
SIAM J. CONTROL AND OPTIMIZATION
Vol. 34, No. 4, pp. 1190-1219, July 1996

() 1996 Society for Industrial and Applied Mathematics
005

ON FINITE-GAIN STABILIZABILITY OF LINEAR SYSTEMS
SUBJECT TO INPUT SATURATION*

WENSHENG LIUt, YACINE CHITOURt, AND EDUARDO SONTAG

Abstract. This paper deals with (global) finite-gain input/output stabilization of linear systems with saturated
controls. For neutrally stable systems, it is shown that the linear feedback law suggested by the passivity approach
indeed provides stability, with respect to every LP-norm. Explicit bounds on closed-loop gains are obtained, and they
are related to the norms for the respective systems without saturation.

These results do not extend to the class of systems for which the state matrix has eigenvalues on the imaginary
axis with nonsimple (size > 1) Jordan blocks, contradicting what may be expected from the fact that such systems
are globally asymptotically stabilizable in the state-space sense; this is shown in particular for the double integrator.
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1. Introduction. In this work we are interested in those nonlinear systems that are ob-
tained when cascading a linear system with a memory-free input nonlinearity:

(E) k=Ax+Bo’(u), y=Cx.

The nonlinearity r is of a "saturation" type (definitions are given later). Figure shows the
type of system being considered, where the linear part has transfer function W(s) and the
function cr shown is the standard semilinear saturation (results will apply to more general
O" ’S).

Linear systems with actuator saturation constitute one of the most important classes of
nonlinear systems encountered in practice. Surprisingly, until recently few general theoretical
results were available regarding global feedback design problems for them. One such general
result was given in 14], which showed that global state-space stabilization for such systems
is possible under the assumptions that all the eigenvalues of A are in the closed left-hand
plane, plus stabilizability and detectability of (A, B, C). (These conditions are best possible,
since they are also necessary. The controller consists of an observer followed by a smooth
static nonlinearity.) For more recent work, see [20], which showedbased upon techniques
introduced in 16] for a particular casehow to simplify the controller that had been proposed
in [14]. See also [8] for closely related work showing that such systems can be semiglobally
(that is, on compact sets) stabilized by means of linear feedback.

In this paper, we are interested in studying not merely closed-loop state-space stability,
but also stability with respect to measurement and actuator noise. This is the notion of stability
that is often found in input/output studies. The problem is to find a controller C so that the
operator (u, u) - (yl, Y2) defined by the standard systems interconnection

y P(Ul -f" Y2),

Y2 C(u2 @ Yl)

is well posed and finite-gain stable, where P denotes the input/output behavior of the original
plant E. See Fig. 2. (In our main results, we will take for simplicity the initial state to be
zero. However, nonzero initial states can be studied as well, and some remarks in that regard
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1191
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FIG. 1. Input-saturated linear system.
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FIG. 2. Standard closed loop.

are presented in a latter section of the paper.) Once such input/output stability is achieved,
geometric operator-theoretic techniques can be applied; see for instance [3] and the references
therein. For other work on computing norms for nonlinear systems in state-space form, see
for instance 18] and the references given therein.

We focus on a case which would be trivial if one were only interested in state stability,
specifically when the original matrix A is neutrally stable; that is, we focus on the case
where all eigenvalues have nonpositive real parts and there are no nontrivial Jordan blocks
for eigenvalues in the imaginary axis. (The whole point of [14] and [20] was of course to
deal with such possible nontrivial blocks, e.g., multiple integrators.) In this case, a standard
passivity approach suggests the appropriate stabilization procedure. For instance, assume
that cr is the identity (so the original system is linear), A 4- A’ < 0, and C B’. Then
the system is passive, with storage function V(x) Iix112/2, since integrating the inequality
dV(x(t))/dt < y(t)’u(t) gives fg y(s)’u(s)ds > V(x(t)) V(x(O)). Thus the negative
feedback interconnection with the identity (strictly passive system), that is, u -y, results
in finite-gain stability. For this calculation and more discussion on passivity, see for instance
[7] and the references given therein. (For the use of the same formulas for just state-space
stabilization with applications to linear systems with saturations, see [5] and [9]; see also the
discussion on the Jurdevic-Quinn method in [13].)

In this paper, we essentially generalize the passivity technique to systems with saturations.
We first establish finite-gain stability in the various p-norms, using linear state feedback
stabilizers. Then we show how outputs can be incorporated into the framework. Our work is
very much in the spirit of the well-known absolute stability area, but we have not been able to
find a way to deduce our results from that classical literature.

These results do not extend to the class of systems for which the state matrix has eigen-
values on the imaginary axis with nonsimple (size> 1) Jordan blocks, contradicting what may
be expected from the fact that such systems are globally asymptotically stabilizable in the
state-space sense; this is shown in particular for the double integrator.
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1192 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

We make one remark on terminology. In the operator approach to nonlinear systems,
see, e.g., [19], a "system" is typically defined as a partially defined operator between normed
spaces, and "stability" means that the domain of this operator is the entire space. In that
context, finite-gain stability is the requirement that the operator be everywhere defined and
bounded; the norm of the operator is by definition the gain of the system. In this paper, we
use simply the term LP-stability to mean this stronger finite-gain condition.

The reader is referred to the companion paper [2] for results complementary to those in
this paper, dealing with Lipschitz continuity ("incremental gain stability") and continuity of
the operators in question. The two papers are technically independent.

Organization ofPaper. In 2 we provide definitions and statements ofthe main results, as
well as some related comments. Proofs of the main results are given in 3. Section 4 estimates
gains in terms of the corresponding gains for systems without saturation, in particular for
p 2 (H-norms). Results regarding nonzero initial states and global asymptotic stability of
the origin are collected in 5. Section 6 shows how to enlarge the class of input nonlinearities
even more, so as to include nonsaturations as well. The paper closes with 7, which contains
the double integrator counterexample.

2. Statements of main results. We introduce now the class of saturation functions to be
considered, and state the main results on finite-gain stability. Some remarks are also provided.
Proofs are deferred to a later section.

2.1. Saturation functions. We next formally define what we mean by a saturation. Es-
sentially, we ask only that this be a function which has the same sign as its argument, stays
away from zero at infinity, is bounded, and is not horizontal near zero.

DEFINITION 1. We call cr a saturation function if it satisfies the following two

conditions:
(i) cr is locally Lipschitz and bounded;

or(t)(ii) ttr(t) > 0 ift # 0, liminft0 > O, andliminfltl Ir(t)l > 0.
For convenience we will simply call a saturation function cr an S-function. We say that

r is an n-valued S-function if cr (or1 rn)’, where each component cri is an S-function
and

if(X) de....f (tTI(X1) tTn(Xn))!

for x (x Xn) E ]tn. Here we use (...)’ to denote the transpose of the vector (...).
Remark 1. It follows directly from Definition 1 that most reasonable saturation-type

functions are indeed S-functions in our sense. Included are arctan(t), tanh(t), and the standard
saturation function cr0(t) sign(t) min{Itl, }, i.e.,

ift>l,

r0(t) if Itl < 1,

-1 if <-1.

Remark 2. It is easy to see that if cr satisfies a bound Icr(t)l _< Mltl for near zero (in
particular if tr(0) 0 and (i) in Definition 1 holds), then Condition (ii) in Definition is
equivalent to the following condition:

(c) There exist positive numbers a, b, K and a measurable function r R [a, b] such
that for all E we have Ir(t) r(t)tl < Ktr(t).

It is clear that (c) implies (ii). To see the converse, let g > 0 be such that Icr(t)l < Mltl
for tl <_ . Then just let
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1193

1

r(t)

if t--0,

if 6 [-3, 3]/{0},

if t>3,

if <-3.

It is easily verified that there exist positive constants a, b, K such that (c) holds for this r.
DEFINITION 2. We say that a constant K > 0 is an S-boundfor cr if there exist a, b > 0

and a measurablefunction r I [a, b] such that, for all N,
(i) b < K,
(ii) ler(t)l < K,
(iii) ler(t)l < girl,
(iv) let(t)- r(t)t] < Kter(t).

The above discussion shows that such (finite) S-bounds always exist.
A constant K > 0 is called an S-boundfor an IRm-valued S-function tr ifK is an S-bound

for each component ofr.
2.2. Lt’-Stability. Consider the initialized control system given by

2 f(x,u),
(1)

x(0) 0,

where the state x and the control u take, respectively, values in ]l and/Rm. We assume that
the function f ]n x 1m - In is locally Lipschitz with respect to (x, u). Terminology for
systems will be as in any standard reference, such as [13].

Throughout this paper, if is a point in Rn, we use I1 (i-1 /2)/2 to denote the
usual Euclidean norm. For each matrix S, SII denotes the induced operator norm, and all F
denotes the Frobenius norm, i.e, IISIIF Wr(SS’) 1/, where Tr(.) denotes trace. Recall that
all _< s F.

For each < p < oe and each integrable (essentially bounded, for p cxz) vector-valued
function x LP([0, cx), Rn), we let Ilxll denote the usual LP-norms:

(foCX)lipII/IIL Ilx(t)llPdt

if p < cx, and

Ilxll-- ess supo<_t<llx(t)ll.

DEFINITION 3. Let <_ p < cx and 0 <_ M <_ x. We say that (1) has LP-gain less than
or equal to M iffor any u LP([0, pc), Rm), the solution x of (E) corresponding to u is in
Lp ([0, cxz), Nn) and satisfies

The infimum ofsuch numbers M will be called the LP-gain of (E). We say that system (E) is
LP-stable if its LP-gain is finite.

By a neutrally stable n x n matrix A we mean one for which all solutions of 2 Ax
are bounded; equivalently, A has no eigenvalues with positive real part and each Jordan block
corresponding to a purely imaginary eigenvalue has size 1. Another well-known characteri-
zation of such matrices is that they are the ones for which there exists a symmetric positive
definite matrix Q such that A’Q + QA < O.
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1194 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

We now state our main result.
THEOREM 1. Let A, B be n x n, n x m matrices respectively. Let cr be an m-valued

S-function. Assume that A is neutrally stable. Then there exists an m x n matrix F such that
the system

k Ax + Bcr(Fx + u),
(2)

x(O) 0

is LP-stablefor all <_ p < .
Theorem is an immediate consequence of the more general technical result contained

in Theorem 2 below. To state that theorem in great generality, we recall first a standard
notion. Let (E) : Ax / Bu be a linear system, where x and u take values in ]n and Im,
respectively. For each measurable and locally essentially bounded u [0, cx) -- ]m and
each x0 ", let Xu(t, xo) be the solution of (E) corresponding to u with xu(O, xo) xo.
Following the terminology of [6], the stabilizable subspace S(A, B) of (A, B) is the subspace
of n which consists of all those initial states x0 n for which there is some u so that
Xu(t, xo) 0 as -- cx. In other words, S(A, B) is the subspace of ]/n made up of all the
states that can be asymptotically controlled to zero (so this includes in particular the reachable
subspace). Observe that the pair (A, B) is stabilizable (asymptotically null controllable) iff
S(A,B) _._n.

THEOREM 2. Let A and B be n n and n m matrices, respectively. Let S(A, B) be
the stabilizable subspace of (A, B). Let cr be an Im-valued S-function and let 0
S(A, B) c_ I1 be a locally Lipschitz function such that II0()11 _< min{L, LIIII} for all,, where L > 0 is a constant and k > 0 is some integer Assume that A is neutrally
stable. Then there exist an m x n matrix F and an e > 0 such that the system

(3)
c Ax + Bcr(Fx + u) + eO(v)

x(O) o

is LP-stablefor each < p < cxz, i.e., there existsfor each p a finite constant Mp > 0 such

thatfor any u LP([O, o), m), v LP([O, ), k),

The proof is deferred to 3.
Theorem 2 implies Theorem (just take 0 0) as well as a result dealing with small

"nonmatching" state perturbations.
Remark 3. It is possible to make the result even more general by weakening the Lipschitz

assumption on 0. Moreover, even the Lipschitz property of o" is not needed. The main problem
in dropping this last assumption is that uniqueness of solutions of the closed-loop system is
then not guaranteed, so that there is no well-defined input-to-state operator. Nonetheless, one
could rephrase all statements by asserting that all possible solutions satisfy the stated bounds.
This is consistent with the way stability is defined in some texts on input/output stability, where
well-posedness (existence and uniqueness of solutions) is stated as a property independent of
stability itself.

2.3. Output stabilization. Consider the initialized linear input/output system

(aao) J Ax + Bet(u),

x(o) o,
y=Ex,
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1 195

where A, B, and E are, respectively, n x n, n x m, r x n matrices. Assume that system
(Eao) is asymptotically observable (that is, it is detectable). Our main result for input/output
systems is as follows.

THEOREM 3. Assume that system (Eao) is asymptotically observable, A is neutrally stable,
and the m-valued S-function cr is globally Lipschitz. Then there exist an m n matrix F
and an n r matrix L such that the following property holds. Let 1 < p < cxz. Pick any
Ul G LP([0, x), m) and u2 LP([0, x), r), and consider the solution x (x, x2) of

X’l AXl -k-Bcr(y2-k-UI), y EXl,

x’2 (A d- LE)x2 + Bcr(Fx2) L(yl + U2), Y2 Fx2

with x(O) O. Consider the total outputfunction y (yl, Y2) (EXl, Fx2). Then y is in
Lp ([0, o:), ]r+rn) and

IlYlI < Mp(llull / Ilu211.)

for some constant Mp > O.

2.4. Not every feedback stabilizes. One may ask whether any F that would stabilize
when the saturation is not present would also provide finite gain for (2). Not surprisingly, the
answer is negative. In order to give an example, we need first a simple technical remark.

LEMMA 1. Consider the system J Ax + Bcr(Fx + u), where the matrix A is assumed
to have all eigenvalues in the imaginary axis and where each component ofor is a continuous

function whose range contains a neighborhood of the origin (this holds, for instance, if it is
an S-function). Furthermore, assume that the pair (A, B) is controllable. Then, given any
state xo n, there is some measurable essentially bounded control u steering the origin to

xo in finite time.

Proof. Since all eigenvalues of A have zero real part and the pair (A, B) is controllable,
for each e > 0 there is some control v0 for the system k Ax / Bu so that [w0(t)l < e for all
and v0 drives in finite time the origin to x0 (see, e.g., 12]). Considering that the range of tr

contains a neighborhood of the origin and using a measurable selection (Fillipov’s Theorem),
we see that there is a measurable control v which achieves the same transfer, for the system
Jc Ax + Bet(u). Now let, along the corresponding trajectory, u(t) v(t) Fx(t). It
follows that this achieves the desired transfer for Ax + Bcr(Fx + u). q

The next two examples show that even if A is neutrally stable, Theorem 1 may not be true
if F only satisfies the condition that A + BF is Hurwitz.

Example 1. Let

A=(0 -1 ) (01)0 B= F=-(1/2, 1),

and any cr so that cr (1/2) 1. Then both the origin and (- 1, 0)’ are equilibrium points of the
system

Jc Ax + Bcr(Fx).

By Lemma 1, there is some input u0 that steers the origin to (-1, 0)’ in some finite time To.
Consider the input u equal to u0 for 0 _< < To and to zero for > To. Then if x is the
trajectory of (2) corresponding to Ul, we have that x(t) (-1, 0)’ for all >_ To. Clearly, for
any 1 < p < cx, b/1 LP([0, x), ) and x LP([0, ), ]12). Therefore, system (3) is not
LP-stable for any _< p < z. If we use multiple inputs, a different example which includes
p cx is as follows.
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96 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

Example 2. Assume that m n 2. Let

A ( ), B ( 01 ), F ( -3 7
-1 2/"

Then A + BF F is Hurwitz. Let cr (or0, or0)’, where cro is the standard saturation function.
Then the system

2 cr(Fx + u),
(4)

x(0) (0, 0)’

is not LP-stable for any < p < oo. To see this, take a control v on some interval [0, T] that
steers (0, 0)’ to (1, 1)’. Let u v on [0, T] and u (0, 0)’ on (T, oo). Let x (Xl, x2)’ be
the solution of (4) corresponding to u. Then on IT, oo), we have Xl(t) x2(t) T + 1.
Thus (4) is not LP-stable for any < p < oo. (In fact, the trajectory is not even bounded for
a bounded input.)

3. Proofs of the main results. For notational convenience (to avoid having too many
negative signs in the formulas) we will prove the main theorem for systems written in the form

c Ax Bcr(Fx + u) + cO(v),
(5)

x(0) 0.

A trivial remark is needed before we start.
Remark 4. Assume that or1 k, m and tr2 k2 ]tn each satisfy a growth estimate

of the type IIri(u)ll _< Cllull, IIr2(o)ll _< CIIoll for u 6 , v 6 2. It follows from classical
linear systems theory that if the system . Ax is globally asymptotically stable--that is, A
is a Hurwitz matrix--then the controlled system k f(x, u, v) Ax + BCrl(u) + cr2(v) is
automatically also LP-stable for all < p < oo. We will be interested in the case in which A
is merely stable, but this remark will be used at various points.

We now prove Theorem 2. First note that we can assume that (A, B) is controllable.

3.1. Reduction to the controllable case. Suppose Theorem 2 is already known to be
true for controllable (A, B); we show how the general case follows. It is an elementary linear
system exercise to show that the stabilizable subspace S(A, B), for any two A, B, is invariant
under A; this follows for instance from its characterization as a sum of the reachable subspace
and the space of stable modes. Thus the restriction of A to S(A, B) is well defined, and it
is again neutrally stable. Now since 0 takes values in S(A, B), the trajectories of (5) lie in
S(A, B). So we may assume that (A, B) is stabilizable, i.e., S(A, B) n, since otherwise
we can restrict ourselves to S(A, B). Then, up to a change of coordinates, we may assume
that

A=(A1 A) B=(I )0 A3

where (A, B1) is controllable and A is neutrally stable. Assume that A1 is an r x r matrix
and B1 is an r m matrix.

Let ]I ]1 be given by () (0(1) O(r))’ for 6 r, where 0 is the
standard saturation function, i.e., Oo(t) sign (t) min{ 1, Itl}.

By our assumption that the result is known in the controllable case, there exists an m x r
matrix F1 and el > 0 so that the system

(6)
x (0) 0
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1197

is LP-stable for all < p _< cxz. Let 1-’p be the LP-gain of this system, so [[Xlllzp
I’p(llull, / Ilwll) for all u 6 LP([0, cxz), Nm) and w 6 LP([0, x), r).

Since (A, B) is stabilizable, we can find an rn x n matrix E such that A + BE is Hurwitz.
Then the system

(7)
(A + BE)y + v,

y(0) 0

is Lm-stable for any _< p < cxz. Let yp be the Lm-gain of (7), so Y ’p v .
Take an e > 0 such that eL?’ BE _< . Let F (F1,0). We show that for this

choice of F and e, system (5) is LP-stable for any < p _< cxz. For this purpose, let
u LP([0, o), Nm), v LP([0, ), k). Letx be the solution of (5) corresponding to u, v.
Let y be the solution of

(8)
(A + BE)y + eO(v),

y(O) O.

Then we have IlYlI eL, and IIYlI eL’plloll (note that II0()11 min{L, tllll}
for all 6 Nk). Let z x y. Then z satisfies

Az Bcr(Fz + Fy + u) BEy,
z(O) o.

Write z (Zl, z2)t. Then we have z2 0 and Zl satisfies

1 AZl Ba(FlZl + Fy + u) B1Ey

z (0) O

Since B1 Ey B1E Y eL, nl E 1, we have

B1Eye =0( BEy).et
Then Zl satisfies

,1 Az Bo(Fz + Fy + u) + eaO
z (0) O.

By the LP-stability of (6) we get that

This shows that (5) is LP-stable, which concludes the proof that we may assume that (A, B)
is controllable.
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1198 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

3.2. ProofofTheorem 2 assuming controllability. From elementary linear algebra, we
know that any neutrally stable matrix A is similar to a matrix

0 A2

where A1 is an r x r Hurwitz matrix and A2 is an (n r) (n r) skew-symmetric matrix.
So, up to a change of coordinates, we may assume that A is already in the form (9). In these
coordinates, we write

B Be

where Be is an (n r) x m matrix, and we write vectors as x (xl, x)’ and also 0 (01,0)’.
Consider the feedback law F (0, B). Then system (5), with this choice of F, can be written
as

(10)
21 AlXl Blo(Bx2 -Jr- u) q--

22 A2x2 B2ff(Bx2 nt- u) nt- e02(v)
xl(O) O, x2(O) O.

Since A1 is Hurwitz, it will be sufficient to show that there exists an e > 0 such that the
xz-subsystem is LP-stable (we may think of x2 as an additional input to the first subsystem
and apply Remark 4).

The controllability assumption on (A, B) implies that the pair (A2, B2 is also controllable.
Since A2 is skew-symmetric, the matrix/ A2 BzB; is Hurwitz. (Just observe that the
Lyapunov equation ’In-r + In-r --2BzB holds, and the pair (, B2) is controllable;
see 13, Ex. 4.6.7].) Therefore, the theorem is a consequence of the following lemma. This is
where the main parts of our argument lie (except for a small technical point, whose proof is
deferred to 3.5).

LEMMA 2. Let or, 0 be as in Theorem 2. Let A be a skew-symmetric matrix. Assume that
ft A BB’ is Hurwitz. Then there exists an e > 0 such that the system

(11)
2 Ax Br(B’x + u) + eO(v),

x(O) 0

is LP-stablefor all <_ p <_
Proof. Assume that cr (o" O’m)t. Let 0 < a < b < ec, K > 0 be constants and

ri IR [a, b], m, be measurable functions so that the components ri of
satisfy (i)-(iv) in Definition 2 with the respective ri ’s. We may assume that K is large enough
such that K > L. Let

r def min lim inf tri ()l.
i=1 I1

Then F > 0. Let e > 0 satisfy

(12) e <

where ?, is the L-gain of the initialized linear control system

(13)
(A BB’)y + u,

y(0) 0.
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1199

By (12) there exists a 6 (0, 1/2] such that

(1 26)1’
g,/-lln

Let u 6 LP([0, o), ]m), /3 Lt’([0, Cx), k). Let y be the solution of

(14)
(A BB’)y + eO(v),

y(O) O.

Let x be the solution of (11) corresponding to u, v and let z x y. Then z satisfies

(15)
Az Bcr(B’z + u + B’y) + BBry,

z(O) o.

Let u + B’y and fi Bty. Then we get

(16)
(1 26)F

Now (15) can be written as

Az B (cr(Btz + ) )(17)
z(0) 0.

(We have brought the problem to one of a "matched uncertainty" type, in robust control terms,
if we think of fi as representing a source of uncertainty.)

]nLet (t)= B’z(t)+ ?t(t). For each < p < oo, consider the function Vo, p IR
given by

Vo, p(X) Ilxll p+l

p+l

Along the trajectories of (17), we have

--IIz(t)llP-i’(t)[r ((t)) O(t)] -!-Ilz(t)llP-’(t’(t)[r ((t)) (t)]
Since K is an S-bound for cr and considering (16), we have the following decay estimate"

(18)

f’O,p(Z(t)) < -]lz(t)llP-l’(t) (or ((t)) fi(t))

+(K+ (1- 26)1’) IIz(t)ll p- Ilfi(t)ll.

We next need to bound the first term in the right-hand side of (18). For that purpose, we will
partition [0, c) into two subsets. By the definition of 1’, there is some M1 > 1 so that

min inf Itri()l > (1-6)I’.
i--1 II_>M1

The first subset consists of those for which II’ (t)II M1V/-. For such t, trivially,

(19) ’(t) (or ((t)) (t)) >_ ’(t)o- ((t)) Ml/-ll(t)ll.

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1200 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

Next we consider those for which [[’(t)ll > M1V/-. First we note some general facts about
any vector 6 ]m for which

(20) I111 > MI/-.

If we pick i0 so that ]iol maxi=l m{lil}, then Ii0l > M1, and therefore, by the choice of
M, Io’i0(io) > (1 8)I". We conclude that if satisfies (20) then

I111to() ioO-io(io) -- (1- s)r,

or equivalently

(1 -s)r

From this and (16) we have if I[(t)l[ > M1V/-,

(21)

’(t) (er ((t)) fi(t)) > ’(t)r ((t)) II’(t)ll IlO(t)ll

>_ ’(t)cr ((t))
/mllll’ ’(t)cr ((t))
(1 -)r

( 1 2) ’(t)a ((t))

_
1-8

’(t)r ((t)).
1-8

Note also that < for 0 < 6 < 1/2. Combining (19) and (21) we have a common
estimate valid for all > 0:

’(t) (r ((t)) fi(t)) >

Using this and (18) we get

(22)

(ZO, p(Z(t)) <_ -[[z(t)llP-l’(t) ((t))
1-8

/llz(t)ll p-1 K / II(t)]l 4- M14rll(t)ll

Let r diag(rl rm) with r() diag(r(l) 75m(m)) for 6 ]1m. Then
aI < r() < bI for all 6 m. We have for any 6 m,

(23)

v() r()11 Ii (i)i O’i (i)l 2

i=1

< K /2 (O’i (bi))2 <
i=1

Now we rewrite (17) in the form

(24)
,(t)z + B [r ((t)) (t) cr (’(t)) r ((t)) fi(t) + fi(t)],

z(0) 0,
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1201

where (t) A Br ((t))B’. Then , satisfies the conditions of Corollary 1 below.
Therefore, for each < p < cxz, there exist a differentiable function Vl,p and positive real
numbers ap, bp, and Cp such that

(P1) apllxll p < Vl,p(X bpllxll p,
(P2) IlDVl,p(X)ll < CpllXll p-l,
(P3) DVl,p(x)A(t)x <-Ilxll p,

for all x 6 R" and > 0. (Note that the constants ap, bp, Cp depend only on A, B, a, b.)
Moreover Vl,p can be chosen so that

(P4) lim SUpp__,l+ Cp Cl < xz, and the limit VI,1 (x) limpl+ Vl,p(X) exists for all
X ]n.

Using (23) and (24), we get, for < p < ec,

(25)

dVl,p (Z(t))
dt

-IIz(t)ll p + cpllnllllz(t)llp- (ll(t)ll + bllfi(t)ll)

4-Cpllnllllz(t)ll p-1 {llv ((t))(t) -cr ((t))II}

< -IIz(t)ll p 4- Cpllnllllz(t)ll p-1 (]l(t)ll 4- bllfi(t)ll)

4-cpKIInllllz(t)llP-l’(t)tr ((t))

For 1 < p < cxz, let

(26) )p
KIInllcp(1 ,)

(Observe that this constant does not depend on the particular u and v being considered, it
depends only on the system and on p.) Finally, consider, for each < p < cxz, the following
function:

(27) Vp p Vo,p + Vl,p,

where p is given in (26). Using (22), (25), and the fact that b < K, for 1 < p < cxz, we have
along trajectories of (17),

(28)
dVp (z(t))

< _llz(t)llP / xpllz(t)llP_l(ll{t(t)l 4- II(t)ll)
dt

where

Xp p max {1 + K-t

For any > 0, integrating (28) from zero to t, we have

Vp (z(t)) + Ilz(s)llPds tCp Ilz(s)llP-l(ll(s)ll 4- II(s)ll)ds.

When p 1, this inequality is also true as an easy consequence of the Lebesgue dominated
convergence theorem (applied to a sequence {pJ }jl decreasing to 1). Thus the inequality is
true for all < p < o.

Applying H61der’s inequality to f IIz(s)llp-l(ll(s)ll / II(s)ll)ds, we conclude that for
alll <p<cxzandt>0,

(29) p-1Wp (z(t)) + Ilzll p < pllzll (llll + IIllp)LP[O,t] LP[O,t]
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1202 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

Since Vp > O, we get that z Lp ([0, o), ]n) and

(30) Ilzll < Cp(llllLp + I111.).

Now sincez=x-y,=u+ B y, B’y, we have

, _< B Y I1 _< eKVp B v ,
_< Ilu / K’p n v ,

where yp is the LP-gain of (13). Combining this with (30) we have

IIxlIL _< pllUllL / eKyp(1 + 2cpllnll)llvllLe

This finishes the proof of the lemma, and hence our main theorem, for the case when 1 <

We now prove the lemma for p o. For this, we need to show that system (11) has the
uniform bounded input bounded state property, i.e., there exists a finite constant M such that

IIxlIL <_ M(IlulI / IIVlIL) for all u L([0, o), ]Rm) and v L([0, c), IRk). Letting
p 2, from (28) we have

dV2 (z(t))
(31)

dt
_< -IIz(t)ll (llz(t)ll- c2(llllLo / IIIIL))

Let/ IIIIL / IIIIL, Thus, f’2 is negative outside the ball of radius c2/ centered at the
origin. It follows that

v2 (z(t)) < sup v2() < +

First assume that 1. Then we have

alz(t)ll < V (z(t)) < + bg
3

which implies that

If/ > 1, we have

We then get that

Let

IlZllL <-- { )2tc23 3a2+3b2tc22 }1/2
;L2Jlz(t) 113

3
< V2 (z(t)) < ( + b;K22) [3

IIZIIL <-- { 223 +3b2/c22)2 }1/3
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1203

and

We conclude that

Now the proof of Lemma 2 is complete. q

3.3. Proof of the output feedback theorem. We now provide a proof of Theorem 3.
We will show a somewhat stronger statement, namely, that the state trajectory x also satisfies
an estimate as required. The proof will be the usual Luenberger-observer construction, but a
bit of care has to be taken because of the nonlinearities.

Asymptotic observability means that there is some n x r matrix L such that A + LE is
Hurwitz. Let F be as in Theorem 2. Let e x x2. Then (xl, e)’ satisfies

X’l Ax1 -k- Bcr(Fx Fe +/gl),

k (A + LE)e + B (cr(Fx Fe + Ul) --cr(Fxl Fe)) + Lu2.

Let cr(FXl Fe + u) -tr(FXl Fe). Since II(t)ll Kllu(t)l] (here K is a
Lipschitz constant for or) and A + LE is Hurwitz,...we know that e is in LP([0, cxz), Nn) and

Ilell _< M(Ilu I1, / Ilu2ll) for some constant M > 0. Then the conclusion follows from
Theorem 2 applied to the Xl-SUbsystem.

Note that the conclusion of this theorem can be restated in terms of the finite-gain stability
of a standard systems interconnection

Yl P(u + Y2),

Y2 C(u2 + Yl),

where P denotes the input/output behavior of the original system E and C is the input/output
behavior of the controller with state space x2 and output y2.

3.4. Operator stability among different norms. We can actually prove a result
stronger than that stated in Theorem 2, namely, that the input-to-state operator (u, v) x
from LP([0, OO), ]1m) X LP([0, OO), ]1k) to LP([0, OQ), ]1n) is a bounded operator from
LP([0, ), m) LP([0, o), k) to Lq([0, oe), n), for any q _> p.

Remark 5. From (29), (30) we get that, for u LP([0, cx), m), v 6 LP([0, o), k),
andt >_ 0,

-1/pthen, Ilzll _< C (1111 / I111) with C Xpap Therefore we obtain for q > p,

(32) Ilzllq IlzllqLPllzllPt, C-Pcff(lltllL, + II]lt,)q

From this one can easily deduce that for any q > p the solution x of (11) satisfies

Ilxllq Mp,q(llull +
for some constants Mp,q > O. The same results then hold for the original system in The-
orem 2, as is clear from the reduction to (11). That is, for any u 6 LP([0, x)), m), V

Lp ([0, o), k), the solution x of (5) satisfies a similar inequality.
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1204 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

3.5. A remark on robustness of a linear feedback. It is worth pointing out that the
same method used to prove Lemma 2 allows us to establish the next proposition, which is a
result regarding time-varying multiplicative uncertainties on a linear feedback law u -B’x.
For that, we need the following lemma.

LEMMA 3. Fix two positive real numbers c, d. Let A be an n n skew-symmetric matrix,
let B be an n m matrix, and assume that the pair (A, B) is controllable (or, equivalently,
that A BB’ is Hurwitz). Then there is a symmetric positive definite matrix P so that

(33) P(A BDB’) + (A’ BD’B’)P < -I,

for all those m m matrices D so that D + D’ > cl and IID d.

Proof. Since (A, B) is controllable, the same is true for (A, rB) for any r > 0; thus
A-rBB’ is Hurwitz for any r > 0. Pick P1 > 0sothat Pl(A-cBB’)+(A’-cBB’)P1 -21.
We will choose P of the form P1 +/I for a suitable/. Note that

2x’PI(A BDB’)x -21lxll 4- 2x’P1B(cI D)B’x,

where the last term has norm bounded above by C IIxll IIB’xll for some constant C which
depends on c and d. On the other hand,

26x’(A- BDB’)x -2x’BDB’x < -cllB’xll
Thus 2x’P(A- BDB’)x < -211xll + CIIxlllln’xll- cllB’xll2 and picking/ large enough
guarantees that this quadratic form is always less than -IIx 2.

COROLLARY 1. Let A and B be as in Lemma 3. Let c, d > 0 and A(t) A BD(t)B’,
where D(t) is any measurable m x m matrix such that D(t) + D’(t) > cI, for almost all
in [0, cx), and sup{llD(t)ll [0, cx:)} < d. Then for each < p < <x, there exist a

differentiablefunction Vp andpositive real numbers ap, bp, and Cp such that
(P0) Vp, ap, bp, Cp depend only on A, B, c, d;

andfor all x Nn, [0, o),
(P1) apllxll p <_ Vp(x) <_ bpllxllP;
(P2) IIOVp(x)ll <_ cpllxllP-1;
(P3) DVp(x)(t)x <-Ilxll p.
Moreover, we may choose Vp so that
(P4) limsupp__>l+ Cp Cl < x, and the limit Vl(X) "= limpl+ Vp(x) exists for all

x 11n.
Proof. Take Vp(x) Otp(x’Px)p/2, where Cp > 0 is a proper constant and P is chosen

as in Lemma 3. [3

As a direct application of Corollary 1, we get Corollary 2.
COROLLARY 2. Let A be an n x n skew-symmetric matrix and B be an n m matrix.

Assume that A BB’ is Hurwitz. Let D(t) be a measurable m x m matrix with bounded
entries. Assume also that there exists a constant a > 0 such that D(t) + D’(t) > aI for
almost all in [0, x). Then the initialized system

() (t)x q-u,

x(O) O,

where u LP([0, o), n) and (t) "= A BD(t)B’, is LP-stablefor <_ p <_ cx, and the
LP-gain depends only on p, a, A, B, and M

Proof. Let Vp be a function satisfying Conditions (P0)-(P3) in Corollary 1 with respect
to *. Along the trajectories of (;), we have

(/p(X(t)) <_ -IIx(t)ll p + cpllx(t)llp-l llu(t)ll

for some Cp > 0. The conclusion follows after applying Htilder’s inequality.
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1205

4. Comparison with linear gains. From the proof of Lemma 2, we can also obtain
explicit bounds for the LP-gain for (11). For simplicity, we deal only with the case when
0 0 and we will assume that each component ri of cr satisfies a stronger estimate:

Yt I1, Icri(t)- ait[ <_ Ktri(t),

where ai > 0 are some constants. Of course this implies that (&ri(t)/dt) It=0 ai. Specif-
ically, we will compare these bounds with the LP-gain of the system that is obtained by
linearizing (11 ):

2 x BDu,
(34)

x(0) 0,

where A A BDB’ with D diag(al am). (Note that A is Hurwitz.) For the cases
p 1, 2 we have the following.

COROLLARY 3. Let A, B be as in Lemma 2 and cr be as above. Let G1 and G2 be,
respectively, the L 1_ and L2-gains ofthe system

k Ax Br(B’x + u),
(35)

x(0) 0.

Let ?’1, ?’2 be, respectively, the L 1_ and L2-gains of (34) and let d min{al am }. Then
we have

1. G1 < (- + 1)?’1,
2. G2 < 2 ’/ (K2 + K)?’2

(In the literature, ?’2 is called the "H-norm" of (34) and is usually denoted by Wll, where
W(s) is the transfer matrix for system (34).)

Proof. For each u Lp ([0, x), Nm), let x be the solution of (35) corresponding to u.
Let 2 B’x + u.

For the case p 1, consider the derivative of V IIx 2/2 along the trajectories of (35).
We get

"(/ (x) -2’r (2) + u’r (2)

<_ -2’r(2) + gllull

Integrating the above inequality from zero to cxz, we obtain

(36) 2’(s)r (2(s)) ds <_ KllulIL.

Let

v(t) -2(t) + D-let (2(t)) + u(t).

Then, we have
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1206 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

Now (35) can be written as

Jc x- BDv(t),

x(O) O.

KBy the definition of ’1 we have Ilxll _< ’llollc _< (7- + 1)’lllull. Therefore

and Conclusion is then proved.
Now we show Conclusion 2. Since is Hurwitz, we take

c[Ixll
V2(x) + x’Px,

3

where c 2KII PBII and P is the positive definite symmetric matrix satisfying

(37) /’P + P, =-I.

Then, rewriting (35) as

c x + B (D, cr()- Du)

and proceeding similarly to the proof of Lemma 2, we have

)’2(X) -cllxll’r() / cllxllu’r()

-Ilxll 2 / 2x’eB (DYe -tr(Y) Du)

_< -Ilxll 2 / 2(11011 / K2) Ilenll Ilxll Ilull

From this we can get

(38) G2 _< 2(IIDII 4- K2)IIPBII <_ 2(K2 q- K)IIPBII.

Next we want to compare PB with ’2. First, let us compare PBD1/2 with 2, where 2
is the L2-gain of

Jc x + BDI/2u,
(39)

x(0) 0.

Notice that < IID-1/II,2. We now consider the Hankel norm IIWIIhanke for system (39).
Note that the matrix P is the observability Gramian for (39) (the output is just the state in
our case). The controllability Gramian for system (39) is defined to be the symmetric matrix
Q > 0 which satisfies

(40) Q + Q’ + BOB’= O.

We know that the Hankel norm for (39) is equal to

(41) ]]Wllhankel--- ()max(P Q)) 1/2

where ,max(’) denotes the largest eigenvalue, cf. [1 ]. We also know that the Ha-norm 2 for
(39) is related to the Hankel norm by the following inequalities:

(42) ’2 _< (2n + 1)][Wllhankel < (2n + 1)2.
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1207

Now in our case, since ft A BDB’ and ’ -A BDB’, the controllability Gramian
Q is equal to I/2. Therefore the Hankel norm for (39) is just

Wllhanke (,max(e/2))l/2

Since P satisfies

(A’- BDB’)P + P(A BDB’) + I PA AP BDB’P PBDB’-4- I --O,

multiplying both sides by P on the right, we get

(43) PAP APP BDB’PP PBDB’P -t- P --O.

Now taking trace to both sides of (43), we get that

IIPBD/2112F Tr(P/2).

On the other hand we know that Tr(P/2) is equal to the sum of all the eigenvalues of
P/2. Therefore Tr(P/2) < n.max(P/2). Finally we get [IPBII < 11D-1/21111PBD1/21[ <

/- D-1/211a /2 D-l,-.max(P/2) < /-11 112 _< /-ffllO- 117’2. Thus

G2 < 2--(K2 + K)y2,

and this completes the proof.
Remark 6. The dimension of the state space does not appear in the bound of the estimate

in Conclusion 1 of Corollary 3. We suspect also that the estimate for G2 should be independent
of the dimension of the state space.

5. Nonzero initial states. We now turn to nonzero initial states. We start with an easy
observation.

Remark 7. Consider systems as in Theorem 2, but without controls, that is, any system
(S) given by k Ax + Ba(Fx), where A, B, a are as in Theorem 2 and F is chosen as in its
proof. It is well known that the origin is globally asymptotically stable, assuming for instance
controllability of the matrix pair (A, B). It is interesting to see that this fact also can be shown
as a conquence of our arguments. From the proof of Theorem 2, it is enough to show that the
system (S) k Ax Ba(B’x), with A skew-symmetric and (A, B) controllable, is globally
asymptotically stable with res.p.ect to the origin. But this follows trivially from (28), since we
have along the trajectories of (S) that d V2 (x (t))/dt < -Ilx (t)II 2. Thus V2 is a strict Lyapunov
function for this system without controls.

The previous remark suggests the study of relationships between LP-stability and global
asymptotic stability of the origin. We prove below that, even for nonlinear feedback laws,
LP-stability for finite p implies asymptotic stability.

5.1. Relations between state-space stability and L’-stability. We consider initialized
control systems of the type (1). If this system is LP-stable for some p [1, o) and if, in
addition, f satisfies some growth or regularity assumptions, we are able to draw conclusions
regarding the asymptotic behavior of the solutions of

(44) ./= f(x, 0).

We next define the various altemative properties of f under which we will be able to obtain
several such conclusions:
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1208 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

(Hi,p) there exist ct 6 [0, p], 3 > 0, K1, K2 >_ 0, such that for all x 6 ]n with

IIx and for all u 6 Nm we have

IIf(x, u)ll _< ga(llxll / Ilull) / g2(llxll / Ilull);

(H2,p) there exist ot 6 [0, p], K1, K2 >_ 0, such that for all (x, u) 6 Nn m we have

IIf(x, u)ll _< g(llxll / Ilull) / g2(llxll / Ilull);

(H3) the function f is differentiable at (0, 0) with A de_.f Dxf(0, 0) and B de_____f Du f (0, 0).
Then we have the following lemma.
LEMMA 4. Let f n m

__
]n be a locally Lipschitz function. Assume that the

system

(45) 2 f (x, u), x(O) 0

is LP-stable for some p [1, oo) with LP-gain Gp. For each u LP([0, oo), ]Rm), let xu
denote the corresponding solution of (45). We can make thefollowing conclusions.

(1) If f satisfies (Hi,p), then, for each u, limt--,ooXu(t) O.
(2) If f satisfies (H,p), then there exists a constant C > 0 so that, for each u.

(46) IlxullL < C max (llullL, [[UIILpP/(P/I-)).
(3) If f satisfies (H3), then the linearized system

2 Ax + Bu, x(O) =O

is LP-stable with LP-gain ,p <_ ap (so, in this case, if (A, B) is controllable, then
A must be Hurwitz and the system (44) is locally exponentially stable).

Note that if system (45) is LP-stable, then f (0, 0) 0.

Proof. In what follows we write x, simply as x, when the control is clear from the context.
(1) Assume that the conclusion is not true for some u 6 LP([0, cx), Item). Then there

exists 31 > 0 so that lim suPt__, Ilx(t)ll > 231. Without loss of generality, we may assume
that 31 _< min(1, 3).

Take e > 0 and fix a time To > 0 so that

Ilulltro, _< , Ilxlltr0’, _< .
Since lim inft_-, x(t) 0, there exist T, T > To such that

(a) - < IIx(t)ll < ,fort e [T Tel"
(b) IIx(Z)- X(Zl)ll _>

Then using (Hi,p) and applying H61der’s inequality, we obtain

31 < Ilx(Z2) X(Zl)ll _< Ilf(x(s), u(s))llds
2

(47) < 2Kle(T2 T)(p-l/p + 2K2e(T2 T1)(p-/p,

(48) (T- T1) _< IIx(t)llPdt <_ e p.

Using (47) and (48), we get

31 < 2
K1 K2 p

-2 +
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1209

Since e is arbitrary, we obtain a contradiction.
(2) For each T > 0, let/3r suPtt0,T [[x(t)[[ and fix an interval IT1, T2] in [0, T] such

that
(a) < Ilx(t)ll </T, fort 6 [T1, T2];
(b) IIx(T2) x(T1)ll .

Since (H2,p) holds, we obtain, using the LP-stability of (45) and H61der’s inequality, that

(49) ---T- < C1(T2- T1)(P-1)/PIIuIILp + C2(T2- Zl)(P-=)/Pllullp
2

for appropriate constants C1, C2, and

(5O) (T2- T1) < C3[[ul[ pLP

for some constant C3 > 0. From (49) and (50) we can easily conclude

p/(p+l-ot)(51) /3T < Cmax Ilull,,

where C > 0 is a constant independent of T. Since T is arbitrary, (46) holds.
(3) For each control u and e 0, let x be the trajectory of (45) corresponding to eu.

def
Then it is easy to see that z(t) converges, for each as e --+ 0, to the solution z(t) of

Az + Bu, z(O) =O.

We have z Gp u Lp. From this we can prove that z Gp u , which implies
that yp < Gp; cf. also 18].

Remark 8. One can notice that the finiteness of Gp was not used in the proofof Statement
(1). Only the fact that inputs in LP produce state trajectories in Lp is used.

If we assume reachability conditions on (45), together with LP-stability of the system
for some p 6 [1, cx) and a hypothesis as in Lemma 4, we can obtain information on the
asymptotic stability of system (45). We will focus on a special class of systems described by
(45) and our results are contained in the next lemma.

LEMMA 5. Let A be an n x n matrix, B be an n x m matrix, cr be an Im-valued S-function,
and f be a locally Lipschitzfunctionfrom ]R to ]Rm. We assume that (A, B) is controllable.
Consider the system ofdifferential equations

(52) Ax + Br(f(x))

and the control system

Jc Ax + Bet(f(x)+ u),
(53)

x(0) 0.

We can make thefollowing conclusions.
(i) Ifsystem (53) is LP-stablefor some p [1, cx), then system (52) is locally asymp-

totically stable with respect to the origin;
(ii) If the reachable setfrom zero of(53) is equal to n and ifsystem (53) is LP-stable

for some p [1, xz), then system (52) is globally asymptotically stable with respect to the
origin.
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1210 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

Proof. We first show (i). Note that the system (53) satisfies (He,p) (with 0). Fix a
u E Lp ([0, ), ]m). Let Xu be the solution of (53) corresponding to u. From Lemma 4 we
know that Xu (t) -- 0 as cx.

To prove stability, we need some elementary reachability results for linear systems. By
our assumption we know that the system

(54) k Ax + Bu

is controllable. Any point x0 E n can be reached from zero by trajectories of (54) at time 1.
Moreoverwe can choose a Uxo on [0, that steers zero to xo and satisfies Uxo to, _< C IIx0 II,
where C > 0 is a constant depending on A, B (cf., e.g., [13]). By a measurable selection
it is also true that there is a measurable control v that steers zero to x0 for the system (S)
Jc Ax + Bet(v), provided that x0 is small enough. Moreover [[wllzt0,1l can be made small
if Ilx01l is small. So if we letu v(t) f(x(t)) on [0, 1], where x is the solution of (S), then
u steers zero to x0 for (S) at time 1. Let U be an open neighborhood of 0. For each 3 > 0,
let 0(3) > 0 be small enough such that, for each x0 with Ilxoll _< 0(), there exists a Uxo that
steers zero to x0 for (53) with Iluxollt0, < ,s. If x is the solution of (52) starting at x0, and
if we let u(t) Uxo(t) on [0, 1] and u(t) 0 on (1, ), then the solution Xu of (53) satisfies
Xu(t) x(t 1) on [1, x). By (46) we can take a 3 > 0 small enough such that for any x0
with Ilxoll _< 0(), the solution x of (52) starting at x0 stays in U. So system (52) is locally
stable.

We next show (ii). Local stability follows as in (i). To prove global attraction, note
that the reachability assumption implies that any trajectory x of (52) can be seen as a part
of a trajectory of (53) corresponding to a control in Lp. Now Lemma 4 provides that
x(t) --+ O. [3

5.2. Dissipation inequality and input-to-state stability. Next we give a slightly differ-
ent proof of Theorem 2, which results in a weaker statement (we now allow e to depend on p)
but which is somewhat simpler. Moreover, it results in a simple dissipation-type inequality,
from which conclusions about nonzero initial states will be evident. We will only sketch the
steps, as they parallel those in the previous proofs.

Assume that A is skew-symmetric and A BB’ is Hurwitz. Fix a 1 <_ p < first. Let
r, a, b, K, V0,p, Vl,p be as in the proof of Lemma 2. Let

,p--- KIInllcp,
1

ep
2K)p

Consider the system

(55) Jc Ax Br(B’x + u) + epO(v),

where the initial states are now arbitrary. Write Yc(t) B’x(t) + u(t).
Along the trajectories of (55), we have

9O,p(X(t)) -]lx(t)l]P-lYc’ (t)cr (.(t))

-+-Ilx(t)[[ p-1 (epX’(t)O (v(t)) + u’(t)cr (.(t)))
<_ --[[x(t)llP-l’(t)r ((t))

(56) +Kllx(t)llP-l llu(t)ll -+- Kepllx(t)ll p.
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS

(Compare this with (22).) Similar to (25) we can get (for p > 1)

Ql,p(X(t)) <_ -IIx(t)ll p + KcpllBII IIx(t)llP-12’(t)r (2(t))

(57) + Cp gllx(t)ll p-1 (llnll Ilu(t)ll + epllV(t)ll)

Again letting Vp(x) i.p go,p(X) -t- gl,p(X), we obtain

rp(X(t)) <_ --(1 g)pep)[Ix(t)l[ p + IIx(t)ll p-1 ((g + 1);kpl[U(t)[ -t-cpgepllv(t)ll)

--llx(t)ll p + IIx(t)ll p- ((g + 1).pllU(t)ll + cpgepllV(t)ll)

Let

Thus, for p > 1,

Xp max{(K + 1)1.p, cpKep}.

9p(X(t)) --llx(t)ll p + xpllx(t)llP-(llu(t)ll + IIv(t)ll)(58)

1211

/zP-lp <_ P- lolp/(p_l)#p nt_
p potP

Let

P ](p-1)/pOtp--
4(p-1)Xp

Then (58) can be written as

1 KpZp(X(t)) < ---llx(t)[I p + pcg-p(llu(t)l + ]lv(t)ll) p

4pSo if we let l?p 4Vp, rp )-g, we finally conclude, along all solutions of (55),

(59) Vp(x(t)) <_ -IIx(t)ll p + rp(llu(t)ll -t- Ilv(t)[I) p

This is sometimes called a dissipation inequality; see [7].
Take in particular p 2 and write V V2. The estimate (59) shows that V(x(t)) must

decrease if IIx(t)ll is larger than /-rs times the input magnitude. Thus, irrespective of the
initial state, the state trajectory is ultimately bounded, assuming that the inputs u and v are
bounded, and this asymptotic bound depends on an asymptotic bound on u and v. One way
to summarize this conclusion is by means of the estimate

(60) IIx(t)ll (llx(0)ll, t) -t- g (ll(u, v)lloo[0,t])
valid for all x (0), all > 0, and all essentially bounded u, v, where F is a function of class
K and/3 is a class-KL function (that is,/3 N_>o N>_o N>_0 is so that for each fixed

Arguing as in the proof of Lemma 2, we see that this provides LP-stability provided that
x(0) 0. But we also note in this case that it is possible to rewrite (58) in a "dissipation
inequality" form, as follows. First, by Young’s inequality, we have for any c,/z, v > 0 and
p>l,
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1212 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

> 0, fl(., t) is a class-K function, and for each fixed s > 0, fl(s, .) is decreasing to zero as
c). This is the notion oflSS stability discussed in, e.g., [11, 10, 17, 15]; equation (60)

is a consequence of (59), which says that V is a Lyapunov ISS function. In fact, in our case
one can say more about the function ?’; namely, it can be taken to be linear. Indeed, from the
proof in [11, p. 441] one can take any ?’ > 0 o 2 o or4, where Or4(/) /-l and where the
oti’s are class-K functions, so that

l(llxll) V(x) =(llxll)

for all x n. Here we can choose or2 CCl, for some c > 1, where Cl is of the form
or(l) all2 W a213 and is thus a convex function. Since for any increasing convex function ct

and c > 1, and any d > 0, c-l(c(dl)) <_ cdl for all I, this gives a linear , as claimed.

6. More general input nonlinearities. Now we consider a broader class of input non-
linearities, allowing unbounded functions as well. The main result will be extended to this
case.

DEFINITION 4. We call E , an S-function if it can be written as E(t)
ottg(t) + or(t), where

ot >_ 0 is a constant,
g ---> [a, b] is measurable and a, b are strictly positive real numbers,
cr 1 ---> is an S-function.

We say that E (El }m)’ is an m-valued S-function if each E is an S-function. As
before if (1 m)’ Im, then E() (EI(I) ’m(m))’.

With this definition we have the following generalization of Theorem 1.
THEOREM 4. Let A, B be n x n, n x rn matrices, respectively, and E be an m-valued

S-function. Assume that A is neutrally stable. Then there exists an rn x n matrix F such that
the system

Ax + BE(Fx + u),
(61)

x (0) 0

is Le-stablefor all < p < o.

Proof. As in the proof of Theorem 2, we can assume without loss of generality that A is
skew-symmetric and (A, B) is controllable.

Assume that E (’1 "]m)’ with ,i(t) Otitgi(t) W cri(t). Let cr (o" tTm)
and G diag(ctlgl Otmgm) with G() diag(clgl(l) Olmgm(m)) for m.
Then E(:) G() + tr().

The ci’s split into two sets, A1 {oti, ci > 0} and A2 {cti, 0i 0}. We can assume
without loss of generality that

A {o/1 Or} and A2 {Ctr+l Ctm}, r < m.

Therefore system (61) becomes

c=Ax+B

o191

0 0

,Oo

Or gr
0 0

(Fx + u) + Btr(Fx + u).

I) ()Fl u, cr and let G diag(ctlgl Otrgr) withWrite B (Ba, B2), F F2 u
u2 :

GI() diag(ctlgl(l) Ctrgr(r)) for 6 r. The sizes of the matrices B1, B2, F1, F2
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1213

are, respectively, n x r, n x (m r), r x n, (m r) x n. As for u l, U2, they are, respectively,
elements of ]r and ]1m-r The S-functions cr 1, cr 2 are, respectively, Ir- and Im-r-valued.
We rewrite (61) as

Jc Ax + BGI(Flx + Ul)(FlX + Ul)

(62) + B cr F1x -3r- /’/1) + B2cr 2 F2x -Jr- b/2),
x(0) o.

Let R(A, B1) ]1rn ]1n be the reachability matrix of (A, B1). (Here and below we will
identify matrices with the corresponding linear maps.)

Let D ImR(A, B1) and H D+/-. We have D H n. Clearly the subspace D
is invariant under A and Im(B1)

_
D. Since A is skew-symmetric, the subspace H is also

invariant under A. So there exists an orthogonal n x n matrix U such that

(63) UAU, ( AI 0 )O A2

where A1 and A2 are skew-symmetric and are restrictions of A to G and H, respectively.
So, up to an orthonormal change of basis, we can assume that A is already of the form (63).
According to this decomposition, D Im R(A, B1). Let s dim D rank R(A, B1).
Consider now

X2

F1 (Fll, F12),

Bll)B1 B12

F2 (F, F).

B21)B2 B22

Here, Xl E ]1 X2 E n-s and the sizes of Bll, B12, B21, B22 and Fll, F12, F21, F22 are,
respectively, s x r, (n- s) x r, s x (m- r), (n- s) x (m- r)and r x s, r x (n- s), (m-
r) xs,(m-r) x (n-s).

Since ImB1 C D, we have B12 0. Now system (62) becomes

kl AlXl d" BllGI(FllXl q’- F12x2 - Ul)(FllXl + F12x2 -+- Ul)
+ BllCr(FllXl + F12x2 "+" Ul) +" Bzlo’Z(F21xl "Jr F22x2 d" u2),

J2 A2x2 + B22t72(F21xl "k- F22x2 q-" U2)

Choose now F12 F21 0, F11 Btl, and F22 B2. We obtain

(--n’ -[-- u )u1 (al nllal(-ntllX1-[-ul)nll)X1-[- nllal 1x1
2-k-BllCr (-BllXl q- Ul) -b Bg.cr (-B22x2 + u),

Jc2 A2x2 + Br2(-B2x2 + u2).

In the above system, replacing or(.) by -r (-.) (still denoted by r), the system becomes

31 (al- nllal(-ntllXl -[--ul)nll)Xl q- nllal(-nllX1 -[’-Ul

2-Bll O’1 (BtllXl Ul) B21cr (B22x2

JC2 azx2- Bz2o2(B2x2- u2).

Since (A, B) is controllable, (A2, B22) is also controllable. It follows from Theorem 2 that
the x2-subsystem is LP-stable for all _< p _< cx. So there exists Cp > 0 such that [[x[[, <_

Cpllu2llt,.
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1214 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

For 1 r, let di(t) cril(t)/t, if 5 O, and di(t) O, if O. Let 1()
diag(d () dr(r)). Then we can rewrite the Xl-SUbsystem as

,’ ]x+v,1 [A1 Bll(GI(-BllXl q- Ul) q- I(BllXl Ul

where

B21ty2(B2x2 u2)v BllGI( BllXl -+-Ul)b/1 - Blll(BllXl t/1)Ul-

We have

Ilvll C(llull + IIx211 + Iluzll)

for some C > 0.
If we let (t) G (-B’x (t) + u (t)) +1 (B’lX (t) u (t)), then the above equation

can be written as

.a(t) (a BlD(t)Ba)Xl(t) + v(t).

By definition of an S-function and an S-function, there exist two real numbers 61 and 62 such
that 0 < 8 < 82, and if we write D(t) diag(d (t), .-., dr(t)), then

81 <_ di(t) <_ 82

for 1 r. Since (A, B) is controllable, (A1, Bll) is controllable too. Then it follows
from Corollary 2 that

-2IlXl I1, _< CpllVllLp,
-2for some Cp > 0 depending on A1, Bll, 81, 82, and p. But we know that

[IvllL, < C(llulllL, -+-Ilu21lL, + Ilx2llL,) <_ CllulllL + C(1 -+-Cp)llu2llLp.
2 2Therefore we have IlxllL, <_ Cpllullz, for some constant Cp > O.

7. Counterexample: The nth order scalar integrator. The next result is a negative one,
and it concerns systems such as those in equation (2), except that the matrix A is not neutrally
stable but instead is assumed to have a nonsimple Jordan block for the zero eigenvalue. In
that case, we show that for any possible F which stabilizes the corresponding linear control
system

k Ax + B(Fx + u),

x(O) o,

the resulting system (Eu) is not in general LP-stable for any 1 < p < c. We first consider
the simplest case, namely the double integrator. The proof is of interest because the origin of
the corresponding system without inputs (but with the saturation) is globally asymptotically
stable. Thus the result is quite surprising. In the end we discuss the n-integrator for n > 3.

PROPOSITION 1. Let 1 < p < cx. Consider the following 2-dimensional initialized
control system:

(Sa,b) y --or (ax + by + u),
x (0) y(O) O,
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1215

where a, b > O, tr is a scalar S-function, and inputs u belong to LP([0, ), I). Then (Sa,b)
is not LP-stable.

Proof. Up to a reparameterization of the time and a linear change of variables, it is enough
to show that the initialized control system

p -.o’(x + y + u),

x(0) y(0) 0,

where > 0, is not LP-stable. Now replacing a by a (note a is still an S-function) we
may assume that 1. Therefore all we need to show is that the system

k=y,

(S) -(x + y + u),
x (o) y(O) o

is not LP-stable. The proof is quite technical, but the idea is not difficult to understand. It is
based on the fact that the feedback u -y mes the system (S) have periodic trajectories,
with a control u whose no is propoional to that of the y-coordinate. But the x-coordinate
is the integral of y, so the ratio between the p-nos of x and u can be made to be large for
p < . (For p , one modifies the argument to reach states of large magnitude.)

Let us first fix a p in [1, ). Assume that (S) is LP-stable. Then the following holds:
there exists Cp > 0 so that, if u Lp ([0, ), ), then

(64)

where Yu is the second coordinate of (Xu, yu), the solution of (S) associated to u.
To see this, let q 2(p 1) 0 and

xylylq
Vq(X, y)

q+l

Then along the trajectory (Xu, yu) of (S) we have

9q ]yulq+2 + Xua(Xu + Yu + u)lyu]q.
q+l

1
(65) 9q + lYulq+2 < Klxullyulq

q+l

where K is an S-bound for r. From Lemma 4 we know that limt(Xu, Yu) (0, 0).
Integrating (65) from zero to and letting --+ cx, we end up with

q + 1
[Yu [q+2 < g [Xu [[Yu q.

Therefore, if p 1, we get that IlYullL1 < KIIxlIL,. If p > 1, applying H61der’s inequality,
we get

1 y0 (f0q + 1 lYuIZP <- KIIxulll lyul qp/(p-1)

Therefore,
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1216 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

But q 2(p 1) 2p. Therefore

(66) IlYu I1 <- (2p 1)g IIx I1,.

Since (S) is LP-stable, Ilxull _< GpllUllLp, where Gp is the LP-gain of (S). So (64) indeed
holds.

Now we construct trajectories of (S) which contradict (64).
We consider the level sets of the following Lyapunov function:

V(x, y) y2 + G(x),

where G(x) 2f cr(s)ds.
Let Pl 2 infltl>_l Itr(t)l > 0 and define H by

0 if Ixl _< 1,
H(x)

Pl (Ixl- 1) if Ixl > 1.

We have

(67)

Note that along trajectories of

y2 + H(x) < V (x, y) < y2 + 2K Ix l.

(s) p -r(x),

V is constant.
Let us fix a constant V0 > max{ 1, 2K and let x- < 0 and x+ > 0 be such that G(x+)

G(x-) Vo. Since (S) is controllable, there exist a T1 > 0 and a u0 in LP([0, T1], I) such
that (Xuo (T), Yuo (T)) (0, /--). We can also assume that uo(t) 0 for > T1. For
> 0, consider (2o(t), 0(t)), the solution of (S") with (20(0), 0(0)) (0, qc-). Note that

V (2o(t), 0(t)) V0. Clearly this trajectory is periodic, since it lies in the closed curve
V(x) V0 and there are no equilibria there. Assume that the period is T.

Consider the sequence {u, }n= of inputs defined as follows:

uo(t) on [0, TI],

Un(t --o(t T1) on (TI, T1 + nT],
0 on (T1 -b nT, cx)

Then if (Xn, Yn) denotes the solution of (S) associated to u,,, we have for [T1, T1 + nT],

(Xn(t), yn(t)) (.0(t T1), 0(t T1)).

In this case (note that yn(t) Yuo(t) for [0, T] and yn(t) Yuo(t nT) for
[T1 + nT, z))

lUn(S)lpds luo(s)l p ds + n I0(s)lp ds,

ly2(s)l p ds lYuo(S)l p ds / n INg(s)lp ds

We conclude that

lim
IIyIILp (f I(s)lPds) 1/p

de.._.f Lp,vo.
n-o ]]UnllLp (ff [;o(s)[Pds)l/p
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1217

According to (64), this quotient should be bounded independently of the choice of V0. We
next derive a contradiction by showing that this is not so.

Notice that for any r > 1, since )c0(t) 0(t), we have

f0 Io(s)lrds I0(s)lr-11co(s)lds.

Since V (x, y) V (x, -y), we have

(68) Io(s)lrds Io(s)lr-llco(s)lds 2 I(x)l

where I(x)l /Vo G(x) for x between x- and x+. (Note that the curve V(x) Vo can
be written as the union of the graphs of the functions y(x) +/Vo G(x). Thus we can
reparameterize the orbit in each of these two parts in terms of the variable x.)

Considering (67), we have Vo/(2K) < Ix-I, x/ <_ Vo/l / 1. Then it follows from (68)
that

fo
T

go(p-l)/2 g(o p-l)/2Io(s)lPds < 2 (x+ -x-) < 4 (Vo/Pl Af_ 1) C1 g(o p+l)/2

fo
T

fo
V/(2K)

I(s)lPds >_ 4 (No- 2Kx)p-l dx > Czg+1/2

where C1, C2 >" 0 are some constants. Finally, we get Lp, vo > CV/2 for some C > 0. But
according to (64), Lp, Vo <- Cp. Therefore, for V0 large enough we get a contradiction. So (S)
cannot be LP-stable for < p < .

We still need to establish the special case p cxz. We use again the level sets of V. Let
u on [0, To] for some To > 0 be an input such that (Xuo(To), yuo(To)) (0, 4-), for some
Vo > 0 which will be fixed below.

From (0, /-9-), follow the trajectory of

y,
(I) y /92,

on [To, To + 1], where /92 -or(-1) > 0. The trajectory (x, y) of (I), hence, reaches
/V +/92/2, +/92). Let

I/1 (V0 -+- P2)2 -+- G(V/-o q" P2/2) >- Vo + 2p2v/-VTo

Note that also V1 < V0 + C(/9- + 1) for some C > 0. Furthermore, the trajectory of (I)
can be viewed as a trajectory of (S) with u(t) -1 x(t) y(t) for To < < To + 1. Let

u -ul(To q- 1) q- Vo -+- p2/2 -+- o -+- P2 2V/O q- 3/2p2 -k 1.

Then, for To+ < _< T1, follow the trajectory (, y) of (S’) from (/-k-p2/2, /c--(0-’-/92) until
the resulting trajectory reaches (0, /) at T. This trajectory can also be considered
as a trajectory of (S) with ul(t) -(t) on (To + 1, T1]. Note that lul(t)l _< for
To+ < < T. Fix V0 such that < U < 3/-V. It is clear that on [T0, T1],
lul(t)l < Ul.

E andIf we iterate the above construction, we can build three sequences .),-o, [u,},_l,
T. }.X:o such that
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1218 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

(1) gn+ ("fn "- /92)2 + G(Vn -- p2/2) > Vn + 2PZVn;
(2) U 2/Vn-1 + 3/2p2 + 1 < 3V/-Vn-1;
(3) on [Tn, Tn+], there exists an input u such that sup{lu"(t)l 6 [T, T+]} u,

and the trajectory of (S) associated to u goes from (0, x/-9-) to (0, /V,+).
Clearly limn Vn cxz and then limn__, Un cxz. Furthermore, let x- < 0 be such that
G(x2) Vn. Then Ix-I > 1/(2K)V,, for n large enough, which implies that limn Ix-I

Letttn Jn=0 be the sequence ofinputs which is equal to the concatenation of u, u u
on [0, Tn] and zero for > Tn. For n large enough, we have

(xan, y,)ll Ix-I,
tTn I1 b/n.

Since Ix/unl 1/(2K)4rn for n large enough, (S) is not L-stable. [3

For n integrators and n > 2, the proof that LP-stabilization is not possible is simpler (but
the result is far less interesting). We can argue as follows. Let tr be a scalar S-function. It
was proved in [4, 21 that, if n > 3, the n-integrator

31 --X2,

.n-1 Xn

JCn

is not globally asymptotically stabilizable by any possible linear feedback With this, it follows
from Lemma 5 that, if n > 3, the system

21 --X2,

n-1 Xn

2 -cr(Fx + u)

x(O) 0

is not LP-stable for any 1 < p < o and any row vector F.
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