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Abstract: This paper studies the direction of change of steady states to parameter perturbations in chemical reaction networks,
and, in particular, to changes in conserved quantities. Theoretical considerations lead to the formulation of a computational
procedure that provides a set of possible signs of such sensitivities. The procedure is purely algebraic and combinatorial, only
using information on stoichiometry, and is independent of the values of kinetic constants. Three examples of important
intracellular signal transduction models are worked out as an illustration. In these examples, the set of signs found is minimal,
but there is no general guarantee that the set found will always be minimal in other examples. The paper also briefly
discusses the relationship of the sign problem to the question of uniqueness of steady states in stoichiometry classes.
1 Introduction

A key question in the mathematical analysis of chemical
reaction networks is the characterisation of sensitivities of
steady states to parameter perturbations [1–7]. In the time
scale of cellular signalling, assuming no turn-over due to
expression and degradation or dilution, one such parameter
could be, for example, the total concentration of a certain
enzyme in its various activity states. The value of this
parameter might be manipulated experimentally in various
forms in order to achieve knock-downs or up-regulation.
Often, especially in the context of inhibitors for therapeutic
purposes, it is desirable to be able to predict the sign of the
effect of such perturbations on states, in a manner that
depends only on the structure of the network of reactions and
not on the actual values of other parameters, such as kinetic
constants, which are typically very poorly characterised.

1.1 An example

We introduce the problem to be studied through an example, an
enzymatic network consisting of a cascade of two reversible
covalent modifications, see Fig. 1.
Specifically, we consider the following reaction network:

M0 + E O A � M1 + E
M1 + G O B � M0 + G
N0 +M1 O C � N1 +M1
N1 + F O D � N0 + F

(1)

Here E is a constitutively active kinase which drives a
phosphorylation reaction in which a substrate M0 is
converted to an active form M1, which can be
dephosphorylated back into inactive form by a
constitutively active phosphatase G. There are two
intermediate enzyme–substrate complexes, A =M0E and
B =M1G, for these enzymatic reactions. The active form M1

is itself a kinase which drives a phosphorylation reaction in
which a second substrate N0 is converted to an active form
N1, which can be dephosphorylated back into inactive form
by a constitutively active phosphatase F. There are also two
intermediate enzyme–substrate complexes, C =N0M1 and D
=N1F, for these last enzymatic reactions. In cell signalling,
one typically views (1) as a cascade of a subsystem
described by the first group of reactions, involving the
enzyme M in its various forms, and a second subsystem
described by N in its various forms, as diagrammed in Fig. 1.
An instance of great biological interest is provided by the

proteins from MAPK/ERK pathways. There are several
different MAPK (“mitogen-activated protein kinase”)
pathways, in each cell of a given organism, as well as in
cells of different organisms, but they all share the same
basic architecture, comprising a set of phosphorylation/
dephosphorylation covalent modification cycles (sometimes
with multiple phosphorylation steps in each subsystem).
They are found in all eukaryotes [8–11], and are key
participants in the regulation of some of the most important
cell processes, from cell division and gene expression to
differentiation and apoptosis. The targeting of MAPK/ERK
components is the focus of current-generation drugs to treat
advanced melanomas and a wide range of other tumours,
including lung and thyroid cancers [12]. Normally, there are
three, rather than two, components to MAPK cascades,
corresponding to proteins generically called MAPK,
MAPKK (“MAPK kinase”), and MAPKKK (“MAPKK
kinase”), a typical example being given by Erk, Mek, and
Ras respectively. Fig. 2 shows several typical MAPK
pathways in mammalian cells. In our example, “M” and
“N” could be MAPKK and MAPK respectively, or
MAPKKK and MAPKK respectively.
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Fig. 1 An enzymatic cascade
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Let us denote the concentrations of the various species in
(1) using the corresponding lower case letters

(e, m0, a, m1, g, b, n0, c, n1, f , d)

We assume mass action kinetics for each reaction, and an
ordinary differential equation (ODE) model. For example,
the forward reaction M0 + E � A will proceed at a rate
km0a, where k . 0 is a kinetic constant, so a differential
equation for the state component e will have a term
“−km0a”. A set of independent conservation laws
(corresponding to a basis of the left nullspace of the
stoichiometry matrix in the usual sense, see Appendix) for
this system is given by:

e+ a = ET (2)

g + b = GT (3)

f + d = FT (4)

m0 + a+ m1 + b+ c = MT (5)

and

n0 + c+ n1 + d = NT (6)

We may think of ET as total amount of constitutively active
enzyme (bound or in complex), GT and FT as total amount
of phosphatases, MT as total amount of the first substrate in
Fig. 2 MAPK pathways in mammalian cells

Image freely licensed from creative commons media file repository
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all free and bound forms, and NT as total amount of the
second substrate in all free and bound forms.
The question that we wish to study is: how do steady states

of the system change upon a change in one of these conserved
quantities? Our interest is especially in understanding how,
for example, a variation in the total amount of the second
phosphatase FT “backwards” affects the steady-state of the
first component of the system. Specifically, we wish to
determine the direction of change (increase of decrease) in
individual steady-state components when such a parameter
is perturbed. Moreover, we would like to find information
that is robust to the actual values of kinetic constants in
each reaction. Experimental perturbations of quantities
such as FT are implemented, in practice, through genetic,
biochemical, and physical methods, including
small-molecule kinase inhibitors, changes in gene
expression, repression of transcription by siRNA’s, or laser
trapping with optical tweezers.
Of course, there are no true “forward” and “backward”

directions: the system is tightly connected, and the input/
output formalism of control theory is inadequate as a
paradigm (a point that was much emphasised by Willems in
his work on behavioural foundations of systems theory
[13]). Nonetheless, the idea of unidirectional information
flow in MAPK and other cascades is well-established and
has biological substance, through the ultimate transfer of
information from cell surface receptors to gene expression.
This question of “backward propagation” of effects has
been the subject of considerable research in the context of
modularity of biological systems [14, 15] and, specifically,
in the context of the “retroactivity” phenomenon [16–23].
Retroactivity is a fundamental systems-engineering issue
that arises when interconnecting biological subsystems, just
as with electrical or mechanical systems: the effect of
“loads” on the “output” of a system in effect creates
biochemical “impedance” connections that are not obvious
from a unidirectional signal-flow view of information
processing.
When we apply the theory to be developed in this paper, we

find that perturbations of the total second substrate, NT, and
perturbations of the second phosphatase, FT, both lead to
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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changes in “upstream” steady states. This is an instance of the
retroactivity phenomenon. More interestingly, these two types
of perturbations of the “downstream” layer have opposite
effects on steady-state concentrations. This prediction has
been tested experimentally and found to be correct [7].
We now turn to a precise problem statement, theoretical

developments, and the description of an algorithm that
addresses the question of directionality of changes in steady
states upon parameter perturbations. We have developed a
MATLAB® script, “CRNSESI” (Chemical Reaction
Network SEnsitivity SIgns) that implements our procedure.
After this, we return to the motivating example and display
the signs of state changes for perturbations in each of the
conserved quantities, as obtained from the use of
CRNSESI. While in this example it turns out that the signs
of state variations are unambiguously determined, such is
not the case with other examples. To illustrate this lack of
uniqueness, we provide a second example, a simple model
of a phosphotransfer system, that exhibits ambiguity in one
of the state components.
2 Preliminaries: general systems

We start with arbitrary systems of ODEs

ẋ(t) = f (x(t)) (7)

The vectors x are assumed to lie in the positive orthant RnS
+ of

RnS , that is, x = (x1, . . . , xnS )
T with each xi . 0, and f is a

differentiable vector field, mapping R
nS
+ into RnS . We later

specialise to ODEs that describe chemical reaction networks
(CRNs), for which the abstract procedure to be described
next can be made computationally explicit. In the latter
context, we think of the coordinates xi(t) of x as describing
the concentrations of various chemical species Si,
i = 1, . . . , n

S
.

Suppose that xl describes a l-parametrised smooth curve
of steady states for the system (7), where l is a scalar
parameter ranging over some open interval Λ. The
steady-state condition amounts to asking that

f (xl) = 0 (8)

for all values of the parameter l [ L.
In addition to (8), we also assume that the steady states of

interest are constrained by a set of algebraic equations

g1(x
l) = 0, g2(x

l) = 0, . . . , gnC (x
l) = 0 (9)

where n
C
is some positive integer (which we take to be zero

when there are no additional constraints). We write simply
g(xl) = 0, where g :RnS

+ � RnC is a differentiable mapping
whose components are the gi’s. Some or all gi might be
linear functions, representing moities or stochiometric
constraints, but non-linear constraints will be useful when
treating certain examples, as will be discussed later.
Let us denote by

jl := dxl

dl
[ RnS×1

the derivative of the vector function xl with respect to l,
viewed as a function L � RnS×1.
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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We are interested in answering the following question:

what are the signs of the entries of jl?

Obviously, the answer to this question will, typically, depend
on the chosen value of l. The computation of the steady state
xl as a function of l will ordinarily involve the numerical
approximate solution of non-linear algebraic equations, or
simulation of differential equations, and has to be repeated
for each individual parameter l. Our aim is, instead, to
provide conditions that allow one to put constraints on these
signs independently of the specific l, and even
independently of other parameters that might appear in the
specification of f and of g, such as kinetic constants, and to
do so using only linear algebraic and logical operations,
with no recourse to numerical approximations.
Proceeding in complete generality, we take the derivative

with respect to l in (8), so that, by the chain rule, we have
that f ′(xl)jl = 0, where f ′(x) denotes the Jacobian matrix
of f evaluated at a state x. In other words,

jl [ N (f ′(xl)) (10)

where N (f ′(x)) denotes the nullspace of the matrix f ′(x).
Similarly, we have that

jl [ N (g′(xl)) (11)

The reason for introducing separately f and g will become
apparent later: we will be asking that each of the n

C
× n

S

entries of the Jacobian matrix of g should not change sign
over the state space (which happens, in particular, when g
is linear, as is the case with stoichiometric constraints). No
similar requirement will be made of f, but instead, we will
study the special case in which f represents the dynamics of
a CRN.
2.1 Notations for signs of vectors and of
subspaces

We use the following sign notations. For any (row or column)
vector u with real entries, the vector of signs of entries of u,
denoted sign u, is the (row or column) vector with entries
in the set {−1, 0, 1} whose ith coordinate satisfies:

(sign u)i =
−1, if ui , 0
1, if ui . 0
0, if ui = 0

⎧⎨⎩
(The function sign is sometimes called the “signature
function” when viewed as a map Rm � {−1, 0, 1}n.) More
generally, for any subspace W of vectors with real entries,
we define

signW = {sign v | v [ W}

Computing signW amounts to determining which orthants
are intersected by W. This combinatorial problem is studied
in the theory of oriented matroids: given a basis of W, the
signs of W represent the oriented matroid associated to a
matrix that lists the basis as its columns, which is the set of
“covectors” of this basis. See [24] for details and further
theoretical discussion.
253
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We also introduce the positive and negative parts of a

vector u, denoted by u+ and u− respectively, as follows:

(u+)i =
ui, if ui . 0
0, if ui ≤ 0

{
(u−)i =

−ui, if ui , 0
0, if ui ≥ 0

{
Note that u = u+ − u−, sign u = sign u+ − sign u−, and:

(sign u)+ = sign(u+) , (sign u)− = sign(u−) (12)

Suppose that u [ R1×n and v [ Rn×1, for some positive
integer n. The equality:

sign(uv) = sign(sign(u) sign(v)) (13)

need not hold for arbitrary vectors, for example, if
u = (1, −1/4, −1/4, −1/4) and v = (1, 1, 1, 1)T then
sign(uv) = sign(1/4) = 1, but, on the other hand,

sign(sign(u)sign(v)) = sign((1, −1, −1, −1)(1, 1, 1, 1)T )

= sign(−2) = −1,

which is not equal to sign(uv). However, equality (13) is true
provided that we assume that (a) u− = 0 or u+ = 0 (i.e. either
ui ≥ 0 for all i, or ui ≤ 0 for all i, respectively), and also that
(b) v− = 0 or v+ = 0. This is proved as follows. Take first the
case u− = 0 and v− = 0. Each term in the sum
uv =

∑n
i=1 uivi is non-negative. Thus, uv . 0, that is,

sign(uv) = 1, if and only if ui . 0 and vi . 0 for some
common index i, and uv = sign(uv) = 0 otherwise.
Similarly, as sign(u)sign(v) =

∑n
i=1 sign(ui)sign(vi), we

know that sign(u)sign(v) . 0, that is,

sign (sign(u)sign(v)) = 1,

if and only if sign(ui) = sign(vi) = 1 for some i, and
sign(u)sign(v) = 0 otherwise. But, sign(ui) = sign(vi) = 1 is
the same as ui . 0 and vi . 0. Thus (13) is true. The case
u+ = 0 and v− = 0 can be reduced to u− = 0 and v− = 0
by considering −u instead of u: sign(uv) = −sign((−u)v) =
−sign(sign(−u)sign(v)) = sign(sign(u)sign(v)). Similarly for
the remaining two cases.

2.2 A parameter-dependent constraint set

Denoting

W(xl) = N (f ′(xl))>N (g′(xl))

we have that (10) and (11) implies, in terms of the sign
notations just introduced:

pl := sign jl [ signW(xl)

Therefore, one could in principle determine the possible
values of pl once that W(xl) is known. However, in
applications one typically does not know explicitly the
curve xl, which makes the problem difficult because
the subspace W(xl) depends on l, and even computing the
steady states xl is a hard problem. As discussed below, for
the special case of ODE systems arising from CRNs, a
more systematic procedure is possible. Before turning to
CRNs, however, we discuss general facts true for all systems.
254
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For every positive concentration vector x define:

Sf (x) := {sign(nf ′(x)) | n [ R1×nS} (14)

S
g(x) := {sign(ng′(x)) | n [ R1×nS} (15)

S(x) := S
f (x) < S

g(x) # {−1, 0, 1}1×nS (16)

The row vectors n are used in order to generate arbitrary linear
combinations of the rows of the Jacobian matrices of f and g, a
set rich enough to, ideally, permit the unique determination of
the sign of jl.
Since at a steady state x = xl, f ′(xl)jl = 0 and

g′(xl)jl = 0, we also have that:

v jl = 0 (17)

for every linear combination v = nf ′(xl) and v = ng′(xl).
We now prove an easy yet key result, which shows that the

sign vectors in the set S(xl) strongly constrain the possible

signs pl = sign jl = sign dxl

dl . For simplicity in notations,

we drop l in pl and in jl when l is clear from the context,
and write simply π or j, with coordinates pi and ji,
respectively.
To state the result, we use formal logic notations. Let ps,p

and qs,p be the following logical disjunctions:

ps,p = ∃isipi . 0

qs,p = ∃j sjpj , 0

Recall that the “XNOR(p, q)” binary function has value
“true” if and only if p and q are simultaneously true or
simultaneously false. Consider the following statement, for
any given l [ L, and with p = pl:

XNOR(ps,p, qs,p) ∀s [ S(xl) (18)

This statement is true if and only if for every s [ S(xl) it
holds that either:

∀ isipi = 0 (19)

or:

(∃isipi . 0) and (∃j sjpj , 0) (20)

(where i and j range over {1, . . . , n
S
} in all quantifiers). In

other words, either all the coordinates of the vector

(s1p1, s2p2, . . . , snS
pnS

)

are zero, or the vector must have both positive and negative
entries.

Lemma 1: For any l [ L, let p = pl. Then (18) is true.

Proof: Pick s = sign v [ S(xl), p = pl, j = jl. Suppose
that (19) is false. Then, either there is some i such that
sipi . 0 or there is some j such that sjpj , 0. If sipi . 0
for some i, then also viji . 0. As (17) holds,∑nS

i=1 viji = 0, so that there must exist some other index j
for which vjjj , 0, which means that sjpj , 0. Similarly,
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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if there is some j such that sjpj , 0, necessarily there is some
i such that sipi . 0, by the same argument. □

In terms of the original data, Lemma 1 can be rephrased as
follows. For each parameter value l [ L, and each vector

n [ R1×nS , either sign n∂f
∂xi
sign dxli

dl = 0 for all i [ {1, . . . , n
S
}

or there are both positive and negative numbers in this
sequence; and similarly for the partial derivatives of g.
The condition (18) given in Lemma 1 is only necessary, not

sufficient. It may well be the case that there are sensitivity
signs that pass this test, yet are not realisable for a given set
of kinetic constants. In our experience, however, and as
shown by the worked out examples, (18) is enough to
provide a minimal set of signs, and is tight in that sense.
Given any two sign vectors σ, π, testing property (18) is

simple in any programming language. For example, in
MATLAB® syntax, one may write:

z = s. ∗ p
p = sign (sum (z . 0))

q = sign (sum (z , 0))

XNOR = sign (p ∗ q+ (1− p) ∗ (1− q))

and the variable XNOR will have value 1 if
XNOR( ps,p, qs,p) is true and value 0 otherwise.
The basis of our approach will be as follows. We will show

how to obtain a state-independent set S0 which is a subset of
S(x) for all states x. In particular, for all steady states xl, we
will have:

S0 #
⋂
l[L

S(xl) (21)

Compared to the individual sets S(xl), which depend on the
particular steady state xl, the elements of this subset are
obtained using only linear algebraic operations; the
computation of S0 does not entail solving non-linear
equations nor simulating differential equations. Since
S0 # S(xl) for all xl, it follows that

XNOR(ps,p, qs,p) ∀s[S(xl)⇒XNOR(ps,p, qs,p) ∀s[ T

for any subset T #S0. Thus, we have:

For every l[L, pl [P

= p
∧
s[T

XNOR(ps,p, qs,p) is true

∣∣∣∣∣
{ }

(22)

because of Lemma 1. We will construct such subsets T in our
procedure, and test, for each potential sign vector π, whether
the “orthogonality” property XNOR(ps,p, qs,p) is true or not,
with respect to elements of T . Our procedure will provide the
set P. Often, our construction of T leads to a P that has just
three elements, P = {0,p, −p}. (Note that p= 0 is always a
solution, and solutions always appear in pairs, since nj= 0
implies n(−j)= 0.)
To generate P, we carry out a sieve procedure (for

moderate number of species, this is easy and fast): we test
for each π if the conjunction in (22) is true; if the test fails,
the sign vector π is eliminated from the list. The surviving
π’s are the possible sign vectors. Of course, since the
conjunction in (22) is only a necessary, and not a sufficient,
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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condition, we are not guaranteed to find a minimal set of
signs. Observe that even though questions about the set P
are decidable using propositional logic (there are a finite
number of possible sign vectors), they have high
computational complexity; for example, asking whether
card(P) = 3 is NP-hard on the number of species. Good
heuristics for CNF problems include the Davis–Putnam–
Logemann–Loveland (DPLL) algorithm [25]. The high
computational complexity of these problems means that,
generally speaking, our approach will only work well for
relatively small networks.
The key issue, then, is to find a way to explicitly generate a

state-independent subset S0 of S(xl), and we turn to that
problem next.
2.3 Sketch of idea

To provide some intuition, let us consider, for the motivating
example, the differential equation for e, which takes the form:

ė = −k1m0e+ k2a+ k3a

for some positive constants k1, k2, and k3. Along a curve of
steady states, we must have

−k1m0(l)e(l)+ k2a(l)+ k3a(l) ; 0

and therefore, taking derivatives with respect to l,

−k1e(l)m
′
0(l)− k1m0(l)e

′(l)+ (k2 + k3)a
′(l) ; 0 (23)

Since e(l) . 0 and m0(l) . 0, this means that the following
triplets of signs for m′

0, e
′, and a′:

(−1, −1, 1), (1, 1, −1)

can never appear, since they would lead to a contradiction,
namely a strictly positive and a strictly negative left-hand
side, respectively, in (23).
We were able to derive this conclusion because the signs of

the coefficients of m′
0, e

′, and a′ are uniquely determined
independently of the value of l. That fact, in turn, follows
from the fact that the gradient of the function
(m0, e, a) 7! −k1m0e+ (k2 + k3)a (which appears in the
right-hand side of the differential equation) has a constant
sign. In contrast, if we had, for example, a differential
equation like

ẋ1 = −k1x1x2 + k2x2x3

then we would derive, arguing in the same manner, the
constraint

−k1x2x
′
1(l)+ (k2x3 − k1x1)x

′
2(l)+ k2x2x

′
3(l) ; 0

and here the sign of the coefficient of x′2(l),
k2x3(l)− k1x1(l), cannot be determined unless the values
of x1(l) and x3(l) are known.
In general, additional information can be obtained by using

linear combinations of right-hand sides. For example, still for
the same example, consider the equation:

ṁ0 = −k1m0e+ k2a+ k4b
255
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Arguing as earlier, this leads to the identity

−k1e(l)m
′
0(l)− k1m0(l)e

′(l)+ k2a
′(l)+ k4b

′(l) ; 0

(24)

Subtracting (24) from (23), we have that

k3a
′(l)− k4b

′(l) ; 0

from which we conclude that a′(l) and b′(l) must have the
same sign. Thus, we may obtain more information by
taking linear combinations, but, again, we must check that
the obtained coefficients have constant sign (which, in this
case, is clear because k3 and k4 are constants). Our
procedure is based on identifying such constant-sign linear
combinations, using only information from stoichiometry.

3 Sensitivities for CRNs

From now on, we assume that we have a system of differential
equations associated to a chemical reaction network:

dx

dt
= f (x) = GR(x) (25)

(see Appendix). Observe that f ′(x) = GR′(x), where R′(x) is
the Jacobian matrix of R, which is the matrix whose (k, j)th
entry is ∂Rk

∂xj
(x).

We will assume from now on also specified a differentiable
mapping

g : RnS
+ � RnC

where n
C
is some positive integer (possibly zero, to indicate

the case where there are no additional constraints), and g
has the property that

all n
C
× n

S
entries of the Jacobian g′(x) have constant sign

(26)

In other words, the gradients ∇gi(x) of the components
{gi, i = 1, . . . , n

C
} of g, must have signs that do not

depend on the state x.
We use g in order to incorporate, in particular,

stoichiometric conservation laws, which are linear
functions, and thus have constant gradients and therefore
gradients whose signs do not depend on x. Recall that
stoichiometric constraints are obtained from the matrix Γ as
follows: one considers the vectors in the left nullspace of Γ,
that is, the row vectors r [ R1×nS such that rG = 0. The
linear functions x 7! rx are called conserved moities or
stochiometric constraints; the time derivative of rx(t) is
constant along solutions of (25), since d(rx)

dt = rGR(x) = 0.
Without loss of generality, one may take the vector ρ to
have rational components or (clearing denominators) integer
components, because the matrix Γ is rational. We
emphasise that we do not include as components of g all
stoichiometric constraints, or even all elements of a basis of
the left nullspace of Γ. Indeed, in most examples of
chemical reaction networks, this would lead to a unique
steady state, or at most a discrete set of states. Our objective
is precisely to study how steady states vary when one
parameter varies, and hence a continuum of steady states is
of interest.
256
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The example in the introduction, for example, has five
independent constraints, and one may show (see Appendix)
that when all constraints are imposed, the steady state
(given a specified set of kinetic reaction parameters) is
unique. However, if, for instance, we keep GT, FT, MT, NT
fixed but not impose a constant value on ET, a continuum
of steady states exists, as ET is allowed to vary.
Observe that a non-linear function g may sometimes also

have the constant sign property. For example, suppose that
n

S
= 5, n

C
= 1, and

g(x) = k1x1x3 − k2x
2
2

where k1 and k2 are positive constants. Then the Jacobian
matrix (gradient, since n

C
= 1) is:

g′(x) = ∇g(x) = (k1x3 , −2k2x2 , k1x1 , 0 , 0)

which has constant sign (1, −1, 1, 0, 0).
For chemical reaction networks, it is not necessary for the

entries of f ′(x), and much less the entries of the products
nf ′(x) for vectors ν, to have constant sign. Our next task
will be to introduce algebraic conditions that allow one to
check if the sign is constant, for any given vector ν.
Before proceeding, however, we give an example of

non-constant sign. Take the following CRN, with n
S
= 4

and n
R
= 2:

R1: X1 + X2 � X4 , R2: X2 + X3 � X1 (27)

which is formally specified, assuming mass-action kinetics, as
follows:

A =

1 0
1 1
0 1
0 0

⎛⎜⎜⎝
⎞⎟⎟⎠, B =

0 1
0 0
0 0
1 0

⎛⎜⎜⎝
⎞⎟⎟⎠, G =

−1 1
−1 −1
0 −1
1 0

⎛⎜⎜⎝
⎞⎟⎟⎠

R(x) = (k1x1x2, k2x2x3)
T

Thus the ODE set ẋ = f (x) = GR(x) corresponding to this
CRN has:

f (x) =

−k1x1x2 + k2x2x3
−k1x1x2 − k2x2x3

−k2x2x3
k1x1x2

⎛⎜⎜⎝
⎞⎟⎟⎠

Let n = eT1 , where, in general ei is the canonical row
vector (0, . . . , 0, 1, 0, . . . , 0) with a “1” in the ith position
and zeroes elsewhere. Observe that nf ′(x) = (−k1x2,−k1x1+
k2x3, k2x2, 0) does not have constant sign, because its second
entry, which is the same as the (1, 2) entry of f ′(x), is the
function −k1x1 + k2x3, which changes sign depending on
whether x1 . k2x3/k1 or x1 , k2x3/k1. Ruling out vectors ν
that lead to such ambiguous signs is the purpose of our
algorithm to be described next.

3.1 A first space

Introduce the following space:

V := row span of G = {nG | n [ R1×nS} # R1×nR
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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Since f ′(x) = GR′(x), the definition (14) of Sf (x) becomes:

Sf (x) := {sign(vR′(x)) | v [ V}

when specialised to CRN. Later on, we will explain how
Property (26) allows us to obtain sign vectors induced by
g(x) that are independent of x. On the other hand, the sign
vectors s = sign vR′(x) generally depend on the particular
x. The following lemma shows that, for vectors r with
non-negative entries, the sign of the vector rR′(x) is the
same, no matter what the state x is, and moreover, this sign
can be explicitly computed using only stoichiometry
information. We denote by

Aj = (a j1, . . . , a jnR
)T [ RnR×1

the jth column of the transpose AT , i.e.. the transpose of the jth
row of A.

Lemma 2: For any positive concentration vector x, any
non-negative row vector ρ of size n

R
, and any species index

j [ {1, . . . , n
S
}:

rAj = 0 , r
∂R

∂xj
(x) = 0 (28)

Thus, also

rAj . 0 , r
∂R

∂xj
(x) . 0 (29)

since the expressions in each side of (28) can only be zero or
positive.

Proof: We have that

rAj =
∑
k[Kr

rka jk

where Kr := {k|rk . 0}. Since every a jk ≥ 0, the equality
rAj = 0 holds if and only if a jk = 0 for all k [ Kr.
Similarly, from

r
∂R

∂xj
(x) =

∑
k[Kr

rk
∂Rk

∂xj
(x)

and ∂Rk
∂xj
(x) ≥ 0 we have that r∂R

∂xj
(x) = 0 if and only if

∂Rk
∂xj
(x) = 0 for all k [ Kr. From (47), in the Appendix on

CRN, we conclude (28). □

Lemma 2 is valid for all non-negative r. When specialised to
v = nG [ V, and defining s = sign vR′(x), it says that σ does
not depend on x. However, elements of the form v = nG [ V
will generally not be non-negative (nor non-positive), so the
lemma cannot be applied to them. Instead, we will apply
Lemma 1 to the positive and negative parts of such a
vector, but only when such positive and negative parts
satisfy a certain “orthogonality” property, as defined by the
subset of V introduced below.
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3.2 A state-independent subset of Σ

For any v [ V, consider the sign vector
m̃v := sign vAT [ {−1, 0, 1}1×nS , whose jth entry is
vAj = nGAj if v = nG with n [ R1×nS , as well as the
positive and negative parts of v, v+ and v−. Define the
following set of vectors (“G” for “good”):

VG := {v [ V | for each j [ {1, . . . , n
S
}

either v+Aj = 0 or v−Aj = 0}

Observe that, if v [ VG, then, from
vAj = (v+ − v−)Aj = v+Aj − v−Aj, it follows that

vAj =
v+Aj, if v−Aj = 0

−v−Aj, if v+Aj = 0

0, if v+Aj = v−Aj = 0

⎧⎪⎨⎪⎩ (30)

Consider the following set of sign vectors m̃v parametrised by
elements of VG:

S̃0 := {m̃v = sign(vAT ) | v [ VG} # {−1, 0, 1}1×nS

(31)

The key fact is that this is a subset of S(x), for all x:

Lemma 3: For every positive concentration vector x,

S̃0 # S(x)

A proof is provided in Section 6.

Remark 1: To interpret the set VG, it is helpful to study the
special case in which v is simply a row of G, that is, v = nG
and n = eTi . Since

eTi B− eTi A = eTi (B− A) = eTi G = v+ − v−

and the vectors eTi B and eTi A have non-overlapping positive
entries (by the non-autocatalysis assumption), we have that
v+ = eTi B and v− = eTi A. Since eTi BAj =

∑
k bika jk , asking

that this number be positive amounts to asking that

i is a product of a reaction Rk which has j as a reactant

(32)

Since eTi AAj =
∑

k aika jk , asking that this number is positive
amounts to asking that

i and j are both reactants in some reaction Rk′ (33)

Thus, if the network in question has the property that (32)
and (33) cannot both hold simultaneously for any pair of
species i, j, then we cannot have that both eTi BAj . 0 and

eTi AAj . 0 hold. In other words, eTi [ VG for all i.
As an illustration, take the CRN R1: X1 + X2 � X4
and R2: X2 + X3 � X1 treated in (27). We claim that
eT1 � VG, which reflects the fact that eT1 f

′(x) does not have
constant sign. Indeed, in this case we have that, with i = 1
and j = 2, X1 and X2 are reactants in R1 but X1 is also a
257
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product of reaction R2, which has X2 as a reactant.
Algebraically, eT1G = (−1, 1) = (0, 1)− (1, 0) = v+ − v−

and A2 = (1, 1)T , so v+A2 = 1 and v−A2 = 1. This means
that n = eT1 � VG, since the property defining VG would
require that at least one of v+A2 or v−A2 should vanish. We
have re-derived, in a purely algebraic manner, the fact that
−k1x1 + k2x3 changes sign.
Testing whether a given vector v [ V, v = nG with

n [ R1×nS , belongs to VG is easy to do. For example, in
MATLAB®-like syntax, one may write:

v = n ∗ G

v+ = (v . 0). ∗ v
v− = −(v , 0). ∗ v

v+A = sign(v+ ∗ A′)

v−A = sign(v− ∗ A′)

and we need to verify that the vectors v+A and v−A have disjoint
supports, which can be done with the command

sum(v+A . ∗ v−A ) == 0

which returns 1 (true) if and only if v [ VG, in which case we
accept v and we may use s = sign(vAT ) to test the conditions
in Lemma 1.
3.3 Explicit generation of elements of S̃0

The set S̃0 defined in (31) is constructed in such a way as to
be independent of states x, which makes it more useful than
the sets S(x) from a computational standpoint. Yet, in
principle, computing this set potentially involves the testing
of the conditions “v+Aj = 0 or v−Aj = 0” that define the set
VG, for every v = nG, that is, for every possible real-valued
vector n [ R1×nS (and each j). We describe next a more

combinatorial way to generate the elements of S̃0.
We introduce the set of signs associated to the row span V

of G:

S := signV # {−1, 0, 1}1×nR (34)

Denote:

a := signAT [ {0, 1}nR×nS

so that the jth column of a is aj = signAj [ {0, 1}nR×1.

Lemma 4: Pick any s [ S, s = sign v, where v [ V. Then, for
each j [ {1, . . . , n

S
}:

sign(v+Aj) = sign(s+aj) , sign(v−Aj) = sign(s−aj)

Proof: By (13), applied with u = v+ and v = Aj,
sign(v+Aj) = sign(sign(v+)aj). By (13) applied with u = v−

and v = Aj, sign(v−Aj) = sign(sign(v−)aj). Since, by (12)

applied with u = v, s+ = sign(v+) and s− = sign(v−), the
conclusion follows.
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In analogy to the definition of the set VG, we define (“G” for
“good”):

SG := {s [ S | for each j [ {1, . . . , n
S
}

either s+aj = 0 or s−aj = 0}

Observe that, if s [ SG, then, since saj = (s+ − s−)aj =
s+aj − s−aj,

saj =
s+aj, if s−aj = 0

−s−aj, if s+aj = 0

0, if s+aj = s−aj = 0

⎧⎪⎨⎪⎩ (35)

Consider the following set of sign vectors parametrised by
elements of SG:

S0 := {ms = sign(sa) | s [ SG} # {−1, 0, 1}1×nS (36)

Proposition 1: Pick any s [ S, s = sign v, where v [ V.
Then

s [ SG if and only if v [ VG

and for such s and v,

sign(vAT ) = sign(sa) (37)

A proof is provided in Section 6.

Corollary 1: S̃0 = S0.

Proof: Pick any element of S̃0, m̃v = sign(vAT ), v [ VG. By
Corollary 1, s = sign v [ SG. Moreover, also by Corollary 1,
m̃v = sign(sa), so we know that m̃v [ S0. Conversely, take an
element ms [ S0. This means that ms = sign(sa) for some
s [ SG # S = signV. Let v [ V be such that s = sign v.
By Corollary 1, v [ VG, and also ms = sign(vAT ). By

definition of S̃0, this means that ms [ S̃0. □

We can simplify the definition of S0 a bit further, by noticing
that the finite subset S can be in fact be generated using only
integer vectors. The definition in (34) says that:

S = {sign (nG) | n [ R1×nS} # {−1, 0, 1}1×nR

Lemma 5:

S = {sign (nG) | n [ Z1×nS} # {−1, 0, 1}1×nR

A proof is provided in Section 6.
3.4 Adding rows to g by linear combinations of
linear components

Recall that we made the assumption [Property (26)], that the
n

C
components of g have gradients of constant sign. This
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means that the elements in following subset of Sg(x), for all x:

Sg
1 := {sign(eTi g

′(x)) | i [ {1, . . . , n
C
}} (38)

where eTi denotes the canonical row vector (0, . . . , 0,
1, 0, . . . , 0) with a “1” in the ith position and zeroes
elsewhere, have constant sign, independently of the
particular state x. We will also consider the following
subset of Sg(x), for all x:

S
g
2 := {sign(ng′(x)) | n [ R

1×nS
I } (39)

where I # {1, . . . , n
C
} denotes the set of indices of rows of g

that are linear functions, and n [ R
1×nS
I means that n is

supported in I , that is, nj = 0 whenever j � I . Since a
linear combination of linear functions is again linear, the
elements of Sg

2 also have constant sign. Thus, we will only
use elements of S

g
1 < S

g
2 in our procedure, instead of

arbitrary elements of Sg(x). As part of our algorithm, we
add selected combinations of such constraints as new
components of g – ideally the whole sign space of the span
of the rows, but in practice just a few sparse linear
combinations suffice. If the coefficients of these linear
functions are rational numbers (as is the case with
coordinates of g that represent stoichiometric constraints),
we may, without loss of generality, take integer
combinations, as justified in the same manner as Lemma 5.
Let us explain, through an example, why this procedure is

necessary. Suppose that the following are two rows of g

g1 = x1 + x2 + x3 − c1
g2 = 2x2 + x3 − c2

which might represent the conservation of two quantities. If
xl is a curve of steady states, and denoting derivatives with
respect to l by primes, we have therefore that

x′1(l)+ x′2(l)+ x′3(l) = 0 and 2x′2(l)+ x′3(l) = 0

The first of these tells us that the sign vector
s = pl = (s1, s2, s3) is either zero or must have two
components of opposite signs, and the second one implies
that s2 = −s3. The conjunction of these two constraints
gives the following set of possible signs:

{(0, 0, 0), (1, 1, −1), (0, 1, −1), (−1, 1, −1)}

(and the negatives of the last three). However, notice that, if
we add to the rows of g also the difference
g3 = g1 − g2 = x1 − x2 − c1 + c2, then we also know that
x′1(l)− x′2(l) = 0, so that, in fact, we should also have that
s1 = s2. Adding this constraint serves to eliminate the last
two possibilities (as well as their negatives), giving the
unique non-zero solution (1, 1, −1) [and its negative
(−1, −1, 1)]. Thus, adding the linear combination g3, even
if it is redundant from a purely linear-algebraic point of
view, provides additional information when looking for signs.
3.5 Addition of “virtual constraints” to g

We have also found, when working out examples, that the
following heuristic is useful. Consider the set I consisting
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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of all state-dependent linear combinations

h(x) =
∑nS

i=1
ri(x)GiR(x)

of the rows of the right-hand side of the dynamics (25), where
Gi denotes the ith row of G, and the ri’s are scalar functions. In
abstract algebra terminology, when the reactions Ri’s are
polynomials (as with mass action kinetics), and if we
restrict to polynomial coefficients ri, then I is the ideal
generated by the functions GiR. Take any h [ I , and a
parametrised set of positive steady states xl. Since
GR(xl) = 0, it follows that also h(xl) = 0 for every l [ L.
Now, suppose that one is able to find a function h of this
form with the property that h(x) = m(x)g(x), where m(x) is
a monomial and g(x) has a gradient of constant sign. Then
g(xl) = 0 for every l [ L, because m(x) = 0 at all positive
x. This means that we may add g to the set of constraints.
We call a function g of this form a “virtual constraint.”
Testing for the existence of such elements is in principle a

difficult computational algebra problem. However, in many or
even most natural examples of CRN’s, the reaction functions
Ri are either linear or quadratic. If we consider only linear
functions ri, then the combination elements h obtained by
the above construction are at most polynomials of order
three. Suppose that we look for factorisations of the form
h(x) = xig(x), where g is a polynomial of order at most two,
and is so that the monomials in g all involve different
variables. Such a g has constant-sign gradient (because
∇g(x)’s coordinates are all either constants or single
variables xi). Testing for such a factorisation, for each fixed
variable xi as “m(x)” and any fixed group of monomials for
g, becomes a linear algebraic problem on the coefficients of
the functions ri. We do not discuss this further in general,
but only mention an example which will be useful when
analysing a particular network below.
Suppose that some two rows of f = GR(x) are as follows:

f1(x) = k1x0y1 − k−1x1y0
f2(x) = k2x1y1 − k−2x2y0

where we are denoting the coordinates of x as
(x0, x1, x2, y0, y1) for reasons that will be clear when we
discuss the network where this example appears. Taking
r1(x) = k−2x2 and r2(x) = k−1x1, we have that

h(x) = k−2x2f1(x) − k−1x1f2(x) = m(x)g(x)

where m(x) = y1 is a monomial, and:

g(x) = k1 k−2x0x2 − k−1k2x
2
1

has the gradient:

g′(x) = ∇g(x) = (k1 k−2x2 , −2k−1k2x1 , k1 k−2x0 , 0 , 0)

which has constant sign (1, −1, 1, 0, 0).

3.6 Remarks on global properties

We do not directly address in this study the issue of
uniqueness of steady states in each stoichiometry class. In
those examples in which the space of fixed conservation
laws has codimension one, as in our example when we fix
all except one of the values ET and so on, it is possible in
principle that for each value of the remaining conserved
259
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quantity there may exist several equilibria. This is a
well-studied question for CRNs, see for instance [26–35]. A
routine argument on CRNs can be used to prove that for
our motivating example (1), steady states are unique once
that all conservation laws are taken into account (see
Appendix).
However, in this work our concern has been with the

determination of signs of sensitivities, and not their actual
values. These are different questions. Indeed, signs might
be unique even when values are not: different steady states
may well “move” in the same direction upon a perturbation
of parameters. For a completely trivial illustration, take any
one-dimensional (1D) differential equation ẋ = f (x). Even if
f has multiple roots, leading to multiple steady states,
N (f ′(x)) is either equal to {0} or R at each steady state.
This means that the signs of the elements in N (f ′(x)) are
unique (zero in the first case) or, at worst, unique up to sign
reversals (in the second case). Note that any f which has the
property that f (0) ≥ 0 arises from some CRN, f = GR(x).
Indeed, a representing CRN for f (x) =

∑n
i=0 aix

i, with
a0 ≥ 0, can be obtained as follows. For i = 0, we include a
reaction 0 � X with rate constant a0. For i . 0 and ai ≤ 0,
we introduce a reaction iX � 0 with rate constant −ai/i.
For i . 0 and ai . 0, we introduce a reaction iX � (i+
1)X with rate constant ai. Then G = [1, g1, . . . , gn], with
gi = −i if ki ≤ 0 and gi = 1 if ki ≥ 0, and R(x) =
(k0, k1, . . . , kn)

T with ki = −(ai/i)x
i if ai ≤ 0 and ki = aix

i

if ai ≥ 0. (This network has autocatalytic reactions, but
adding additional species turns it into one that does not.)
Another example is given by the 2D system that has vector

field f (x) = ((x1 − x2)(x1 − 2x2)(x1 − 3x2), 0)
T . At steady

states of the form (x2, x2), (2x2, x2), and (3x2, x2), the first
row of the Jacobian matrix f ′ is (ax22, bx

2
2) (and the second

row is zero), where a = 2, −1, 2 and b = −2, 2, −6,
respectively. Thus, the nullspace N (f ′(xl)) = {(u1, u2) [
R2 | au1 + bu2 = 0} is the span of (1, 1), (2, 1), or (3, 1).
These are three different subspaces, yet they all have the
common sign (1, 1) (plus its negative, and zero). In
summary, even though the tangent vectors are not unique,
in this example signs are.

Remark 2: Suppose that signs of sensitivities are unique up to
sign reversals and zero, that is, for some p [ {−1, 0, 1}nS×1

and all parameter values l [ L, pl [ {p, −p, 0}. Then a
global result along any smooth non-singular (jl= 0 for all
l) curve connecting steady states follows as a corollary. In
other words, the conclusion from infinitesimal perturbations
extends to global perturbations. Indeed, suppose that we want
to compare the values of the steady-state concentrations xl1

and xl2 at two parameter values l1, l2. We have:

sign (xl2 − xl1 ) = sign

∫l2
l1

jl dl

( )
= +p

the sign depending on whether pl = p or pl = −p for all l
(no change of sign is possible, by nonsingularity).
4 Summary and implementations

Our procedure for finding the set P in (22), which contains all
possible signs pl of derivatives jl, consists of the following
steps:
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1. Construct a subset S # S (see below).
2. For each element s [ S, test the property
(s+aj) · (s−aj) = 0, which defines SG. The s′s that pass this
test are collected into a set SG, which is known to be a
subset of SG.
3. Take the set of elements of the form ms = sign(sa), for s in
SG, and add to these the signs of the rows of the Jacobian g

′ of
g, as well as a subset of combinations of linear components of
g (by assumption, these sign vectors are independent of x).
Let us call this set T .
4. Optionally, add to T sign vectors from “virtual
constraints” as explained earlier.
5. Now apply the sieve procedure, testing the conjunction in
(22). The elements π that pass this test are reported as possible
signs of derivatives of steady states with respect to the
parameter l, in the sense that they have not been
eliminated. These are the elements of P.
6. If a unique (after eliminating 0 as well as one element of
each pair {p, −p}) solution remains, we stop. If there is
more than one sign that passed all tests, and if S was a
proper subset of S, we may generate a larger set S, and
hence a potentially larger T , and repeat the subsequent
steps for the larger subset.

The theory guarantees that our procedure will eliminate all
impossible sign vectors, thus providing a set P of possible
sign vectors. As is typically the case with heuristics for
computationally intractable problems, there is no a priori
guarantee that the set P obtained by steps 1–5 should be a
minimal such set, and this is why step 6 is included for
further search.
The first step, constructing S, or a large subset S of it, can

be done in various ways. Since, by Lemma 5, we can generate
S using integer vectors, the elements of S have the form sign v
where we may assume, without loss of generality, that each
entry of v = nG is either zero or, if non-zero, is either ≥ 1
or ≤ −1. Thus, testing whether a sign vector s belongs to S
amounts to testing the feasibility of a linear program (LP):
we need that nGei = 0 for those indices i for which si = 0,
that nGei ≤ −1 for those indices i for which si = −1, and
that nGei ≥ 1 for those indices i for which si = 1. (These
are closed, not strict, conditions, as needed for an LP
formulation.) This means that one can check each of the 3n

possible sign vectors efficiently.
One can combine the testing of LP feasibility with the

search over the 3n possible sign vectors into a mixed
integer linear programming (MILP) formulation, by means
of the technique called in the MILP field a “big M”
approximation [36]. This is a routine reduction: one first
fixes a large positive number M, and then formulates the
following inequalities:

nGei−MLi+Ui ≤ 0, − nGei−MUi+Li ≤ 0, Li+Ui ≤ 1

where the vector n is required to be real and the variables Li,
Ui binary ({0, 1}). Given any solution, we have that
−M ≤ nGei ≤ −1 (so s = −1) for those i for which
(Li, Ui) = (0, 1), 1 ≤ nGei ≤ M (so s = 1) for indices for
which (Li, Ui) = (1, 0), and nGei = 0 (i.e. si = 0) when
(Li, Ui) = (0, 0). (This trick will miss any solutions for
which nGei ≤ −1 but M was not taken large enough that
−M ≤ nGei, or nGei ≥ 1 but M was not taken large enough
that nGei ≤ M .) The resulting MILP can be solved using
relaxation-based cutting plane methods, branch and bound
approaches, or heuristics such as simulated annealing
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[37, 38]. Such mixed-integer techniques have been used for
the related but very different problem of parameter
identification for biochemical networks, see for instance [39].
Often, however, simply testing sparse integer vectors in the

integer-generating form in Lemma 5 works well. In practice,
we find that linear combinations with small coefficients of
pairs of canonical basis vectors n = eTi , and similarly for
the appropriate conservation laws, is typically enough to
obtain the set of all possible sign vectors π (up to all signs
being reversed, and except for the trivial solution p = 0).
We have developed a MATLAB® script, “CRNSESI”

(Chemical Reaction Network SEnsitivity SIgns) that
implements our procedure. The examples given in the next
section were worked out using this software. (Actual output
from the program is shown in the Supplementary Materials.)

5 Three worked-out examples

5.1 Kinase cascade

In particular, the example given in the introduction was
worked out using CRNSESI. Specifically, we introduced
stoichiometric constraints to keep all but one conservation
law fixed, and analysed the signs of the resulting
sensitivities for any curve, obtaining in each case a unique
solution (up to sign reversals or the identically zero
solution). The output of CRNSESI, for the concrete
example given by reactions (1), can be summarised as
shown below. In each case, “−1” or “1” means that the
respective component of the state vector changes negatively
or positively, respectively, under the corresponding
perturbation.

if the first kinase, ET, decreases (keeping GT, FT, MT, NT
fixed):

−1 1 −1 −1 1 −1 1 −1 −1 1 −1
e m0 a m1 g b n0 c n1 f d

if the first substrate, MT, increases (keeping ET, GT, FT, NT
fixed):

−1 1 1 1 −1 1 −1 1 1 −1 1
e m0 a m1 g b n0 c n1 f d

if the first phosphatase, GT, increases (keeping
ET, FT, MT, NT fixed):

−1 1 1 −1 1 1 1 −1 −1 1 −1
e m0 a m1 g b n0 c n1 f d

if the second substrate, NT, decreases (keeping
ET, GT, FT, MT fixed):

−1 1 1 1 −1 1 −1 −1 −1 1 −1
e m0 a m1 g b n0 c n1 f d

if the second phosphatase, FT, decreases (keeping
ET, GT, MT, NT fixed):

−1 1 1 1 −1 1 −1 −1 1 −1 −1
e m0 a m1 g b n0 c n1 f d

If the opposite change is made on a total amount, then the
signs get reversed. For example, if the second substrate, NT,
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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increases, then we obtain:

1 −1 −1 −1 1 −1 1 1 1 −1 1
e m0 a m1 g b n0 c n1 f d

Typically, one is also interested the effect of perturbations on
the total concentration of active kinase, free or bound,
X = M1 + B+ C and the total concentration of product,
free or bound, Y = N1 + D. Experimentally, these
quantities are far easier to quantify using Western blots or
mass spec techniques [7]. In order to study changes in X
and Y, we introduce “virtual” variables x and y and artificial
stoichiometric constraints m1 + b+ c− x = 0 and
n1 + d − y = 0, and re-apply our algorithm. Results are as
follows (using the same sign conventions as above):

if the first kinase, ET, decreases: x, y = −1, −1
if the first substrate, MT, increases: x, y = 1, 1
if the first phosphatase, GT, increases: x, y = −1, −1
if the second substrate, NT, decreases: x, y = −1, −1
if the second phosphatase, FT, decreases: x, y = −1, 1

Notice the following remarkable phenomenon: when the
total second substrate, NT, is perturbed, we see that x and y,
the total amounts of active enzymes, both vary in the same
direction. A network identification procedure that employs
these experimental perturbations will infer a positive
correlation between measured activity of these enzymes. On
the other hand, an experiment in which the second
phosphatase, FT, is perturbed, will lead to an inference of a
graph “repression” edge. Indeed, when decreasing the
second phosphatase, a “local” perturbation in the second
layer, the total amount of active enzyme y increases, as it
should, but the effect on the “upstream” layer quantified by
x is negative, which suggests a repression of x by y. These
issues, including the apparently paradoxical effect of two
different perturbations leading to opposite conclusions, are
extensively discussed in [7], which conducted an
experimental validation of this idea.
In order to obtain the additional information, about total

active kinase X and product Y, we proceeded as follows.
We first add two artificial variables, x and y, so that the full
state is now (e, m0, a, m1, g, b, n0, c, n1, f , d, x, y). The
definitions of x and y are incorporated into two new
“stoichiometric constraints” corresponding to these vectors
in S:

(0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,−1, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,−1)

respectively. No change is made to the original stoichiometry
matrix and original stoichiometric constraints, except for
adding zeroes in the positions of x and y. The original
algorithm can be run on this extended set. However, when
adding artificial variables, such as x and y, which do not
participate in reactions nor the original set of stoichiometric
constraints, it is more efficient to first obtain solutions for
the original problem, in which x and y have not yet been
added, and only as a second step to add the “stoichiometric
constraints” corresponding to the added variables. This
typically results in a substantial savings of computing time.
With this modified procedure, we obtained the following
results.
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ET, GT, FT, MT fixed, so that only the first kinase, ET, is
allowed to vary:

−1 1 −1 −1 1 −1 1 −1 −1 1 −1 −1 −1
e m0 a m1 g b n0 c n1 f d x y

ET, GT, FT, NT fixed, so that only the first substrate, MT, is
allowed to vary:

−1 1 1 1 −1 1 −1 1 1 −1 1 1 1
e m0 a m1 g b n0 c n1 f d x y

ET, FT, MT, NT fixed, so that only the first phosphatase,GT, is
allowed to vary:

−1 1 1 −1 1 1 1 −1 −1 1 −1 −1 −1
e m0 a m1 g b n0 c n1 f d x y

ET, GT, FT,MT fixed, so that only the second substrate, NT, is
allowed to vary:

−1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 −1
e m0 a m1 g b n0 c n1 f d x y

ET, GT,MT, NT fixed, so that only the second phosphatase,
FT, is allowed to vary:

−1 1 1 1 −1 1 −1 −1 1 −1 −1 −1 1
e m0 a m1 g b n0 c n1 f d x y

Let us interpret these solutions. Take for example the solution
obtained when only the last substrate, NT, was allowed to
vary. Both zero and the negative of this sign vector, namely:

1 −1 −1 −1 1 −1 1 1 1 −1 1 1 1
e m0 a m1 g b n0 c n1 f d x y

are solutions. This negative version is easier to interpret: since
the changes in n0, c, n1, d are all positive and, by the
definition (6), NT = n0 + c+ n1 + d, these are the signs of
changes in steady states when NT is experimentally
increased. In this second form of the solution, we can
read-out the changes (positive for x and y, negative for b,
and so forth) under such a perturbation.

5.2 A phosphotransfer model

(We thank Domitilla del Vecchio for suggesting that we study
this example.) Consider the two reversible reactions

X0 + Y1 O
k1

k−1

X1 + Y0

X1 + Y1 O
k2

k−2

X2 + Y0

(we display rate constants because they play a role in the
virtual constraints described later). This network can be
thought to describe a phosphotransferase Y which, when in
active (phosphorylated) form Y1 transfers a phosphate group
to X0 (and hence becomes inactivated, denoted by Y0, while
X0 becomes X1), and which when active can also transfer a
second phosphate group to X1 (and hence becomes
inactivated, while X1 becomes X2). We write coordinates of
states as x = (x0, x1, x2, y0, y1). Two conservation laws are
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as follows:

x0 + x1 + x2 = XT

x1 + 2x2 + y1 = PT

representing the conservation of total X and total number of
phosphate groups.
Two rows of f = GR(x) are f1(x) = k1x0y1 − k−1x1y0 and

f2(x) = k2x1y1 − k−2x2y0, so, as discussed earlier, using the
virtual constraint obtained from k−2x2f1(x) − k−1x1f2(x), we
may add to T the following sign vector:

(1, −1, 1, 0, 0)

We ask now what happens if the total amount of kinase,
y0 + y1 = YT, is allowed to vary, but keeping XT and PT
constant.
CRNSESI returns this output:

−1 w 1 −1 −1
x0 x1 x2 y0 y1

(all signs could be reversed and that would also be a solution).
This means that x0, y0, and y1 change in the same direction,
but x2 in the opposite direction, and x1 is undetermined
(star). Since y0 + y1 = YT, an increase in YT means that
both y0 and y1 increase, and thus we conclude that x0
increases and x2 decreases when the kinase amount is
up-regulated.
Is the fact that our theory cannot unambiguously predict the

actual change in x1 at steady state, under kinase perturbations,
a reflection of an incomplete search by our algorithm, or an
intrinsic property of this system? To answer this question,
we simulated the system, taking for concreteness all
parameters ki = 1.
First, let us simulate a system in which XT = PT = 10 and

we study a 10% up-regulation from YT = 1. We start from
these the following two initial states:

(1, 9, 0, 0, 1)T (1, 9, 0, 0.1, 1)T

which correspond to YT = 1 and YT = 1.1, respectively. The
steady states reached from here are as shown in the first and
second rows, respectively, of the following matrix:

3.5772 3.3275 3.0953 0.5181 0.4819
3.6009 3.3264 3.0727 0.5718 0.5282

( )
which means that the sign changes are:

1 −1 −1 1 1

consistently with our theoretical prediction.
Next, let us simulate a system in which XT = 8, PT = 10,

and we study a 10% up-regulation from YT = 3, which is
achieved by taking these two initial states:

(1, 7, 0, 0, 3)T (1, 7, 0, 0.3, 3)T

which correspond to YT = 3 and YT = 3.3, respectively. The
steady states reached from here are as shown in the first and
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
doi: 10.1049/iet-syb.2014.0025



www.ietdl.org

second rows, respectively, of the following matrix:

2.4505 2.6607 2.8888 1.4383 1.5617
2.5166 2.6638 2.8197 1.6031 1.6969

( )
which means that the sign changes are now:

1 1 −1 1 1

again consistently with our theoretical prediction.
These simulations explain why the actual change in x1 at

steady state, under kinase perturbations, cannot be
unambiguously predicted from our algorithm, which does
not take into the numerical values of the conserved
quantities (nor, for that matter, of the kinetic constants ki’s).
It is remarkable, however, that the sign of the perturbation
in the “active” form x2 can be unambiguously predicted
(and perhaps counter-intuitive that the change is negative).
We also run CRNSESI on two other scenarios: (1) keeping

XT and YT constant gives these signs:

−1 w 1 −1 1
x0 x1 x2 y0 y1

and (2) keeping PT and YT constant results in:

−1 −1 w −1 1
x0 x1 x2 y0 y1

in which case the signs of perturbations in the variable x2 are
not uniquely defined.

5.3 A ligand/receptor/antagonist/trap example

(We thank Gilles Gnacadja for suggesting that we try
CRNSESI on this example.) The paper [40] studied a
system that models the binding of interleukin-1 (IL-1)
ligand to IL-1 type I receptor (IL-1RI), under competitive
binding to the same receptor by human IL-1 receptor
antagonist (IL-1Ra). IL-1Ra is used as a therapeutic agent
in order to block IL-1 binding (which causes undesirable
physiological responses). In addition, the model included
the presence of a decoy (or “trap”) receptor that binds to
both IL-1 and IL-1Ra. A key question addressed in that
paper was the determination of how the equilibrium
concentration of the receptor–ligand complex depends on
initial concentrations of the various players (reflected in
variations in stoichiometrically conserved quantities), and
specifically the determination of the direction of the
changes in concentrations. We show here how CRNSESI
recovers conclusions from that paper, which were obtained
there through very ingenious and lengthy ad-hoc
computations.
We will employ the same notations as in [40]: the species

Xi, i = 1, 2, 3, 4 are, respectively, the ligand IL-1, receptor
IL-1RI, antagonist IL-1Ra, and trap; and the species Yi,
i = 1, 2, 3, 4 are, respectively, the complexes X1X2, X2X3,
X3X4, and X4X1. Thus, the reaction network is

X1 + X2 O Y1
X2 + X3 O Y2
X3 + X4 O Y3
X4 + X1 O Y4
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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We use lower case letters to denote concentrations. There are
four independent conservation laws:

x1 + y4 + y1 = b1
x2 + y1 + y2 = b2
x3 + y2 + y3 = b3
x4 + y3 + y4 = b4

We will fix b2, b3, and b4, and ask how steady states change in
sign when b1 is perturbed. The other cases (perturb b2, etc.)
are of course similar.
It is easy to see that ay1y3 = by2y4, for some positive

constants a, b, at all steady states, and this allows one to
introduce an additional virtual constraint obtained from
ay1y3 − by2y4, meaning that we may add the following
sign vector:

(0, 0, 0, 0, 1, −1, 1, −1)

to T . Indeed, four rows of the vector field are:
f1 = k1x1x2 − ℓ1y1, f2 = k2x2x3 − ℓ2y2, f3 = k3x3x4 − ℓ3y3,
f4 = k4x4x1 − ℓ4y4 (for appropriate positive constants ki and
ℓi). So, at steady states, y1 is a multiple of x1x2, and
similarly for the other yi’s, which gives that y1y3 and y2y4
are both multiples of x1x2x3x4. Another way to say this is to
note that the linear combination

k1k3k4x1x4f2 + k1k3ℓ2y2f4 − k2k3k4x3x4f1 − k2k4ℓ1y1f3

gives

k2k4ℓ1ℓ3y1y3 − k1k3ℓ2ℓ4y2y4

With this virtual constraint added, CRNSESI returns

1 −1 1 −1 1 ∗ ∗ 1
x1 x2 x3 x4 y1 y2 y3 y4

for the signs of derivatives with respect to b1. Note that two
variables are undetermined in sign. (To be more precise,
CRNSESI also returns the negatives of these signs.
However, since b1 = x1 + y4 + y1, and since all three of
x1, y4, y1 change with the same sign, the negative
corresponds to the derivative with respect to −b1.) This is
exactly what is proved in [40] (see the first columns of the
matrices in (10) and (12) in that paper). Notably, CRNSESI
gave slightly more, namely that these particular signs of
(dy2/db1, dy3/db1) can never appear:

(1, 1), (1, 0), (0, 1), (0, 0).

In other words, it cannot be the case that both y2 and y3
increase.

6 Some technical proofs

We collect here some of the longer proofs.

6.1 Proof of Lemma 3

Proof: Pick any m̃v [ S̃0, where v [ VG # V, and fix any
positive concentration vector x. We must prove that
m̃v [ S(x). As S(x) includes all expressions of the form
sign(vR′(x)), for v [ V, it will suffice to show that, for this
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same vector v,

sign v
∂R

∂xj
(x)

( )
= sign(vAj) (40)

for each species index j [ {1, . . . , n
S
}. For each

j [ {1, . . . , n
R
}, we will show the following three statements:

v−Aj . 0 (so v+Aj = 0) ⇒ v
∂R

∂xj
(x) = −v−

∂R

∂xj
(x) , 0

(41)

v+Aj . 0 (so v−Aj = 0) ⇒ v
∂R

∂xj
(x) = v+

∂R

∂xj
(x) . 0 (42)

and

v−Aj = v+Aj = 0 ⇒ v
∂R

∂xj
(x) = 0 (43)

Suppose first that v−Aj . 0. Applying (28) with r = v+, we
have that v+ ∂R

∂xj
(x) = 0. Applying (29) with r = v−, we have

that v− ∂R
∂xj
(x) . 0. Therefore,

v
∂R

∂xj
(x) = (v+ − v−)

∂R

∂xj
(x) = v+

∂R

∂xj
(x)− v−

∂R

∂xj
(x)

= −v−
∂R

∂xj
(x) , 0

thus proving (41). If, instead, v−Aj = 0 and v+Aj . 0, a
similar argument shows that (42) holds. Finally, suppose
that v+Aj = v−Aj = 0. Then, again by (28), applied to
r = v+ and r = v−

v
∂R

∂xj
(x) = (v+ − v−)

∂R

∂xj
(x) = 0

and so (43) holds. The desired equality (40) follows from (41)–
(43). Indeed, we consider three cases: (a) vAj , 0, (b) vAj . 0,
and (c) vAj = 0. In case (a), (30) shows that vAj = −v−Aj

(because the first and third cases would give a non-negative
value), and therefore −v−Aj , 0, that is, v−Aj . 0, so (41)
gives that v∂R

∂xj
(x) is also negative. In case (b), similarly

v+Aj = vAj . 0, and so (42) shows (40). Finally, consider
case (c), vAj = 0. If it were the case that v+Aj is non-zero,
then, since v [ VG, v

−Aj = 0, and therefore (30) gives that

vAj = v+Aj . 0, a contradiction; similarly, v−Aj must also
be zero. So, (43) gives that v∂R

∂xj
(x) = 0 as well. □
6.2 Proof of Proposition 1

Proof: Let s = sign v, v [ V, and pick any j [ {1, . . . , n
S
}.

We claim that s+aj = 0 if and only if v+Aj = 0. Since j is
arbitrary, this shows that s [ SG if and only if v [ VG.
Indeed, suppose that s+aj = 0. By Lemma 4,

sign(v+Aj) = sign(s+aj) = 0, so v+Aj = 0. Conversely, if
v+Aj = 0 then s+aj = 0, for the same reason. Similarly,
s−aj = 0 is equivalent to v−Aj = 0.
Suppose now that s [ SG and v [ VG, and pick any

j [ {1, . . . , n
S
}. Assume that s+aj = 0. Since, by (35) and
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(30), saj = −s−aj and vAj = −v−Aj, we have, again by
Lemma 4, that

sign(saj) = −sign(s−aj) = −sign(v−Aj) = sign(vAj)

If, instead, s−aj = 0 (and thus v−Aj = 0)

sign(saj) = sign(s+aj) = sign(v+Aj) = sign(vAj)

As j was arbitrary, and we proved that the jth coordinates of
the two vectors in (37) are the same, the vectors must be
the same. □
6.3 Proof of Lemma 5

Proof: Pick any s [ S. Thus s = sign v, where v = nG
for some n [ R1×nS . Consider the set of indices of the
coordinates of v that vanish (equivalently, si = 0),

I = {i [ {1, . . . n
S
} | vi = 0}.

Suppose that I = {i1, . . . , ip}. Let ei denote the canonical

column vector (0, . . . 0, , 1, 0, . . . 0)T with a “1” in the ith
position and zeroes elsewhere, and introduce the n

S
× p

matrix EI = (ei1 , ei2 , . . . , eip ). The definition of I means

that nGEI = vEI = 0 and nGej = vej = vj = 0 for all j � I .
The matrix D = GEI has integer, and in particular rational,
entries. Thus, the left nullspace of D has a rational basis,
that is, there is a set of rational vectors {u1, . . . , uq}, where
q is the dimension of this nullspace, such that uiD = 0 and
uD = 0 if and only if u is a linear combination of the ui’s.
In particular, since nD = 0, there are real numbers
r1, . . . , rq such that n =

∑
i riui. Now pick sequences of

rational numbers r(k)i � ri as k � 1 and define
n(k) :=

∑
i r

(k)
i ui. This sequence converges to ν, and, being

combinations of the ui’s, n(k)D = 0 for all k. Let
v(k) := n(k)G, so we have that v(k) � v as k � 1, and
v(k)EI = 0 for all k. On the other hand, for each j � I , as
vej = 0, for all large enough k, (v(k))j, the jth coordinate of

v(k), has the same sign as vj. In conclusion, for large enough

k, sign v(k) = sign v = s. Multiplying the rational vector n(k)

by the least common denominator of its coordinates, the
sign does not change, but now we have an integer vector
with the same sign. □
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9 Appendix

9.1 A review of chemical reaction networks
terminology

We review here some basic notions about chemical networks.
See, for example [41, 42] for more details. We consider a
collection of chemical reactions that involves a set of n

S

“species”:

Si, i [ {1, 2, . . . n
S
}

The “species” might be ions, atoms, or large molecules,
depending on the context. A CRN involving these species
is a set of chemical reactions Rk , k [ {1, 2, . . . , n

R
},

represented symbolically as:

Rk :
∑nS
i=1

aikSi �
∑nS
i=1

bikSi (44)

where the aik and bik are some non-negative integers that
quantify the number of units of species Si consumed,
respectively, produced, by reaction Rk . Thus, in reaction 1,
a11 units of species S1 combine with a21 units of species S2
and so on, to produce b11 units of species S1, b21 units of
species S2 and so on, and similarly for each of the other
n

R
− 1 reactions. (If there is a reverse reaction to (44),∑nS
i=1 a′ikSi �

∑nS
i=1 b′ikSi with b′ik = aik and a′ik = bik , one

sometimes summarises both by a reversible arrow∑nS
i=1 aikSi O

∑nS
i=1 bikSi. However, from a theoretical

standpoint, we view each direction as a separate reaction.)
We will assume the following “non-autocatalysis”

condition: no species Si can appear on both sides of the
same reaction. With this assumption, either aik = 0 or
bik = 0 for each species Si and each reaction Rk (both are
zero if the species in question is neither consumed nor
produced), Note that we are not excluding autocatalysis
265
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which occurs through one ore more intermediate steps, such
as the autocatalysis of S1 in S1 + S2 � S3 � 2S1 + S4, so
this assumption is not as restrictive as it might at first appear.
Suppose that aik . 0 for some (i, k); then we say that

species Si is a reactant of reaction Rk , and by the
non-autocatalysis assumption, bik = 0 for this pair (i, k). If
instead bik . 0, then we say that species Si is a product of
reaction Rk , and again by the non autocatalysis assumption,
aik = 0 for this pair (i, k).
It is convenient to arrange the aik’s and bik’s into two

n
S
× n

R
matrices A, B, respectively, and introduce the

stoichiometry matrix G = B− A. In other words,

G = (gij)ij [ RnS×nR

is defined by:

gij = bij − aij , i = 1, . . . , n
S
, j = 1, . . . , n

R
(45)

The matrix G has as many columns as there are reactions. Its
kth column shows, for each species (ordered according to
their index i), the net “produced–consumed” by reaction
Rk . The symbolic information given by the reactions (44) is
summarised by the matrix G. Observe that gik = −aik , 0
if Si is a reactant of reaction Rk , and gik = bik . 0 if Si is a
product of reaction Rk .
To describe how the state of the network evolves over time,

one must provide in addition to G a rule for the evolution of
the vector:

[S1(t)]
[S2(t)]

..

.

[SnS (t)]

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

where the notation [Si(t)] means the concentration of the
species Si at time t. We will denote the concentration of Si
simply as xi(t) = [Si(t)] and let x = (x1, . . . , xnS )

T . Observe
that only non-negative concentrations make physical sense.
A zero concentration means that a species is not present at
all; we will be interested in positive vectors x of
concentrations, those for which xi . 0 for all i, meaning
that all species are present.
Another ingredient that we require is a formula for the

actual rate at which the individual reactions take place. We
denote by Rk (x) be algebraic form of the kth reaction. We
postulate the following two axioms that the reaction rates
Rk(x), k = 1, . . . , n

R
must satisfy:

† for each (i, k) such that species Si is a reactant of Rk ,
∂Rk
∂xi
(x) . 0 for all (positive) concentration vectors x;

† for each (i, k) such that species Si is not a reactant of Rk ,
∂Rk
∂xi
(x) = 0 for all (positive) concentration vectors x.

These axioms are natural, and are satisfied by every
reasonable model, and specifically by mass-action kinetics,
in which the reaction rate is proportional to the product of
the concentrations of all the reactants:

Rk (x) = kk
∏nS
i=1

x
aij
i for all j = 1, . . . , n

R
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The positive coefficients kk are the called reaction, or kinetic,
constants. By convention, x

aij
i = 1 when aij = 0.

Recall that aik . 0 and bik = 0 if and only if Si is a reactant
of Rk . Therefore the above axioms state that, for every
positive x,

∂Rk

∂xi
(x) . 0 ⇐⇒ aik . 0 (46)

and also

∂Rk

∂xi
(x) = 0 ⇐⇒ aik = 0 (47)

because the expressions on both sides are either zero or
positive.
We arrange reactions into a column vector function

R(x) [ RnR :

R(x) :=

R1(x)
R2(x)

..

.

RnR
(x)

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

With these conventions, the system of differential equations
associated to the CRN is given as in (25), which we repeat
here for convenience:

dx

dt
= f (x) = GR(x)

9.2 Existence and uniqueness for steady states in
the example

For our motivating example (1), steady states are unique once
that all conservation laws are taken into account. Existence of
steady states follows from the fact that states evolve in a
compact convex set, as argued, for example, in [23]
(Supplemental Material). Uniqueness is shown as follows.
Steady states satisfy that the right-hand sides of the
differential equations:

ė = −am0e+ ba+ xa

ṁ0 = −am0e+ ba+ fb

ȧ = am0e− ba− xa

ṁ1 = xa− dm1g + 1b− gn0m1 + hc+ ic

ġ = −dm1g + 1b+ fb

ḃ = dm1g − 1b− fb

ṅ0 = −gn0 m1 + hc+ ld

ċ = gn0 m1 − hc− ic

ṅ1 = ic− wn1f + kd

ḟ = −wn1f + kd + ld

ḋ = wn1f − kd − ld

(where a, b, . . . are some positive constants) are set to zero,
together with the conservation laws. We argue as follows,
using the constraints to first express all variables in terms of
e, seen as a parameter, and then pointing out that this forces
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
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e to be uniquely determined (“increasing” and “decreasing”
functions always means strictly so):
1. the conservation law for ET gives that a is a decreasing
function of e;
2. substituting a = ET − e into ė = 0 and solving for m0
gives that m0 is a decreasing function of e;
3. from ė− ṁ0 = 0, b is an increasing function of a, and
therefore b is a decreasing function of e;
4. substituting g = GT − b into ġ = 0 and solving for m1
gives that m1 is an increasing function of b, and thus m1 is
a decreasing function of e;
5. the conservation law for MT gives that c is a decreasing
function of m0, a, m1, b, so c is an increasing function of e;
IET Syst. Biol., 2014, Vol. 8, Iss. 6, pp. 251–267
doi: 10.1049/iet-syb.2014.0025
6. from ṅ1 − ḟ = 0, d is an increasing function of c, so d is an
increasing function of e;
7. solving ċ = 0 for n0 gives that n0 is increasing in c and
decreasing in m1, so n0 is an increasing function of e and
an increasing function of c, and thus n0 is an increasing
function of e;
8. substituting f = FT − d into ḟ = 0 and solving for n1 gives
that n1 is an increasing function of d, so n1 is an increasing
function of c, and thus n1 is an increasing function of e.

In conclusion, the sum of concentrations n0 + c+ n1 + d
is a strictly increasing function u(e) of concentration of e.
Thus, the constraint NT = u(e) provides a unique possible
value for e. Substituting back, (unique) values are obtained
for all other concentrations.
267
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A technique for determining the signs of sensitivities of steady states in chemical reaction
networks

Eduardo D. Sontag, IET Systems Biology, 2014

Contents:

Program output for these three examples:

• S1. Kinase/substrate example

• S2. Phosphotransfer example

• S3. Ligand/receptor/antagonist/trap example
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S1. Kinase/substrate example

(Omitting preliminary output, which lists linear combinations of stoichiometric constraints. In
every case, generating combinations 1 − 1, 1 + 1, 1 + 2, 1 − 2, 2 − 1, and 2 + 1 of rows.)

Kinase/substrate example, keep Gt, Ft,Mt, Nt constant

how many possible signs: 88573

after using constraint 1, possible signs left: 42646

constraint used is:

-1 -1 2 0 0 0 0 0 0 0 0

corresponding to this combination of species:

1 0 0 0 0 0 0 0 0 0 0

after using constraint 2, possible signs left: 40459

constraint used is:

-1 -1 1 0 0 1 0 0 0 0 0

corresponding to this combination of species:

0 1 0 0 0 0 0 0 0 0 0

after using constraint 4, possible signs left: 34060

constraint used is:

0 0 1 -2 -1 1 -1 2 0 0 0

corresponding to this combination of species:

0 0 0 1 0 0 0 0 0 0 0

after using constraint 5, possible signs left: 18535

constraint used is:

0 0 0 -1 -1 2 0 0 0 0 0

corresponding to this combination of species:

0 0 0 0 1 0 0 0 0 0 0

after using constraint 7, possible signs left: 12334

constraint used is:

0 0 0 -1 0 0 -1 1 0 0 1

corresponding to this combination of species:

0 0 0 0 0 0 1 0 0 0 0

after using constraint 8, possible signs left: 9355

constraint used is:

0 0 0 1 0 0 1 -2 0 0 0

corresponding to this combination of species:

0 0 0 0 0 0 0 1 0 0 0

after using constraint 9, possible signs left: 6172

constraint used is:

0 0 0 0 0 0 0 1 -1 -1 1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 0 0

after using constraint 10, possible signs left: 4205

constraint used is:

0 0 0 0 0 0 0 0 -1 -1 2

corresponding to this combination of species:

0 0 0 0 0 0 0 0 0 1 0

2



after using constraint 12, possible signs left: 1578

constraint used is:

0 0 1 0 0 -1 0 0 0 0 0

corresponding to this combination of species:

1 -1 0 0 0 0 0 0 0 0 0

after using constraint 40, possible signs left: 1557

constraint used is:

0 0 1 -1 -1 1 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 1 0 0 -1 0 0 0 0

after using constraint 60, possible signs left: 613

constraint used is:

0 0 0 0 0 0 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 -1 0

after using constraint 305, possible signs left: 134

constraint used is:

0 0 0 0 1 1 0 0 0 0 0

corresponding to this stoichiometry constraint:

0 0 0 0 1 1 0 0 0 0 0

after using constraint 306, possible signs left: 29

constraint used is:

0 0 0 0 0 0 0 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 0 1 1

after using constraint 307, possible signs left: 10

constraint used is:

0 1 1 1 0 1 0 1 0 0 0

corresponding to this stoichiometry constraint:

0 1 1 1 0 1 0 1 0 0 0

after using constraint 308, possible signs left: 1

constraint used is:

0 0 0 0 0 0 1 1 1 0 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 1 1 1 0 1

ended search

possible_signs =

-1 1 -1 -1 1 -1 1 -1 -1 1 -1

e m0 a m1 g b n0 c n1 f d

Additional computations for “artificial variables” x and y:

how many possible signs: 9

after using constraint 5, possible signs left: 3

constraint used is:

0 0 0 1 0 1 0 1 0 0 0 -1 0

corresponding to this stoichiometry constraint:
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0 0 0 1 0 1 0 1 0 0 0 -1 0

after using constraint 6, possible signs left: 1

constraint used is:

0 0 0 0 0 0 0 0 1 0 1 0 -1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 1 0 1 0 -1

ended search

possible_signs =

-1 1 -1 -1 1 -1 1 -1 -1 1 -1 -1 -1

e m0 a m1 g b n0 c n1 f d x y

Kinase/substrate example, keep Et, Gt, Ft, Nt constant

how many possible signs: 88573

after using constraint 1, possible signs left: 42646

constraint used is:

-1 -1 2 0 0 0 0 0 0 0 0

corresponding to this combination of species:

1 0 0 0 0 0 0 0 0 0 0

after using constraint 2, possible signs left: 40459

constraint used is:

-1 -1 1 0 0 1 0 0 0 0 0

corresponding to this combination of species:

0 1 0 0 0 0 0 0 0 0 0

after using constraint 4, possible signs left: 34060

constraint used is:

0 0 1 -2 -1 1 -1 2 0 0 0

corresponding to this combination of species:

0 0 0 1 0 0 0 0 0 0 0

after using constraint 5, possible signs left: 18535

constraint used is:

0 0 0 -1 -1 2 0 0 0 0 0

corresponding to this combination of species:

0 0 0 0 1 0 0 0 0 0 0

after using constraint 7, possible signs left: 12334

constraint used is:

0 0 0 -1 0 0 -1 1 0 0 1

corresponding to this combination of species:

0 0 0 0 0 0 1 0 0 0 0

after using constraint 8, possible signs left: 9355

constraint used is:

0 0 0 1 0 0 1 -2 0 0 0

corresponding to this combination of species:

0 0 0 0 0 0 0 1 0 0 0

after using constraint 9, possible signs left: 6172

constraint used is:
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0 0 0 0 0 0 0 1 -1 -1 1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 0 0

after using constraint 10, possible signs left: 4205

constraint used is:

0 0 0 0 0 0 0 0 -1 -1 2

corresponding to this combination of species:

0 0 0 0 0 0 0 0 0 1 0

after using constraint 12, possible signs left: 1578

constraint used is:

0 0 1 0 0 -1 0 0 0 0 0

corresponding to this combination of species:

1 -1 0 0 0 0 0 0 0 0 0

after using constraint 40, possible signs left: 1557

constraint used is:

0 0 1 -1 -1 1 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 1 0 0 -1 0 0 0 0

after using constraint 60, possible signs left: 613

constraint used is:

0 0 0 0 0 0 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 -1 0

after using constraint 305, possible signs left: 134

constraint used is:

1 0 1 0 0 0 0 0 0 0 0

corresponding to this stoichiometry constraint:

1 0 1 0 0 0 0 0 0 0 0

after using constraint 306, possible signs left: 29

constraint used is:

0 0 0 0 1 1 0 0 0 0 0

corresponding to this stoichiometry constraint:

0 0 0 0 1 1 0 0 0 0 0

after using constraint 307, possible signs left: 6

constraint used is:

0 0 0 0 0 0 0 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 0 1 1

after using constraint 308, possible signs left: 1

constraint used is:

0 0 0 0 0 0 1 1 1 0 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 1 1 1 0 1

ended search

possible_signs =

-1 1 1 1 -1 1 -1 1 1 -1 1

e m0 a m1 g b n0 c n1 f d
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Additional computations for “artificial variables” x and y:

how many possible signs: 9

after using constraint 5, possible signs left: 3

constraint used is:

0 0 0 1 0 1 0 1 0 0 0 -1 0

corresponding to this stoichiometry constraint:

0 0 0 1 0 1 0 1 0 0 0 -1 0

after using constraint 6, possible signs left: 1

constraint used is:

0 0 0 0 0 0 0 0 1 0 1 0 -1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 1 0 1 0 -1

ended search

possible_signs =

-1 1 1 1 -1 1 -1 1 1 -1 1 1 1

e m0 a m1 g b n0 c n1 f d x y

Kinase/substrate example, keep Et, Ft,Mt, Nt constant

how many possible signs: 88573

after using constraint 1, possible signs left: 42646

constraint used is:

-1 -1 2 0 0 0 0 0 0 0 0

corresponding to this combination of species:

1 0 0 0 0 0 0 0 0 0 0

after using constraint 2, possible signs left: 40459

constraint used is:

-1 -1 1 0 0 1 0 0 0 0 0

corresponding to this combination of species:

0 1 0 0 0 0 0 0 0 0 0

after using constraint 4, possible signs left: 34060

constraint used is:

0 0 1 -2 -1 1 -1 2 0 0 0

corresponding to this combination of species:

0 0 0 1 0 0 0 0 0 0 0

after using constraint 5, possible signs left: 18535

constraint used is:

0 0 0 -1 -1 2 0 0 0 0 0

corresponding to this combination of species:

0 0 0 0 1 0 0 0 0 0 0

after using constraint 7, possible signs left: 12334

constraint used is:

0 0 0 -1 0 0 -1 1 0 0 1

corresponding to this combination of species:

0 0 0 0 0 0 1 0 0 0 0
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after using constraint 8, possible signs left: 9355

constraint used is:

0 0 0 1 0 0 1 -2 0 0 0

corresponding to this combination of species:

0 0 0 0 0 0 0 1 0 0 0

after using constraint 9, possible signs left: 6172

constraint used is:

0 0 0 0 0 0 0 1 -1 -1 1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 0 0

after using constraint 10, possible signs left: 4205

constraint used is:

0 0 0 0 0 0 0 0 -1 -1 2

corresponding to this combination of species:

0 0 0 0 0 0 0 0 0 1 0

after using constraint 12, possible signs left: 1578

constraint used is:

0 0 1 0 0 -1 0 0 0 0 0

corresponding to this combination of species:

1 -1 0 0 0 0 0 0 0 0 0

after using constraint 40, possible signs left: 1557

constraint used is:

0 0 1 -1 -1 1 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 1 0 0 -1 0 0 0 0

after using constraint 60, possible signs left: 613

constraint used is:

0 0 0 0 0 0 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 -1 0

after using constraint 305, possible signs left: 134

constraint used is:

1 0 1 0 0 0 0 0 0 0 0

corresponding to this stoichiometry constraint:

1 0 1 0 0 0 0 0 0 0 0

after using constraint 306, possible signs left: 29

constraint used is:

0 0 0 0 0 0 0 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 0 1 1

after using constraint 307, possible signs left: 10

constraint used is:

0 1 1 1 0 1 0 1 0 0 0

corresponding to this stoichiometry constraint:

0 1 1 1 0 1 0 1 0 0 0

after using constraint 308, possible signs left: 1

constraint used is:

0 0 0 0 0 0 1 1 1 0 1
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corresponding to this stoichiometry constraint:

0 0 0 0 0 0 1 1 1 0 1

ended search

possible_signs =

-1 1 1 -1 1 1 1 -1 -1 1 -1

e m0 a m1 g b n0 c n1 f d

Additional computations for “artificial variables” x and y:

how many possible signs: 9

after using constraint 6, possible signs left: 3

constraint used is:

0 0 0 0 0 0 0 0 1 0 1 0 -1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 1 0 1 0 -1

after using constraint 17, possible signs left: 1

constraint used is:

0 1 1 0 0 0 0 0 0 0 0 1 0

corresponding to this stoichiometry constraint:

0 1 1 0 0 0 0 0 0 0 0 1 0

ended search

possible_signs =

-1 1 1 -1 1 1 1 -1 -1 1 -1 -1 -1

e m0 a m1 g b n0 c n1 f d x y

Kinase/substrate example, keep Et, Gt, Ft,Mt constant

how many possible signs: 88573

after using constraint 1, possible signs left: 42646

constraint used is:

-1 -1 2 0 0 0 0 0 0 0 0

corresponding to this combination of species:

1 0 0 0 0 0 0 0 0 0 0

after using constraint 2, possible signs left: 40459

constraint used is:

-1 -1 1 0 0 1 0 0 0 0 0

corresponding to this combination of species:

0 1 0 0 0 0 0 0 0 0 0

after using constraint 4, possible signs left: 34060

constraint used is:

0 0 1 -2 -1 1 -1 2 0 0 0

corresponding to this combination of species:

0 0 0 1 0 0 0 0 0 0 0

after using constraint 5, possible signs left: 18535

constraint used is:
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0 0 0 -1 -1 2 0 0 0 0 0

corresponding to this combination of species:

0 0 0 0 1 0 0 0 0 0 0

after using constraint 7, possible signs left: 12334

constraint used is:

0 0 0 -1 0 0 -1 1 0 0 1

corresponding to this combination of species:

0 0 0 0 0 0 1 0 0 0 0

after using constraint 8, possible signs left: 9355

constraint used is:

0 0 0 1 0 0 1 -2 0 0 0

corresponding to this combination of species:

0 0 0 0 0 0 0 1 0 0 0

after using constraint 9, possible signs left: 6172

constraint used is:

0 0 0 0 0 0 0 1 -1 -1 1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 0 0

after using constraint 10, possible signs left: 4205

constraint used is:

0 0 0 0 0 0 0 0 -1 -1 2

corresponding to this combination of species:

0 0 0 0 0 0 0 0 0 1 0

after using constraint 12, possible signs left: 1578

constraint used is:

0 0 1 0 0 -1 0 0 0 0 0

corresponding to this combination of species:

1 -1 0 0 0 0 0 0 0 0 0

after using constraint 40, possible signs left: 1557

constraint used is:

0 0 1 -1 -1 1 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 1 0 0 -1 0 0 0 0

after using constraint 60, possible signs left: 613

constraint used is:

0 0 0 0 0 0 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 -1 0

after using constraint 305, possible signs left: 134

constraint used is:

1 0 1 0 0 0 0 0 0 0 0

corresponding to this stoichiometry constraint:

1 0 1 0 0 0 0 0 0 0 0

after using constraint 306, possible signs left: 29

constraint used is:

0 0 0 0 1 1 0 0 0 0 0

corresponding to this stoichiometry constraint:

0 0 0 0 1 1 0 0 0 0 0
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after using constraint 307, possible signs left: 6

constraint used is:

0 0 0 0 0 0 0 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 0 1 1

after using constraint 308, possible signs left: 1

constraint used is:

0 1 1 1 0 1 0 1 0 0 0

corresponding to this stoichiometry constraint:

0 1 1 1 0 1 0 1 0 0 0

ended search

possible_signs =

-1 1 1 1 -1 1 -1 -1 -1 1 -1

e m0 a m1 g b n0 c n1 f d

Additional computations for “artificial variables” x and y:

how many possible signs: 9

after using constraint 6, possible signs left: 3

constraint used is:

0 0 0 0 0 0 0 0 1 0 1 0 -1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 0 0 1 0 1 0 -1

after using constraint 19, possible signs left: 1

constraint used is:

0 1 1 0 0 0 0 0 0 0 0 1 0

corresponding to this stoichiometry constraint:

0 1 1 0 0 0 0 0 0 0 0 1 0

ended search

possible_signs =

-1 1 1 1 -1 1 -1 -1 -1 1 -1 -1 -1

e m0 a m1 g b n0 c n1 f d x y

Kinase/substrate example, keep Et, Gt,Mt, Nt constant

how many possible signs: 88573

after using constraint 1, possible signs left: 42646

constraint used is:

-1 -1 2 0 0 0 0 0 0 0 0

corresponding to this combination of species:

1 0 0 0 0 0 0 0 0 0 0

after using constraint 2, possible signs left: 40459

constraint used is:

-1 -1 1 0 0 1 0 0 0 0 0

corresponding to this combination of species:
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0 1 0 0 0 0 0 0 0 0 0

after using constraint 4, possible signs left: 34060

constraint used is:

0 0 1 -2 -1 1 -1 2 0 0 0

corresponding to this combination of species:

0 0 0 1 0 0 0 0 0 0 0

after using constraint 5, possible signs left: 18535

constraint used is:

0 0 0 -1 -1 2 0 0 0 0 0

corresponding to this combination of species:

0 0 0 0 1 0 0 0 0 0 0

after using constraint 7, possible signs left: 12334

constraint used is:

0 0 0 -1 0 0 -1 1 0 0 1

corresponding to this combination of species:

0 0 0 0 0 0 1 0 0 0 0

after using constraint 8, possible signs left: 9355

constraint used is:

0 0 0 1 0 0 1 -2 0 0 0

corresponding to this combination of species:

0 0 0 0 0 0 0 1 0 0 0

after using constraint 9, possible signs left: 6172

constraint used is:

0 0 0 0 0 0 0 1 -1 -1 1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 0 0

after using constraint 10, possible signs left: 4205

constraint used is:

0 0 0 0 0 0 0 0 -1 -1 2

corresponding to this combination of species:

0 0 0 0 0 0 0 0 0 1 0

after using constraint 12, possible signs left: 1578

constraint used is:

0 0 1 0 0 -1 0 0 0 0 0

corresponding to this combination of species:

1 -1 0 0 0 0 0 0 0 0 0

after using constraint 40, possible signs left: 1557

constraint used is:

0 0 1 -1 -1 1 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 1 0 0 -1 0 0 0 0

after using constraint 60, possible signs left: 613

constraint used is:

0 0 0 0 0 0 0 1 0 0 -1

corresponding to this combination of species:

0 0 0 0 0 0 0 0 1 -1 0

after using constraint 305, possible signs left: 134

constraint used is:
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1 0 1 0 0 0 0 0 0 0 0

corresponding to this stoichiometry constraint:

1 0 1 0 0 0 0 0 0 0 0

after using constraint 306, possible signs left: 29

constraint used is:

0 0 0 0 1 1 0 0 0 0 0

corresponding to this stoichiometry constraint:

0 0 0 0 1 1 0 0 0 0 0

after using constraint 307, possible signs left: 6

constraint used is:

0 1 1 1 0 1 0 1 0 0 0

corresponding to this stoichiometry constraint:

0 1 1 1 0 1 0 1 0 0 0

after using constraint 308, possible signs left: 1

constraint used is:

0 0 0 0 0 0 1 1 1 0 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 1 1 1 0 1

ended search

possible_signs =

-1 1 1 1 -1 1 -1 -1 1 -1 -1

e m0 a m1 g b n0 c n1 f d

Additional computations for “artificial variables” x and y:

how many possible signs: 9

after using constraint 17, possible signs left: 3

constraint used is:

0 1 1 0 0 0 0 0 0 0 0 1 0

corresponding to this stoichiometry constraint:

0 1 1 0 0 0 0 0 0 0 0 1 0

after using constraint 20, possible signs left: 1

constraint used is:

0 0 0 0 0 0 1 1 0 0 0 0 1

corresponding to this stoichiometry constraint:

0 0 0 0 0 0 1 1 0 0 0 0 1

ended search

possible_signs =

-1 1 1 1 -1 1 -1 -1 1 -1 -1 -1 1

e m0 a m1 g b n0 c n1 f d x y
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S2. Phosphotransfer example

Since this is a smaller example, the complete output is shown.

Phosphotransfer example, keep Xt and Pt constant

>> find_signs

G =

-1 0 1 0

1 -1 -1 1

0 1 0 -1

1 1 -1 -1

-1 -1 1 1

generating first single rows of n*G*A^T that pass test

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of rows

testing the new vectors and adding to list the ones that pass

total number of constraints so far = 13, listed below

constraints =

-1 1 0 1 -1

0 1 -1 -1 1

0 1 -1 -1 1

0 -2 2 2 -2

2 -2 0 -2 2

-1 1 0 1 -1

0 -1 1 1 -1

0 1 -1 -1 1

1 -1 0 -1 1

2 -2 0 -2 2

0 -2 2 2 -2

-1 1 0 1 -1

0 0 0 0 0

making initial stoichiometric constraints

total number of initial stoichiometry constraints = 2, listed below

stoichiometry_constraints =

1 1 1 0 0

0 1 2 0 1

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of stoichiometry

total number of added stoichiometry constraints = 6, listed below

additional_stoichiometry =

1 0 -1 0 -1

1 2 3 0 1

1 3 5 0 2

1 -1 -3 0 -2

2 1 0 0 -1

2 3 4 0 1

adding virtual constraint(s), if any

total number of virtual constraints = 1, listed below

virtual =
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-1 1 -1 0 0

total number of constraints so far = 22, listed below

constraints =

-1 1 0 1 -1

0 1 -1 -1 1

0 1 -1 -1 1

0 -2 2 2 -2

2 -2 0 -2 2

-1 1 0 1 -1

0 -1 1 1 -1

0 1 -1 -1 1

1 -1 0 -1 1

2 -2 0 -2 2

0 -2 2 2 -2

-1 1 0 1 -1

0 0 0 0 0

1 1 1 0 0

0 1 2 0 1

1 0 -1 0 -1

1 2 3 0 1

1 3 5 0 2

1 -1 -3 0 -2

2 1 0 0 -1

2 3 4 0 1

-1 1 -1 0 0

how many possible signs: 121

after using constraint 1, possible signs left: 76

constraint nu*gamma*A^T used is:

-1 1 0 1 -1

corresponding to this combination of species:

1 0 0 0 0

after using constraint 2, possible signs left: 49

constraint nu*gamma*A^T used is:

0 1 -1 -1 1

corresponding to this combination of species:

0 0 1 0 0

after using constraint 14, possible signs left: 22

constraint nu*gamma*A^T used is:

1 1 1 0 0

corresponding to this stoichiometry constraint:

1 1 1 0 0

after using constraint 15, possible signs left: 12

constraint nu*gamma*A^T used is:

0 1 2 0 1

corresponding to this stoichiometry constraint:

0 1 2 0 1

after using constraint 16, possible signs left: 7

constraint nu*gamma*A^T used is:
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1 0 -1 0 -1

corresponding to this stoichiometry constraint:

1 0 -1 0 -1

after using constraint 22, possible signs left: 3

constraint nu*gamma*A^T used is:

-1 1 -1 0 0

corresponding to this virtual constraint:

-1 1 -1 0 0

ended search

possible_signs =

-1 -1 1 -1 -1

-1 0 1 -1 -1

-1 1 1 -1 -1

x0 x1 x2 y0 y1

Phosphotransfer example, keep Xt and Yt constant

>> find_signs

G =

-1 0 1 0

1 -1 -1 1

0 1 0 -1

1 1 -1 -1

-1 -1 1 1

generating first single rows of n*G*A^T that pass test

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of rows

testing the new vectors and adding to list the ones that pass

total number of constraints so far = 13, listed below

constraints =

-1 1 0 1 -1

0 1 -1 -1 1

0 1 -1 -1 1

0 -2 2 2 -2

2 -2 0 -2 2

-1 1 0 1 -1

0 -1 1 1 -1

0 1 -1 -1 1

1 -1 0 -1 1

2 -2 0 -2 2

0 -2 2 2 -2

-1 1 0 1 -1

0 0 0 0 0

stoichiometry_constraints =

1 1 1 0 0

0 0 0 1 1

total number of initial stoichiometry constraints = 2, listed below

15



stoichiometry_constraints =

1 1 1 0 0

0 0 0 1 1

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of stoichiometry

total number of added stoichiometry constraints = 6, listed below

additional_stoichiometry =

1 1 1 -1 -1

1 1 1 1 1

1 1 1 2 2

1 1 1 -2 -2

2 2 2 -1 -1

2 2 2 1 1

adding virtual constraint(s), if any

total number of virtual constraints = 1, listed below

virtual =

-1 1 -1 0 0

total number of constraints so far = 22, listed below

constraints =

-1 1 0 1 -1

0 1 -1 -1 1

0 1 -1 -1 1

0 -2 2 2 -2

2 -2 0 -2 2

-1 1 0 1 -1

0 -1 1 1 -1

0 1 -1 -1 1

1 -1 0 -1 1

2 -2 0 -2 2

0 -2 2 2 -2

-1 1 0 1 -1

0 0 0 0 0

1 1 1 0 0

0 0 0 1 1

1 1 1 -1 -1

1 1 1 1 1

1 1 1 2 2

1 1 1 -2 -2

2 2 2 -1 -1

2 2 2 1 1

-1 1 -1 0 0

how many possible signs: 121

after using constraint 1, possible signs left: 76

constraint used is:

-1 1 0 1 -1

corresponding to this combination of species:

1 0 0 0 0

after using constraint 2, possible signs left: 49

constraint used is:
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0 1 -1 -1 1

corresponding to this combination of species:

0 0 1 0 0

after using constraint 14, possible signs left: 22

constraint used is:

1 1 1 0 0

corresponding to this stoichiometry constraint:

1 1 1 0 0

after using constraint 15, possible signs left: 3

constraint used is:

0 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 1 1

ended search

possible_signs =

-1 -1 1 -1 1

-1 0 1 -1 1

-1 1 1 -1 1

x0 x1 x2 y0 y1

Phosphotransfer example, keep Pt and Yt constant

>> find_signs

G =

-1 0 1 0

1 -1 -1 1

0 1 0 -1

1 1 -1 -1

-1 -1 1 1

generating first single rows of n*G*A^T that pass test

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of rows

testing the new vectors and adding to list the ones that pass

total number of constraints so far = 13, listed below

constraints =

-1 1 0 1 -1

0 1 -1 -1 1

0 1 -1 -1 1

0 -2 2 2 -2

2 -2 0 -2 2

-1 1 0 1 -1

0 -1 1 1 -1

0 1 -1 -1 1

1 -1 0 -1 1

2 -2 0 -2 2

0 -2 2 2 -2

-1 1 0 1 -1
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0 0 0 0 0

stoichiometry_constraints =

0 0 0 1 1

0 1 2 0 1

total number of initial stoichiometry constraints = 2, listed below

stoichiometry_constraints =

0 0 0 1 1

0 1 2 0 1

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of stoichiometry

total number of added stoichiometry constraints = 6, listed below

additional_stoichiometry =

0 -1 -2 1 0

0 1 2 1 2

0 2 4 1 3

0 -2 -4 1 -1

0 -1 -2 2 1

0 1 2 2 3

adding virtual constraint(s), if any

total number of virtual constraints = 1, listed below

virtual =

-1 1 -1 0 0

total number of constraints so far = 22, listed below

constraints =

-1 1 0 1 -1

0 1 -1 -1 1

0 1 -1 -1 1

0 -2 2 2 -2

2 -2 0 -2 2

-1 1 0 1 -1

0 -1 1 1 -1

0 1 -1 -1 1

1 -1 0 -1 1

2 -2 0 -2 2

0 -2 2 2 -2

-1 1 0 1 -1

0 0 0 0 0

0 0 0 1 1

0 1 2 0 1

0 -1 -2 1 0

0 1 2 1 2

0 2 4 1 3

0 -2 -4 1 -1

0 -1 -2 2 1

0 1 2 2 3

-1 1 -1 0 0

how many possible signs: 121

after using constraint 1, possible signs left: 76

constraint used is:
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-1 1 0 1 -1

corresponding to this combination of species:

1 0 0 0 0

after using constraint 2, possible signs left: 49

constraint used is:

0 1 -1 -1 1

corresponding to this combination of species:

0 0 1 0 0

after using constraint 14, possible signs left: 8

constraint used is:

0 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 1 1

after using constraint 15, possible signs left: 3

constraint used is:

0 1 2 0 1

corresponding to this stoichiometry constraint:

0 1 2 0 1

ended search

possible_signs =

-1 -1 -1 -1 1

-1 -1 0 -1 1

-1 -1 1 -1 1

x0 x1 x2 y0 y1
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S3. Ligand/receptor/antagonist/trap example

>> find_signs

G =

-1 0 0 -1 1 0 0 1

-1 -1 0 0 1 1 0 0

0 -1 -1 0 0 1 1 0

0 0 -1 -1 0 0 1 1

1 0 0 0 -1 0 0 0

0 1 0 0 0 -1 0 0

0 0 1 0 0 0 -1 0

0 0 0 1 0 0 0 -1

generating first single rows of n*G*A^T that pass test

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of rows

testing the new vectors and adding to list the ones that pass

total number of constraints so far = 118, listed below

constraints =

-2 -1 0 -1 1 0 0 1

-1 -2 -1 0 1 1 0 0

0 -1 -2 -1 0 1 1 0

-1 0 -1 -2 0 0 1 1

1 1 0 0 -1 0 0 0

0 1 1 0 0 -1 0 0

0 0 1 1 0 0 -1 0

1 0 0 1 0 0 0 -1

-1 1 1 -1 0 -1 0 1

-1 -1 1 1 1 0 -1 0

-3 -2 0 -1 2 0 0 1

-2 -2 -1 -1 1 1 0 1

-2 -1 -1 -2 1 0 1 1

-3 -1 0 -2 1 0 0 2

-1 -1 1 1 1 0 -1 0

-2 -3 -1 0 2 1 0 0

-1 -3 -2 0 1 2 0 0

-1 -2 -2 -1 1 1 1 0

-2 -2 -1 -1 1 1 0 1

1 -1 -1 1 0 1 0 -1

-1 -2 -2 -1 1 1 1 0

0 -2 -3 -1 0 2 1 0

0 -1 -3 -2 0 1 2 0

-1 -1 -2 -2 0 1 1 1

-2 -1 -1 -2 1 0 1 1
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-1 -1 -2 -2 0 1 1 1

-1 0 -2 -3 0 0 2 1

-2 0 -1 -3 0 0 1 2

1 1 -1 -1 -1 0 1 0

-1 1 1 -1 0 -1 0 1

-3 -3 -1 -1 2 1 0 1

-2 -2 -2 -2 1 1 1 1

-3 -1 -1 -3 1 0 1 2

-1 0 0 -1 0 0 0 1

-1 -1 0 0 1 0 0 0

-1 -3 -3 -1 1 2 1 0

-2 -2 -2 -2 1 1 1 1

0 -1 -1 0 0 1 0 0

-1 -1 0 0 1 0 0 0

-1 -1 -3 -3 0 1 2 1

0 0 -1 -1 0 0 1 0

0 -1 -1 0 0 1 0 0

-1 0 0 -1 0 0 0 1

0 0 -1 -1 0 0 1 0

1 2 1 0 -1 -1 0 0

1 1 1 1 -1 0 -1 0

2 1 0 1 -1 0 0 -1

0 1 2 1 0 -1 -1 0

1 1 1 1 0 -1 0 -1

1 0 1 2 0 0 -1 -1

-4 -5 -2 -1 3 2 0 1

-2 -3 -4 -3 1 2 2 1

-4 -1 -2 -5 1 0 2 3

-1 -4 -5 -2 1 3 2 0

-3 -2 -3 -4 1 1 2 2

-2 -1 -4 -5 0 1 3 2

1 3 2 0 -1 -2 0 0

1 1 2 2 -1 0 -2 0

3 1 0 2 -1 0 0 -2

0 1 3 2 0 -1 -2 0

2 1 1 2 0 -1 0 -2

2 0 1 3 0 0 -1 -2

-4 -3 0 -1 3 0 0 1

-2 -3 -2 -1 1 2 0 1

-2 -1 -2 -3 1 0 2 1

-4 -1 0 -3 1 0 0 3

-3 -4 -1 0 3 1 0 0

-1 -4 -3 0 1 3 0 0

-1 -2 -3 -2 1 1 2 0

-3 -2 -1 -2 1 1 0 2

-2 -3 -2 -1 2 1 1 0

0 -3 -4 -1 0 3 1 0

0 -1 -4 -3 0 1 3 0
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-2 -1 -2 -3 0 1 1 2

-3 -2 -1 -2 2 0 1 1

-1 -2 -3 -2 0 2 1 1

-1 0 -3 -4 0 0 3 1

-3 0 -1 -4 0 0 1 3

1 1 -2 -2 -1 0 2 0

-2 1 1 -2 0 -1 0 2

-5 -3 0 -2 3 0 0 2

-4 -3 -1 -2 2 1 0 2

-4 -2 -1 -3 2 0 1 2

-5 -2 0 -3 2 0 0 3

-3 -5 -2 0 3 2 0 0

-2 -5 -3 0 2 3 0 0

-2 -4 -3 -1 2 2 1 0

-3 -4 -2 -1 2 2 0 1

-1 -3 -4 -2 1 2 2 0

0 -3 -5 -2 0 3 2 0

0 -2 -5 -3 0 2 3 0

-1 -2 -4 -3 0 2 2 1

-3 -1 -2 -4 1 0 2 2

-2 -1 -3 -4 0 1 2 2

-2 0 -3 -5 0 0 3 2

-3 0 -2 -5 0 0 2 3

2 2 -1 -1 -2 0 1 0

-1 2 2 -1 0 -2 0 1

-5 -4 -1 -2 3 1 0 2

-4 -3 -2 -3 2 1 1 2

-5 -2 -1 -4 2 0 1 3

-3 -1 0 -2 1 0 0 2

-3 -2 0 -1 2 0 0 1

-2 -5 -4 -1 2 3 1 0

-3 -4 -3 -2 2 2 1 1

-1 -3 -2 0 1 2 0 0

-2 -3 -1 0 2 1 0 0

-1 -2 -5 -4 0 2 3 1

0 -1 -3 -2 0 1 2 0

0 -2 -3 -1 0 2 1 0

-2 0 -1 -3 0 0 1 2

-1 0 -2 -3 0 0 2 1

2 3 1 0 -2 -1 0 0

2 2 1 1 -2 0 -1 0

3 2 0 1 -2 0 0 -1

0 2 3 1 0 -2 -1 0

1 2 2 1 0 -2 0 -1

1 0 2 3 0 0 -2 -1

total number of initial stoichiometry constraints = 3, listed below
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stoichiometry_constraints =

0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1

how_many_stoichiometry =

3

next, generating combinations 1-1, 1+1, 1+2, 1-2, 2-1, 2+1 of stoichiometry

total number of added stoichiometry constraints = 18, listed below

adding virtual constraint(s), if any

total number of virtual constraints = 1, listed below

total number of constraints so far = 140, listed below

constraints =

-2 -1 0 -1 1 0 0 1

-1 -2 -1 0 1 1 0 0

0 -1 -2 -1 0 1 1 0

-1 0 -1 -2 0 0 1 1

1 1 0 0 -1 0 0 0

0 1 1 0 0 -1 0 0

0 0 1 1 0 0 -1 0

1 0 0 1 0 0 0 -1

-1 1 1 -1 0 -1 0 1

-1 -1 1 1 1 0 -1 0

-3 -2 0 -1 2 0 0 1

-2 -2 -1 -1 1 1 0 1

-2 -1 -1 -2 1 0 1 1

-3 -1 0 -2 1 0 0 2

-1 -1 1 1 1 0 -1 0

-2 -3 -1 0 2 1 0 0

-1 -3 -2 0 1 2 0 0

-1 -2 -2 -1 1 1 1 0

-2 -2 -1 -1 1 1 0 1

1 -1 -1 1 0 1 0 -1

-1 -2 -2 -1 1 1 1 0

0 -2 -3 -1 0 2 1 0

0 -1 -3 -2 0 1 2 0

-1 -1 -2 -2 0 1 1 1

-2 -1 -1 -2 1 0 1 1

-1 -1 -2 -2 0 1 1 1

-1 0 -2 -3 0 0 2 1

-2 0 -1 -3 0 0 1 2

1 1 -1 -1 -1 0 1 0
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-1 1 1 -1 0 -1 0 1

-3 -3 -1 -1 2 1 0 1

-2 -2 -2 -2 1 1 1 1

-3 -1 -1 -3 1 0 1 2

-1 0 0 -1 0 0 0 1

-1 -1 0 0 1 0 0 0

-1 -3 -3 -1 1 2 1 0

-2 -2 -2 -2 1 1 1 1

0 -1 -1 0 0 1 0 0

-1 -1 0 0 1 0 0 0

-1 -1 -3 -3 0 1 2 1

0 0 -1 -1 0 0 1 0

0 -1 -1 0 0 1 0 0

-1 0 0 -1 0 0 0 1

0 0 -1 -1 0 0 1 0

1 2 1 0 -1 -1 0 0

1 1 1 1 -1 0 -1 0

2 1 0 1 -1 0 0 -1

0 1 2 1 0 -1 -1 0

1 1 1 1 0 -1 0 -1

1 0 1 2 0 0 -1 -1

-4 -5 -2 -1 3 2 0 1

-2 -3 -4 -3 1 2 2 1

-4 -1 -2 -5 1 0 2 3

-1 -4 -5 -2 1 3 2 0

-3 -2 -3 -4 1 1 2 2

-2 -1 -4 -5 0 1 3 2

1 3 2 0 -1 -2 0 0

1 1 2 2 -1 0 -2 0

3 1 0 2 -1 0 0 -2

0 1 3 2 0 -1 -2 0

2 1 1 2 0 -1 0 -2

2 0 1 3 0 0 -1 -2

-4 -3 0 -1 3 0 0 1

-2 -3 -2 -1 1 2 0 1

-2 -1 -2 -3 1 0 2 1

-4 -1 0 -3 1 0 0 3

-3 -4 -1 0 3 1 0 0

-1 -4 -3 0 1 3 0 0

-1 -2 -3 -2 1 1 2 0

-3 -2 -1 -2 1 1 0 2

-2 -3 -2 -1 2 1 1 0

0 -3 -4 -1 0 3 1 0

0 -1 -4 -3 0 1 3 0

-2 -1 -2 -3 0 1 1 2

-3 -2 -1 -2 2 0 1 1

-1 -2 -3 -2 0 2 1 1

-1 0 -3 -4 0 0 3 1
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-3 0 -1 -4 0 0 1 3

1 1 -2 -2 -1 0 2 0

-2 1 1 -2 0 -1 0 2

-5 -3 0 -2 3 0 0 2

-4 -3 -1 -2 2 1 0 2

-4 -2 -1 -3 2 0 1 2

-5 -2 0 -3 2 0 0 3

-3 -5 -2 0 3 2 0 0

-2 -5 -3 0 2 3 0 0

-2 -4 -3 -1 2 2 1 0

-3 -4 -2 -1 2 2 0 1

-1 -3 -4 -2 1 2 2 0

0 -3 -5 -2 0 3 2 0

0 -2 -5 -3 0 2 3 0

-1 -2 -4 -3 0 2 2 1

-3 -1 -2 -4 1 0 2 2

-2 -1 -3 -4 0 1 2 2

-2 0 -3 -5 0 0 3 2

-3 0 -2 -5 0 0 2 3

2 2 -1 -1 -2 0 1 0

-1 2 2 -1 0 -2 0 1

-5 -4 -1 -2 3 1 0 2

-4 -3 -2 -3 2 1 1 2

-5 -2 -1 -4 2 0 1 3

-3 -1 0 -2 1 0 0 2

-3 -2 0 -1 2 0 0 1

-2 -5 -4 -1 2 3 1 0

-3 -4 -3 -2 2 2 1 1

-1 -3 -2 0 1 2 0 0

-2 -3 -1 0 2 1 0 0

-1 -2 -5 -4 0 2 3 1

0 -1 -3 -2 0 1 2 0

0 -2 -3 -1 0 2 1 0

-2 0 -1 -3 0 0 1 2

-1 0 -2 -3 0 0 2 1

2 3 1 0 -2 -1 0 0

2 2 1 1 -2 0 -1 0

3 2 0 1 -2 0 0 -1

0 2 3 1 0 -2 -1 0

1 2 2 1 0 -2 0 -1

1 0 2 3 0 0 -2 -1

0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 0

0 0 0 1 0 0 1 1

0 1 -1 0 1 0 -1 0

0 1 0 -1 1 1 -1 -1

0 0 1 -1 0 1 0 -1

0 1 1 0 1 2 1 0
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0 1 0 1 1 1 1 1

0 0 1 1 0 1 2 1

0 1 2 0 1 3 2 0

0 1 0 2 1 1 2 2

0 0 1 2 0 1 3 2

0 1 -2 0 1 -1 -2 0

0 1 0 -2 1 1 -2 -2

0 0 1 -2 0 1 -1 -2

0 2 -1 0 2 1 -1 0

0 2 0 -1 2 2 -1 -1

0 0 2 -1 0 2 1 -1

0 2 1 0 2 3 1 0

0 2 0 1 2 2 1 1

0 0 2 1 0 2 3 1

0 0 0 0 1 -1 1 -1

how many possible signs: 3280

after using constraint 1, possible signs left: 2443

constraint used is:

-2 -1 0 -1 1 0 0 1

corresponding to this combination of species:

1 0 0 0 0 0 0 0

after using constraint 2, possible signs left: 1996

constraint used is:

-1 -2 -1 0 1 1 0 0

corresponding to this combination of species:

0 1 0 0 0 0 0 0

after using constraint 3, possible signs left: 1591

constraint used is:

0 -1 -2 -1 0 1 1 0

corresponding to this combination of species:

0 0 1 0 0 0 0 0

after using constraint 4, possible signs left: 1313

constraint used is:

-1 0 -1 -2 0 0 1 1

corresponding to this combination of species:

0 0 0 1 0 0 0 0

after using constraint 5, possible signs left: 914

constraint used is:

1 1 0 0 -1 0 0 0
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corresponding to this combination of species:

0 0 0 0 1 0 0 0

after using constraint 6, possible signs left: 578

constraint used is:

0 1 1 0 0 -1 0 0

corresponding to this combination of species:

0 0 0 0 0 1 0 0

after using constraint 7, possible signs left: 378

constraint used is:

0 0 1 1 0 0 -1 0

corresponding to this combination of species:

0 0 0 0 0 0 1 0

after using constraint 8, possible signs left: 224

constraint used is:

1 0 0 1 0 0 0 -1

corresponding to this combination of species:

0 0 0 0 0 0 0 1

after using constraint 119, possible signs left: 87

constraint used is:

0 1 0 0 1 1 0 0

corresponding to this stoichiometry constraint:

0 1 0 0 1 1 0 0

after using constraint 120, possible signs left: 28

constraint used is:

0 0 1 0 0 1 1 0

corresponding to this stoichiometry constraint:

0 0 1 0 0 1 1 0

after using constraint 121, possible signs left: 9

constraint used is:

0 0 0 1 0 0 1 1

corresponding to this stoichiometry constraint:

0 0 0 1 0 0 1 1

after using constraint 140, possible signs left: 5

constraint used is:
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0 0 0 0 1 -1 1 -1

corresponding to this virtual constraint:

0 0 0 0 1 -1 1 -1

ended search

possible_signs =

-1 1 -1 1 -1 -1 1 -1

-1 1 -1 1 -1 0 1 -1

-1 1 -1 1 -1 1 -1 -1

-1 1 -1 1 -1 1 0 -1

-1 1 -1 1 -1 1 1 -1

x1 x2 x3 x4 y1 y2 y3 y4
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