred to as “intrinsic” or “local” noise. Such random fluctuations can 

propagate along regulation pathways, with the consequence that protein distributions along a pathway 

appear correlated
5, 6

. However, even proteins from different regulation pathways show correlation
5, 7

. This 

arises from stochastic variations in quantities which affect the regulation of all genes
5, 6

, such as in 

polymerase copies or cell cycle phase. As a consequence, a strongly expressing constitutive promoter is 

expected to have little intrinsic noise, while a weak promoter will have high intrinsic noise
8, 9

. In addition, 

two identical, independently regulated promoters are expected to have the same extrinsic noise, which 

arises through global effects
5, 7

. 

 The total noise observed in a fluorescent reporter distribution arises through the combination of 

these “global” or “extrinsic” fluctuations together with the fluctuations in that protein’s local regulation 

machinery (“intrinsic” noise)
5
. The intrinsic noise and extrinsic noise squared, sum to the CV-squared of 

the fluorescent reporter
5
. Using this notation, let angle brackets indicate that an average is taken with 

extrinsic variables held fixed, and let an overbar indicate an average where intrinsic variables are fixed. 

Then the three noises, intrinsic, extrinsic, and total, can be written in terms of P, the observed distribution 

of reporter protein: 

    
  

〈  〉̅̅ ̅̅ ̅̅  (〈 〉̅̅ ̅̅ )
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 For intrinsic noise, the authors of
5
 take the variance of the intrinsic variables, 〈  〉  〈 〉 , then 

estimate the expected value of this variance, denoted by the overbar, and subsequently divide by the mean 

squared of P. For extrinsic noise, the authors take the expected value of P with respect to intrinsic 

variables, then the variance of 〈 〉, and finally divide by the mean squared of P. For the total noise (CV-

squared), the variance of P is divided by the mean squared. 

Note that with a single reporter, the noises can’t be estimated unless both the intrinsic and 

extrinsic variables are observed. However, in the standard two-reporter experiment, the extrinsic noise 

becomes the normalized covariance of two reporters that are independently regulated and identically 

distributed. The reason
5
 is that in a single cell, the extrinsic variable is fixed, so the quantity 〈 〉 ̅̅ ̅̅ ̅̅  can be 

calculated as the average product of the two reporters 〈        〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, then since 〈    〉̅̅ ̅̅ ̅̅ ̅̅  〈    〉̅̅ ̅̅ ̅̅ ̅̅  the extrinsic 

noise becomes the normalized covariance of the two reporters: 

    
  

〈        〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (〈    〉̅̅ ̅̅ ̅̅ ̅̅ )(〈    〉̅̅ ̅̅ ̅̅ ̅̅ )
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and the intrinsic noise becomes the normalized RMS difference from           , so that the sum of 

intrinsic and extrinsic is twice the CV of one reporter. 

In this paper we examine more complicated regulatory mechanisms where it is not feasible to 

construct two identically-regulated reporters (or impossible to obtain identical reporter statistics). We 

define a new formulation and we will obtain the previous results as a special case, where the extrinsic 

noise is the normalized covariance and the components sum to the total noise.  

Let X be the observed reporter protein, and A and B are the intrinsic and extrinsic variables; if we 

assume a multiplicative model and that the variables are independently distributed, we can derive the 

following intrinsic/extrinsic noise breakdown: 



 (      
 )

  
 

 
 (      

 )

  
 

 
 (      

 )

  
 

 

 Such a multiplicative model can be motivated as follows. Suppose gene X is activated by two 

factors; one (A) is an intrinsic variable such as a transcription factor, and the other (B) is an extrinsic 

variable, such as RNA polymerase. Suppose both factors must be present for transcription, in the complex 

ABX. We have four reaction equations: 

       

       

         

         

This results in the following algebraic equations at steady-state: 

   [  ]     [  ]     [ ][ ]     [ ][ ] 
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For the gene activity, we take the ratio of active complex ABX to total gene copies: 

        
[   ]

[ ]  [  ]  [  ]  [   ]
 

This simplifies to an expression in terms of A and B (we drop most of the constants): 

        
[ ][ ]  [ ] [ ]  [ ][ ] 

  [ ]  [ ]  [ ]  [ ]  [ ] [ ]  [ ][ ] 
 



Which, for small, unsaturated concentrations of A and B, looks like: 

        
[ ][ ]

 
 

 Intuitively, in this multiplicative approximation, a polymerase fluctuation of 10% is expected to 

change gene activity by 10% (with an unsaturated promoter). Compare this to an additive noise model: 

now, the same polymerase fluctuation of 1000 molecules is expected to change gene output by 1000 

molecules, regardless of whether the output is currently regulated at 10000 molecules or at 100 

molecules. Thus the multiplicative model makes physical sense for positive variables, where a reporter 

with 100 molecules cannot have an uncertainty of 1000 molecules. 

 We generalize this multiplicative model and assume the observed random variable is a function of 

its independent component sources (A and B, the intrinsic and extrinsic variables) of the following 

general form:  

       

i.e. where a and b are not necessarily both equal to 1. These sensitivity coefficients must appear as powers 

because multiplied coefficients fall out as a single constant in the next step. It is convenient to convert this 

to a linear model (for ease of calculation), by taking the logarithm: 

                         

 For ease of notation, we drop the log functions and just use the original variable names. 

          

 Here we need to calculate the contributions of A (intrinsic) and B (extrinsic) to the total observed 

noise of X. In general, summing two independent random variables A and B with variance        and 

       results in the following variance:  



                                                           

 The last equality holds because the intrinsic and extrinsic components have been defined to have 

no covariance term: any fluctuation which affects two identical reporters is an extrinsic variable, and all 

remaining noise observed is intrinsic. The variances of logarithms returned by this method are 

approximately the normalized variances (CV-squares) of the original quantities; we discuss this point 

later. 

 Elowitz et al.
7
 argues that two identically regulated reporters with the same mean and variance 

should have the same extrinsic noise, and uses this fact to calculate the noise components. We introduce 

the following modification to extend the intrinsic/extrinsic breakdown to cases where one reporter is not 

constitutive, and hence may not obey the Elowitz et al. assumptions. For a regulated reporter, noise may 

propagate along the regulatory pathway, changing the reporter’s susceptibility to global fluctuations 

(supposing that this reporter is in the same cell as a constitutive reporter). We capture this asymmetric 

effect by adding a sensitivity coefficient to the regulated reporter for a two-reporter noise breakdown. 

 Let Y be the constitutive reporter and X a regulated reporter (controlled by an inducer, in our case 

IPTG). A is a function of all extrinsic variables, B and C are the intrinsic variables for each promoter, and 

  is a coefficient which is 1 for two constitutive promoters with identical reporter statistics (as in Elowitz 

et al.) but varies depending on the regulation of X.   represents an aggregated susceptibility to fluctuating 

variables which affect both reporters, similar to the quantity H used in Paulsson
10

 to denote the 

logarithmic gain of an interaction: 

      

     

 With   placed as a power of A, we have defined          〈       〉         〈     〉   , 

the logarithmic gain of fluctuations in A (extrinsic noise sources) transmitted to X, which we assume is 



independent of the value of B and of the size of the fluctuation. Selecting     results in the same noise 

breakdown as Elowitz et al.
7
, where the extrinsic noise is the normalized covariance of both reporters, and 

the intrinsic noise is the total CV-squared minus the extrinsic noise.  

 Intuitively, the inverse tangent of   is the slope of the data on a log-log plot that lies along the 45-

degree diagonal in the special case     but does not if the two reporters experience different fluctuation 

magnitudes from extrinsic sources due to the presence of noise-changing regulatory components.  

 We take the logarithm to convert to a linear model to find the components.  

                       

                     

Once more dropping the log notation for simplicity, 

       

      

 Taking the covariance of the logarithms of the reporters (this can be done directly with cytometry 

data – gate as in figure S1, take the log of the raw reporter values, and calculate the covariance): 

                       

                                       

Because A, B, and C are defined as uncorrelated, 

                            

We take the variances of the logarithms of X and Y, which are the experimentally determined total noises, 

                       



                     

Next, we replace the variance of A with the experimental covariance term, 

                         

                         

 Our goal is to compute    (where           ranges over possible inducer concentrations), 

       ,        , and        , from the knowledge of           ,        , and         Here, the 

covariance terms correspond to the effects of the extrinsic noise, and the B and C terms are intrinsic 

noises. So far we have 2N equations (the expressions for         and        ) in 3N unknowns (   and 

the variances of B and C for each well), but we also know that the inducer of the regulated protein (in our 

case IPTG) has no effect on the global fluctuations that contribute to noise in the constitutive reporter. 

This means the extrinsic noise term in (I),              , (and directly         and         also) should 

be the same for all inducer conditions, that is, we have     additional equations 

          

  
  

   (     )

  
 

for all    . Finally,      for the unregulated control experiment (in our case fully induced with IPTG), 

so both constitutively produced reporters have the same extrinsic noise, as in Elowitz et al 
7
.  

 The choice of      sets the noise components for the fully induced well, but we need to 

calculate    for the other wells. For wells without full IPTG induction, it follows from (II) that we can set 

   equal to 
             

           
, i.e. the ratio of the covariance of the current well to the extrinsic noise of the 

unregulated control experiment. This forces the extrinsic noise of the constitutive reporter (           

  ) to the same value               for all wells. The computed    are then used to calculate the 

(II) 

(I) 



extrinsic noise of the regulated protein              for each well, and by subtraction we then obtain the 

intrinsic components. 

 All of these terms            are unbiased estimates of the sample covariance computed as 

follows, for cytometry data where each individual well   has   cells recorded with reporter measurements 

  
 
 and   

 
 indexed          : 

                       
 

   
∑[(       

 
  

 

 
∑        

  
 

   
) (       

 
  

 

 
∑        

  
 

   
)]

 

   

 

 We note that in some experiments the two reporters in the fully induced well do not have the 

identical statistics required by the dual reporter theory of Elowitz et al. We attribute this to the difficulty 

in finding statistically identical genes and promoters, and also to measurement related issues. For these 

experiments, instead of assuming the both reporters have the same intrinsic and extrinsic noise, we may 

assume that they are proportionally the same. For example, if one reporter’s CV-square is 1.2 times the 

other’s we can assume its intrinsic and extrinsic CV-squares are also 1.2 times as large. Hence for the 

computation, instead of assuming      for the fully induced well, we would assume    is the ratio of 

the CVs of the reporters. Otherwise the calculation proceeds the same way. 

 In summary, this is how we define the noise components, using as data      
  and      

 , the 

experimentally determined CV-squares of reporters X and Y (which, as described below, we approximate 

with the variances of the logs of X and Y) and the covariance of the logarithms of X and Y, also 

determined experimentally (inducer concentrations are indexed          , where well   is fully 

induced): 

   
      

     
  

   
             

           
     



     
                

     
       

       
  

     
                

     
       

       
  

 As mentioned earlier, we have calculated the variances of the logarithms of the reporters instead 

of the CV-squared. This argument relies on a linearized approximation: the standard deviations of the log-

scale variables are approximately the relative standard deviations of the original variables. Indeed, for 

small values of               : 
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 Thus, our computed quantities are approximations of the squared coefficient of variation, which 

is a standard measure of noise
7
. Note that this strategy replaces the data normalization performed in 

Elowitz et al. but performs a similar function. This approximation is very close for tight distributions, but 

gets worse for broad distributions (i.e., the approximation is worse for larger values of                ).  

 We can verify the approximation by calculating the standard deviation of the logarithm of the 

data and comparing it to the RSD of the original data. We improve the approximation by trimming the 

largest values of                by dropping all values more than 2.5 standard deviations from the mean 

of the log of the data (these points are not dropped from the direct RSD verification, and the cutoff was 

obtained by trying several values).  

Verification and decomposition of simulated noise 

In our noise decomposition, we expect random quantities which affect the expression of both genes to 

show up as extrinsic noise, while we expect random quantities which affect only a single gene to show up 



as intrinsic. We address the case where one reporter may be less sensitive to extrinsic noise sources due to 

noise-reducing regulatory pathways. To see this, first take the simplest case of a two-color experiment: 

suppose we have a plasmid with a constitutive bidirectional promoter P coding for reporters X and Y, and 

let the only source of uncertainty be the plasmid copy number. Then we have production rates of each 

reporter: 

  

  
         

  

  
         

At steady-state, we have the relations 
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And we want to find the extrinsic noise, the normalized covariance, which we have defined 

approximately by taking the covariance of the logarithm of the data: 
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To calculate intrinsic noise we need the total noise of each reporter: 
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Which shows that in this example there is no intrinsic noise; hence a common promoter for two reporters 

is an extrinsic source of noise: 

     
       

      
    

     
       

      
    

Suppose instead that there were two different plasmids with promoters P1 and P2 coding for reporters X 

and Y, and let their copy number be independent random variables. Setting up the problem the same way, 

  

  
          

  

  
          

At steady-state, 
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Calculating the extrinsic noise, 
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For the total noise, 

     
               

     
               

     
       

      
               

     
       

      
               

Hence in this case, where the random variable independently affects the two reporters, the extrinsic noise 

is zero, making these intrinsic noise sources.  

 Notice that the strength of our approach is when the two reporters are not identically regulated 

with identical statistics. We extend the applicability by assigning different extrinsic noise quantities to 

each reporter, so that now instead of there being a single extrinsic noise, each reporter has its own set of 

intrinsic and extrinsic contributions. The following example shows what can happen to extrinsic noise in 

the case of negative feedback. Suppose we have the extrinsic promoter case, but reporter X has negative 

feedback (and      ): 

  

  
    

 

     
     

   

   
     

  

  
         

At steady-state, 
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Calculating the extrinsic noise, 
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For the total noise, 
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If we calculate the intrinsic noise using the Elowitz et al. approach, we find that the extrinsic noise 

exceeds the total noise for reporter X. However, for this simplified example, we know the only noise 

source is an extrinsic variable, and thus the intrinsic noise should turn out to be zero. This allows us to 

infer that  , as described in the previous section, has a value of ½, representing the fact that reporter X 

experiences half as much noise from the variable plasmid copy number as Y does. 



     
  

 

 
            

 

 
            

     
  

 

  
                        

     
       

    

 Recall that in the experiments, we must first estimate   in a case where the Elowitz et. al. 

assumptions hold, i.e., the reporters are identically regulated.  

 To confirm our analysis we used simulations to test the decomposition on noise for two extreme 

cases, where we control the levels of intrinsic and extrinsic noise. As illustrated in Supplementary Fig. 

13a we first we vary the strength of transcription of a single bidirectional promoter coding for two 

fluorescent proteins, leading to perfectly correlated fluorescence quantities, which our decomposition 

shows to have only extrinsic noise and no intrinsic noise.  Next, in Supplementary Fig. 13b we vary the 

strength of transcription of two fluorescent genes independently, which leads to uncorrelated fluorescence 

quantities; our method returns only intrinsic noise and no extrinsic noise. 

 Furthermore, in Supplementary Fig. 14, we simulated mixtures of both noise types, generated by 

varying the strength of transcription of two different reporter genes as in the intrinsic noise case in the 

previous figure, but also by varying the amount of a transcription factor which regulates both genes. For 

panel a, the noise breakdown gives an intrinsic noise of 0.22 and an extrinsic noise of 0.16 for both 

proteins. For panel b, where we give the common transcription factor extra variability, it raises the 

extrinsic noise substantially (but not the intrinsic noise; the common transcription factor is an "extrinsic 

variable"). The intrinsic noise changes slightly to 0.21 and the extrinsic noise jumps to 0.23. 
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