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Abstract— We present conditions that guarantee spatial uni-
formity in diffusively-coupled systems. Diffusive coupling is a
ubiquitous form of local interaction, arising in diverse areas
including multiagent coordination and pattern formation in
biochemical networks. The conditions we derive make use
of the Jacobian matrix and Neumann eigenvalues of elliptic
operators, and generalize and unify existing theory about
asymptotic convergence of trajectories of reaction-diffusion
partial differential equations as well as compartmental ordinary
differential equations. We present numerical tests making use of
linear matrix inequalities that may be used to certify these con-
ditions. We discuss an example pertaining to electromechanical
oscillators. The paper’s main contributions are unified verifiable
relaxed conditions that guarantee synchrony.

I. INTRODUCTION

Diffusively coupled models are crucial to understanding
the dynamical behavior of a range of engineering and bio-
logical systems. Understanding the conditions under which
a distributed system exhibits spatial uniformity is a central
question in many application fields concerned with pattern
formation, ranging from biology (morphogenesis develop-
mental biology, species competition and cooperation in ecol-
ogy, epidemiology) [1], [2], [3] and enzymatic reactions
in chemical engineering [4] to spatio-temporal dynamics in
semiconductors [5].

This paper studies reaction-diffusion partial differential
equations (PDEs) of the form

∂u

∂t
(ω, t) = F (u(ω, t), t) + Lu(ω, t), (1)

where L denotes a diffusion operator, and compartmental
systems of ordinary differential equations (ODEs):

u̇(t) = F̃ (u(t))− L(d)u(t), (2)

where F̃ (u) =
(
F (u1)T , · · · , F (uN )T

)T
and L(d) denotes

diffusive coupling over a graph. We prove a two-part result
that addresses the question of how the stability of solutions
of the PDE or compartmental system of ODEs relates to
stability of solutions of the underlying ordinary differential
equation (ODE) dx

dt (t) = F (x(t), t).
The first part of our result shows that when solutions

of the ODE have a certain contraction property, namely
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µ2,Q(JF (u, t)) < 0 uniformly on u and t, where µ2,Q is
a logarithmic norm (matrix measure) associated to a Q-
weighted L2 norm, the associated PDE, subject to no-flux
(Neumann) boundary conditions, and compartmental system
of ODEs, enjoy a similar property. This result complements
a similar result shown in [6] which, while allowing norms
Lp with p not necessarily equal to 2, had the restriction
that it only applied to diagonal matrices Q and L was
the standard Laplacian. Logarithmic norm or “contraction”
approaches arose in the dynamical systems literature [7], [8],
[9], and were extended and much further developed in work
by Slotine e.g. [10]; see also [11] for historical comments.

The second, and complementary, part of our result shows
that when µ2,Q(Jf (u, t)− Λ2) < 0, where Λ2 is a nonneg-
ative diagonal matrix whose entries are the second smallest
Neumann eigenvalues of the diffusion operators in (1), or
respectively the second smallest eigenvalues of the diffusive
coupling matrix in (2), the solutions become spatially ho-
mogeneous as t → ∞. This result generalizes the previous
work [12] to allow for spatially-varying diffusion, and makes
a contraction principle implicitly used in [12] explicit.

We next derive convex linear matrix inequality [13] tests
as in [12] that can be used to certify the conditions. Our
discussion concludes with an example of synchronization
in coupled ring oscillators, which have been studied in the
context of cross-coupled circuits [14] and gene regulatory
networks [15].

II. PRELIMINARIES

For any invertible matrix Q, and any 1 ≤ p ≤ ∞, and
continuous u : Ω→ Rn, we denote the weighted Lp,Q norm,
‖u‖p,Q = ‖Qu‖p, where (Qu)(ω) = Qu(ω) and ‖ · ‖p
indicates the norm in Lp(Ω,Rn).

Definition 1: Let (X, ‖ · ‖X) be a finite dimensional
normed vector space over R or C. The space L(X,X) of
linear transformations M : X → X is also a normed vector
space with the induced operator norm

‖M‖X→X = sup
‖x‖X=1

‖Mx‖X .

The logarithmic norm µX(·) induced by ‖ · ‖X is defined as
the directional derivative of the matrix norm, that is,

µX(M) = lim
h→0+

1

h
(‖I + hM‖X→X − 1) ,

where I is the identity operator on X .
The following lemma relates the logarithmic norm of a

matrix to its satisfaction of a certain linear matrix inequality,
and will be useful in proving our main results about spatial
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uniformity. Owing to space constraints, we omit the proof
and that of most results that follow, which the interested
reader may find in [16].

Lemma 1: Suppose that P is a positive definite, symmet-
ric matrix and M is an arbitrary matrix. Then µ2,P (M) is
the smallest µ ∈ R such that

P 2M +MTP 2 ≤ 2µP 2.

Remark 1: Observe that for Q > 0,
1) QM +MTQ ≤ µQ ⇒ QM +MTQ ≤ βI, where
β = µλ and λ is the smallest eigenvalue of Q.
2) QM+MTQ ≤ βI ⇒ QM+MTQ ≤ γQ, where

γ =
β

λ′
and λ′ is the largest eigenvalue of Q.

III. SPATIAL UNIFORMITY IN REACTION-DIFFUSION
PDES

In this section, we study the reaction-diffusion PDE (1),
subject to a Neumann boundary condition:

∇ui · n(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞). (3)

Theorems on existence and uniqueness of solutions for PDEs
such as (1) − (3) can be found in standard references, e.g.
[17], [18].

Assumption 1: In (1)− (3) we assume:

• Ω is a bounded domain in Rm with smooth boundary
∂Ω and outward normal n.

• F : V ×[0,∞)→ Rn is a (globally) Lipschitz and twice
continuously differentiable vector field with respect to
x, and continuous with respect to t, with components
Fi:

F (x, t) = (F1(x, t), · · · , Fn(x, t))T

for some functions Fi : V × [0,∞)→ R, where V is a
convex subset of Rn.

• L = diag (L1, · · · ,Ln), and Lu =
(L1u1, · · · ,Lnun)T , where for each i = 1, · · · , n,

Liui = ∇ · (Ai(ω)∇ui(ω, t)) , (4)

and Ai : Ω → Rm×m is symmetric and differentiable
and there exist αi, βi > 0 such that for all ω ∈ Ω and
ζ = (ζ1, · · · , ζm)T ∈ Rm,

αi|ζ|2 ≤ ζTAi(ω)ζ ≤ βi|ζ|2. (5)
Suppose that L has r ≤ n distinct elements L1, · · · ,Lr

(up to a scalar). Namely,

diag (L1, · · · ,Ln1
, . . . ,Ln−nr+1, · · · ,Ln) =

diag (d11, · · · , d1n1
, . . . , dr1, · · · , drnr

)
×diag (L1, · · · ,L1, . . . ,Lr, · · · ,Lr) ,

where n1 + · · · + nr = n. For each i = 1, · · · , r, let Di

be an n × n diagonal matrix with entries [Di]jj = dij , for
j = i, · · · , ni and 0 elsewhere. Also for each i = 1, · · · , r,
let Li be an n×n diagonal matrix with identical entries Li.
Then L can be written as below,

L =

r∑
i=1

DiLi. (6)

For a fixed i ∈ {1, · · · , n}, let λki be the k-th Neumann
eigenvalue of the operator −Li as in (4) (λ1

i = 0, λki > 0 for
k > 1, and λki →∞ as k →∞) and eki be the corresponding
normalized eigenfunction:

∇ ·
(
Ai(ω)∇eki (ω)

)
= −λki eki (ω), ω ∈ Ω

∇eki (ξ) · n = 0, ξ ∈ ∂Ω
(7)

Also for each i = 1, · · · , r, let λki be the k-th Neumann
eigenvalue of −Li. Note that

Λk =

r∑
i=1

λkiDi, where Λk = diag
(
λk1 , · · · , λkn

)
.

(8)
For each k ∈ {1, 2, · · · }, let Eki be the subspace spanned by
the first k-th eigenfunctions:

Eki = 〈e1
i , · · · , eki 〉.

Now define the map Πk,i on L2(Ω) as follows:

Πk,i(v) = v − πk,i(v),

where πk,i is the orthogonal projection map onto Ek−1
i , and

we define E0
i = 0. Note that for any i = 1, · · · , n,

Π2,i(v) = v − 1

|Ω|

∫
Ω

v. (9)

For any v = (v1, · · · , vn), define Πk as follows:

Πk(v) = v − πk(v),

where
πk(v) = (πk,1(v1), · · · , πk,n(vn))

T
.

Observe that πk(v) is the orthogonal projection map onto
Ek−1

1 × · · · × Ek−1
n .

In [6], we proved the following lemma:

Lemma 2: Consider the PDE system (1)− (3), with L =
D∆, where D = diag(d1, · · · , dn). In addition suppose
Assumption 1 holds. For some 1 ≤ p ≤ ∞, and a positive
diagonal matrix Q, let

µ := sup
(x,t)∈V×[0,∞)

µp,Q(JF (x, t)).

(We are using µp,Q to denote the logarithmic norm associated
to the norm ‖Qv‖p in Rn.) Then for any two solutions u and
v of (1)− (3), we have

‖u(·, t)− v(·, t)‖p,Q ≤ eµt‖u(·, 0)− v(·, 0)‖p,Q.
Before stating and proving the main result of this section,

Theorem 1, we state the following lemmas.

The first lemma applies the Poincaré principle as in [19]
and the orthogonality of eigenvectors of the operator L as in
(4) to further characterize L:

Lemma 3: Suppose u ∈ L2(Ω) satisfies the Neumann
boundary conditions. For any k ∈ {1, 2, · · · },

(Πk(u),LΠk(u)) ≤ − (Πk(u),ΛkΠk(u)) . (10)

In addition for k = 1, 2 and any n× n symmetric matrix Q
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with the following property:

QDi +DiQ > 0 i = 1, · · · , r, (11)

we have:

(Πk(u), QLΠk(u)) ≤ − (Πk(u), QΛkΠk(u)) . (12)

The second lemma facilitates our characterization of the
evolution of trajectories of (1)-(3):

Lemma 4: Let w = u−x, where u is a solution of (1)−(3)
and x = π2(u) or x = v is another solution of (1) − (3).
Note that for x = v, w = Π1(u − v) and for x = π2(u),
w = Π2(u). For a positive, symmetric matrix Q, let

Φ(w) :=
1

2
(w,Qw).

Then
dΦ

dt
(w) = (w,Q(F (u, t)− F (x, t))) + (w,QLw) . (13)

We now present our main result for spatial uniformity in
reaction-diffusion PDEs: the first part is a generalization of
Lemma 2 to non-diagonal P for the special case of p = 2,
and the second part is a generalization of Theorem 1 from
[12] to spatially-varying diffusion.

Theorem 1: Consider the reaction-diffusion system (1)−
(3) and suppose Assumption 1 holds. For k = 1, 2, let

µk := sup
(x,t)∈V×[0,∞)

µ2,P (JF (x, t)− Λk),

for a positive symmetric matrix P such that for any i =
1, · · · , r:

P 2Di +DiP
2 > 0. (14)

Then for any two solutions, namely u and v, of (1) − (3),
we have:

‖u(·, t)− v(·, t)‖2,P ≤ eµ1t‖u(·, 0)− v(·, 0)‖2,P (15)
‖Π2(u(·, t))‖2,P ≤ eµ2t‖Π2(u(·, 0))‖2,P . (16)

Proof: By Lemma 1,

Q(JF − Λk) + (JF − Λk)TQ ≤ 2µkQ, (17)

where Q = P 2. Define w and Φ(w) as in Lemma 4 for

Q = P 2. Since Φ(w) =
1

2
‖Pw‖22, to prove (15) and (16), it

suffices to show that for k = 1, 2

d

dt
Φ(w) ≤ 2µkΦ(w).

Note that by Lemma 3, and the fact that w = Π1(u− v) or
w = Π2(u), the second term of the right hand side of (13),
d

dt
Φ(w), satisfies:

(w,QLw) ≤ −(w,QΛkw). (18)

Next, by the Mean Value Theorem for integrals, and using
(17), we rewrite the first term of the right hand side of (13)

as follows:

(w,Q(F (u, t)− F (x, t)))

=

∫
Ω

wT (ω, t)Q(F (u(ω, t), t)− F (x, t)) dω

=

∫
Ω

wT (ω, t)Q

∫ 1

0

JF (x+ sw(ω, t), t) · w(ω, t) ds dω

=

∫ 1

0

∫
Ω

wT (ω, t)QJF (x+ sw(ω, t), t) · w(ω, t) dω ds.

Combining the preceding equality with (18), we have:

(w,Q(F (u, t)− F (x, t))) + (w,QLw)

≤
∫ 1

0

∫
Ω

wT (ω, t)Q
(
JF (x+ sw(ω, t), t)− Λk

)
× w(ω, t) dω ds

≤ 2µk
2

∫ 1

0

ds

∫
Ω

wTQw dω

=
2µk
2

∫
Ω

wTQw dω = 2µkΦ(w).

Therefore,
dΦ

dt
(w) ≤ 2µkΦ(w).

The preceding inequality implies (15) and (16) for k = 1
and k = 2 respectively.

Corollary 1: In Theorem 1, if µ1 < 0, then (1) − (3) is
contracting, meaning that solutions converge (exponentially)
to each other, as t→ +∞ in the weighted L2,P norm:

‖u(·, t)− v(·, t)‖2,P → 0 as t→∞.
Corollary 2: In Theorem 1, if µ2 < 0, then solutions

converge (exponentially) to uniform solutions, as t → +∞
in the weighted L2,P norm:

‖Π2(u(·, t))‖2,P → 0 as t→∞.

IV. SPATIAL UNIFORMITY IN COMPARTMENTAL
SYSTEMS OF ODES

We next consider a compartmental ODE model where each
compartment represents a spatial domain interconnected with
the other compartments over an undirected graph:

u̇(t) = F̃ (u(t))− L(d)u(t). (19)

We denote the Kronecker product of two matrices A and B
by A⊗B.

Assumption 2: In (19), we assume:

• For a fixed convex subset of Rn, say V , F̃ : V N → RnN
is a function of the form:

F̃ (u) =
(
F (u1)T , · · · , F (uN )T

)T
,

where u =
(
(u1)T , · · · , (uN )T

)T
, with ui ∈ V for each

i, and F : V → Rn is a (globally) Lipschitz function.
• For any u ∈ V N we define ‖u‖p,Q as follows:

‖u‖p,Q =
∥∥∥(‖Qu1‖p, · · · , ‖QuN‖p

)T∥∥∥
p
,
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where Q is a symmetric and positive definite matrix and
1 ≤ p ≤ ∞.
With a slight abuse of notation, we use the same symbol
for a norm in Rn:

‖x‖p,Q := ‖Qx‖p.

• u : [0,∞)→ V N is a continuously differentiable func-
tion.

• L(d) =
∑n
i=1 Li⊗Ei, where for any i = 1, · · · , n, Li ∈

RN×N is a symmetric positive semidefinite matrix and
L1N = 0, where 1N = (1, · · · , 1)T ∈ RN . The matrix
Li is the symmetric generalized graph Laplacian (see,
e.g., [20]) that describes the interconnections among
component subsystems. For any i = 1, · · · , n, Ei =
eie

T
i ∈ Rn×n is the product of the i-th standard basis

vector ei multiplied by its transpose.

Similar to the PDE case, we assume that there exists r ≤ n
distinct matrices, L1, · · · ,Lr such that

diag (L1, · · · , Ln1
, . . . , Ln−nr+1, · · · , Ln) =

diag (d11, · · · , d1n1
, . . . , dr1, · · · , drnr

)
×diag (L1, · · · ,L1, . . . ,Lr, · · · ,Lr) ,

where n1 + · · · + nr = n. For each i = 1, · · · , r, let Di

be an n × n diagonal matrix with entries [Di]jj = dij , for
j = i, · · · , ni and 0 elsewhere. Therefore we can write L(d)

as follows:

L(d) =

r∑
i=1

Li ⊗Di. (20)

For a fixed i ∈ {1, · · · , n}, let λki be the k-th eigenvalue
of the matrix Li and eki be the corresponding normalized
eigenvector. Also for a fixed i ∈ {1, · · · , r}, let λki be the
k-th eigenvalue of the matrix Li. Note that

Λk =

r∑
i=1

λkiDi, (21)

where Λk = diag(λk1 , · · · , λkn).

We recall the Courant-Fischer minimax theorem, from
[21], which characterizes the eigenvalues of a symmetric
positive semidefinite matrix:

Lemma 5: Let L be a symmetric positive semidefinite
matrix in RN×N . Let λ1 ≤ · · · ≤ λN be N eigenvalues with
e1, · · · , eN corresponding normalized orthogonal eigenvec-
tors. For any v ∈ RN , if vT ej = 0 for 1 ≤ j ≤ k − 1,
then

vTLv ≥ λkvT v.

Before presenting the main result of this section, we state
the following lemma, which facilitates characterization of the
evolution of trajectories of (19).

Lemma 6: Let w := u− x, where u is a solution of (19)

and x = 1N ⊗
(

1
N

∑N
j=1 u

j
)

or x = v is another solution
of (19). For a positive, symmetric matrix Q, let

Φ(w) :=
1

2
wT (IN ⊗Q)w.

Then
dΦ

dt
(w) =wT (IN ⊗Q) (F̃ (u, t)

− F̃ (x, t))− wT (IN ⊗Q)L(d)w.
(22)

We now state and prove our main result for spatial
uniformity in compartmental systems of ODEs.

Theorem 2: Consider the ODE system (19) and suppose
Assumption 2 holds. For k = 1, 2, let

µk := sup
(x,t)∈V×[0,∞)

µ2,P (JF (x, t)− Λk),

for a positive symmetric matrix P such that for every i =
1, · · · , r,

P 2Di +DiP
2 > 0.

Then for any two solutions, namely u and v, of (19), we
have:

‖(u− v)(t)‖2,P ≤ eµ1t‖(u− v)(0)‖2,P . (23)

In addition

‖(u− π2(u))(t)‖2,P ≤ eµ2t‖(u− π2(u))(0)‖2,P . (24)

Proof: By Lemma 1,

Q(JF − Λk) + (JF − Λk)TQ ≤ 2µkQ, (25)

where Q = P 2. Define w and Φ(w) as in Lemma 6 for

Q = P 2. Since Φ(w) =
1

2
‖Pw‖22, to prove (23) and (24), it

suffices to show that for k = 1, 2

d

dt
Φ(w) ≤ 2µkΦ(w).

We rewrite the second term of the right hand side of (22) as
follows. Since Q = P 2 and P 2Di +DiP

2 > 0, there exists
symmetric, positive definite matrices Mi such that QDi +
DiQ = 2MT

i Mi. Thus, we have:

wT (IN ⊗Q)L(d)w

= wT (IN ⊗Q)

(
r∑
i=1

Li ⊗Di

)
w

= wT

(
r∑
i=1

INLi ⊗QDi

)
w

=
1

2

r∑
i=1

wT (Li ⊗ (QDi +DiQ))w

=

r∑
i=1

wT
(
Li ⊗MT

i Mi

)
w

=

r∑
i=1

wT (IN ⊗MT
i ) (Li ⊗ In) (IN ⊗Mi)w

≥
r∑
i=1

λki ((IN ⊗Mi)w)
T

(IN ⊗Mi)w

=

r∑
i=1

λkiw
T (IN ⊗QDi)w = wT (IN ⊗QΛk)w,
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where the final equality follows from (21. Therefore

−wT (IN ⊗Q)L(d)w ≤ −wT (IN ⊗QΛk)w. (26)

Note that the first inequality holds for k = 2 by Lemma 5
and the fact that for x = π2(u), by definition, wT1nN = 0
and hence (IN ⊗Mi)w1nN = 0. It also holds for k = 1,
since Li and hence Li⊗In are positive definite, and λ1

i = 0.

The remainder of the proof is analogous to that of Theo-
rem 1.

Corollary 3: In Theorem 2, if µ1 < 0, then (19) is
contracting, meaning that solutions converge (exponentially)
to each other, as t→ +∞ in the P -weighted L2 norm.

Corollary 4: In Theorem 2, if µ2 < 0, then solutions
converge (exponentially) to uniform solutions, as t → +∞
in the P -weighted L2 norm.

V. LMI TESTS FOR GUARANTEEING SPATIAL
UNIFORMITY

The next result is a modification of Theorems 3 in [12],
and allows us to check the conditions in Theorems 1 and 2
through numerical tests involving linear matrix inequalities.

We define a convex box as:

box{M0,M1, . . . ,Mp}
= {M0 + ω1M1 + . . .+ ωpMp |ωi ∈ [0, 1]

for each i = 1, . . . , p}.
(27)

Theorem 3: Suppose that JF (x, t) is contained in a con-
vex box:

JF (x, t) ∈ box{A0, A1, . . . , Al} ∀x ∈ V, t ∈ [0,∞),
(28)

where A1, . . . , Al are rank-one matrices that can be written
as Ai = BiC

T
i , with Bi, Ci ∈ Rn. If there exists a scalar µ

and symmetric, positive definite matrix Q with:

Q =


Q 0 . . . 0
0 p1 0 0
...

. . . . . .
...

0 . . . 0 pl


Q ∈ Rn×n, pi ∈ R, i = 1, . . . , l,

(29)

satisfying:

Q
[
A0 − Λk B
CT −In

]
+

[
A0 − Λk B
CT −In

]T
Q

≤
[
µQ 0
0 0

]
,

(30)

with B = [B1 . . . Bl] and C = [C1 . . . Cl], then the upper left
(symmetric, positive definite) principal submatrix Q satisfies

Q(JF (x, t)− Λk) + (JF (x, t)− Λk)TQ ≤ µQ; (31)

or equivalently

µk := sup
(x,t)∈V×[0,∞)

µ2,P (JF (x, t)− Λk) ≤ µ

2
, (32)

where P 2 = Q.

If l = 1 and the image of V × [0,∞) under J is surjective
onto box{A0, A1}, then the converse is true.

The problem of finding the smallest µ such that there exists
a matrix Q as in Theorem 3 is quasi-convex and is solved
iteratively as a sequence of convex semidefinite programs.

Example – Ring Oscillator Circuit

R1

C1

R2

C2

R3

C3

R1

C1

R2

C2

R3

C3

R1

C1

R2

C2

R3

C3

R(1)

R(1)

R(1)

x1,1

x2,1

x3,1

R(2)

R(2)

x1,2

x2,2

x3,2

Fig. 1. An example of a network of interconnected three-stage ring
oscillator circuits as in (33) coupled through nodes 1 and 2.

Consider the n-stage ring oscillator whose dynamics are
given by:

ẋk1 = −η1x
k
1 − α1 tanh(β1x

k
n) + wk1

...

ẋkn = −ηnxkn + αn tanh(βnx
k
n−1) + wkn,

(33)

with coupling between corresponding nodes of each circuit.
Ring oscillators have found wide application in biological
oscillators such as the repressilator in [15]. The parameters
ηk = 1

RkCk
, αk, and βk correspond to the gain of each

inverter. The input is given by:

wki = di
∑
j∈Nk,i

(xji − x
k
i ), (34)

where di = 1
R(i)Ci

and Nk,i denotes the nodes to which
node i of circuit k is connected. We wish to determine if the
solution trajectories of each set of like nodes of the coupled
ring oscillator circuit given by (33)-(34) synchronize, that is:

xji − x
k
i → 0 exponentially as t→∞ (35)

for any pair (j, k) ∈ {1, . . . , N}×{1, . . . , N} and any index
i ∈ {1, . . . , n}.

For clarity in our discussion, we take n = 3 as in Figure
1. We first write the Jacobian of the system (33), where we
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have omitted the subscripts indicating circuit membership:

J(x)
∣∣
x=x̄

=

 −η1 0 γ1(x̄1)
γ2(x̄2) −η2 0

0 γ3(x̄3) −η3

 , (36)

with γ1(x̄1) = −α1β1 sech2(β1x̄3), γ2(x̄2) =
α2β2 sech2(β2x̄1), and γ3(x̄3) = α3β3 sech2(β3x̄2).
Define the matrices

A0 =

 −η1 0 0
0 −η2 0
0 0 −η3

 , A1 =

 0 0 −α1β1

0 0 0
0 0 0

 ,
A2 =

 0 0 0
α2β2 0 0

0 0 0

 , A3 =

 0 0 0
0 0 0
0 α3β3 0

 .
Then it follows that J(x) is contained in a convex box:

J(x) ∈ box{A0, A1, A2, A3}. (37)

The problem structure can be exploited using Theorem 3 to
obtain a simple analytical condition for synchronization of
trajectories. In particular, the Jacobian of the ring oscillator
exhibits a cyclic structure. The matrix M for which we seek
a Q satisfying (30) is given by:

M =

[
A0 − Λ2 − µ

2 I B
CT −I

]
,

B =

 0 0 −α1β1

α2β2 0 0
0 α3β3 0

 , C = I3.

(38)

Note that the matrix M exhibits a cyclic structure, and by
a suitable permutation G of its rows and columns, it can be
brought into a cyclic form M̃ = GMGT . Since M̃ is cyclic,
it is amenable to an application of the secant criterion [22],
which implies that the condition

Π3
i=1αiβi

Π3
l=1(ηl + λl + µ

2 )
< sec3

(π
3

)
(39)

holds if and only if M̃ satisfies

Q̃M̃ + M̃T Q̃ < 0 (40)

with negative µ, for some diagonal Q̃ > 0. Pre- and
post-multiplying (40) by GT and G, respectively, (40) is
equivalent to:

GT Q̃GM +MTGT Q̃G < 0. (41)

Thus, if Q̃ is diagonal and satisfies (40), then Q = GT Q̃G
is diagonal and satisfies (30). We conclude that if the secant
criterion in (39) is satisfied, then by Theorem 3, we have:

sup
(x,t)∈V×[0,∞)

(JF (x, t)− Λ2) ≤ µ

2
.

Because Q is diagonal and positive, Q is diagonal and
positive, and QDi + DiQ > 0 for each i = 1, · · · , r.
Therefore, since µ < 0, by Corollary 4, we get:

xji − x
k
i → 0 exponentially as t→∞ (42)

for any pair (j, k) ∈ {1, . . . , N}×{1, . . . , N} and any index
i ∈ {1, 2, 3}.

We note that the condition for synchrony that we have
found recovers Theorem 2 in [14], which makes use of
an input-output approach to synchronization [23]. We have
derived the condition using Lyapunov functions in an entirely
different manner from the input-output approach.
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