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A General Result on the Stabilization of 
Linear Systems Using Bounded Controls 

Hkctor J. Sussmann, Senior Member, IEEE, Eduardo D. Sontag, Fellow, IEEE, and Yudi Yang 

Abstruct- We present two constructions of controllers that 
globally stabilize linear systems subject to control saturation. 
We allow essentially arbitrary saturation functions. The only 
conditions imposed on the system are the obvious necessary 
ones, namely that no eigenvalues of the uncontrolled system 
have positive real part and that the standard stabfiability rank 
condition hold. One of the constructions is in terms of a “neural- 
network type” one-hidden layer architecture, while the other one 
is in terms of cascades of linear maps and saturations. 

I. INTRODUCTION 

E consider linear time-invariant continuous-time sys- 
W t e m s  

C : k = A z + B u  (1.1) 

where i) A E IRnxn and B E E t n X m ,  for some integers n 
(the dimension of the system) and m (the number of inputs), 
and ii) the control values U are restricted to satisfy a bound 
111) 5 C, where C is a given positive constant. 

The study of such systems is motivated by the possibility of 
actuator saturation or constraints on actuators, reflected some- 
times also in bounds on available power supply or rate limits. 
These systems cannot be naturally dealt with within the context 
of standard (algebraic) linear control theory, but are ubiquitous 
in control applications. To quote the recent textbook [8, p. 
1711: “saturation is probably the most commonly encountered 
nonlinearity in control engineering.” Mathematically, control 
questions become nontrivial, as only control values bounded 
by C are allowed into the underlying linear system. 

We will present results on global stabilization, concentrating 
on several explicit architectures for controllers. Of course, 
there are general limits as to what can be achieved, no matter 
what type of control law is allowed. An obvious necessary 
condition for stabilizability is that C be asymptotically null- 
controllable with bounded controls (ANCBC). (We call C 
ANCBC with bound C if for every z E IR” there exists 
an open-loop control U :  [ O ,  00) + IR” that steers x to the 
origin in the limit as t + +00 and satisfies Iu(t)l 5 C 
for all t. It turns out (cf. Remark 1.1 below) that if C has 
this property for some C E (0,oo) then it has it for every 
C E (0,00), so we can simply talk about C being ANCBC, 
without mentioning C.) The ANCBC property is equivalent to 
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the following algebraic condition: 

(ANCBC*) i) A has no eigenvalues with positive real part, 
and ii) the pair ( A ,  B) is stabilizable in the 
ordinary sense (i.e., all the uncontrollable modes 
of C have strictly negative real parts). 

(The theory of controllability of linear systems with bounded 
controls is a well-studied topic; see, e.g., the fundamental 
paper [6], as well as the different, more algebraic approach 
discussed in [9].) Notice that under Condition (ANCBC*) 
there may very well be nontrivial Jordan blocks corresponding 
to critical eigenvalues, so the system x = Az need not 
be asymptotically stable or even Lyapunov-stable. This is 
what makes the problem interesting and allows inclusion of 
examples of practical importance such as systems involving 
integrators. 

In very special cases, including all one- and two- 
dimensional systems, stabilization is possible by simply using 
a saturated linear feedback law of the type: 

U = a( Fz) (1.2) 

where F is an m x n matrix and iT is a function that computes 
a saturation in each coordinate of the vector Fx, for instance, 
ui = sat((Fz);)-where sat(s) = sign(s) min{lsl,l}-or 
U ;  = tanh((Fz)i). A similar solution is possible for systems 
that are neutrally stable (i.e., such that the Jordan form of A has 
no off-diagonal ones corresponding to- critical eigenvalues), 
using the “Jurdjevic-Quinn” approach (see [2] and [7]). Thus 
it is natural to ask if simple control laws such as (1.2) can 
also be used for more general systems. This was negatively 
answered in a paper by A.T. Fuller as far back as the late 
1960’s. He showed in [ 11 that already for triple integrators such 
saturated linear feedback is not sufficient, at least under certain 
assumptions on the saturation g. (A stronger negative result, 
which applies to basically arbitrary d s ,  was more recently 
given, independently, in [ 141.) 

The fact that linear feedback laws when saturated can lead 
to instability has motivated a large amount of research. (See 
for instance [3] and [4], and references therein, for estimates 
of the size of the regions of attraction that result when 
using linear saturated controllers.) Here we take a different 
approach. Rather than working with linear saturated control 
laws U = @ ( F E )  and trying to show that they are globally 
stabilizing, or to estimate their domains of attraction, we allow 
more general bounded (and hence necessarily nonlinear) laws. 
This is not a new idea since, for example, optimal control 
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techniques can be and have been applied. Optimal control 
laws, however, may be highly discontinuous. But by ignoring 
optimality questions, one may hope to find more regular and/or 
simpler controllers. Indeed, taking this point of view, we were 
able to obtain, in [ 121, a general result on bounded stabilization 
by means of infinitely differentiable feedback laws. The result 
of [ 121 holds under the weakest possible conditions, namely, 
for ANCBC systems. 

Unfortunately, the construction in [12] relied on a compli- 
cated and far from explicit inductive procedure. On the other 
hand, since saturated linear feedbacks suffice for up to two 
dimensions, it is natural to look, in higher dimensions, for 
control designs based on combining saturation nonlinearities 
in simple ways, for example by taking linear combinations or 
compositions. [In the language of neural networks, one wants 
control laws that are implementable by feedforward nets with 
“hidden layers”, rather than by the “perceptrons” represented 
by (1.2)]. Recently, and motivated in part by [12] and [14], 
Tee1 showed in [15] how, in the particular case of single- 
input multiple integrators, such combinations of saturations 
are indeed sufficient to obtain stabilizing feedback controllers. 
Here we obtain a general solution of the same type, for the full 
case treated in [12]. The approach is explicit and constructive. 
Our solution is inspired by the techniques introduced in [I51 
for the particular case treated there, but the details are far more 
complicated, due to the possibilities of having both multiple 
inputs and (perhaps multiple) purely imaginary eigenvalues, 
and the need to deal with arbitrary saturations. 

We present two types of control designs, labeled “Type 
F7 and “Type G,” involving, respectively, compositions and 
linear combinations of saturated linear functions. (In neural 
network terms, a Type 6 design involves a “single hidden 
layer net.”) We also study the output stabilization problem, in 
which only partial measurements y = Cx are available for 
control. Under suitable detectability conditions, the standard 
Luenberger observer construction is shown to carry over to 
this case, and a separation principle is proved which allows the 
use of the saturated control design given earlier in the paper. 

Our result was first announced in [ 171, where we considered 
a very special type of feedbacks for which the saturations 
are exactly linear near zero and, when a system has a pure 
imaginary eigenvalue, a saturation with three different slopes 
may be needed. For the results proved here, the saturations 
(T are essentially arbitrary, since they are only required to 
be locally Lipschitz, bounded away from 0 as s -+ f m ,  
differentiable at 0, and such that (~’(0) > 0 and sa(s) > 
0 whenever s # 0. So, mathematically, our results show, 
for example, that one can use real analytic functions to 
implement feedback laws, a fact that would not follow from 
the conclusions of [ 171 or [ 151. From an engineering point 
of view, they insure that rather general components can 
be employed in the feedback design, subject only to mild 
conditions which are robustly satisfied. In the terminology 
of current “artificial neural networks” technology, our results 
allow the implementation of feedback controllers using very 
general types of activation (neuron characteristic) functions. 
For a detailed application of the results given in this paper to 
a model aircraft control example, see [ 131. 

The paper is organized as follows. Our main result on state 
feedback is stated in Section I1 and proved in Section IV, 
using two technical lemmas proved in Section 111. In Section 
V we provide an algorithm to find a stabilizing feedback when 
saturations are employed and describe the structure of our two 
kinds of feedbacks by means of block diagrams. The algorithm 
is then applied in Section VI to the case of multiple integrators. 
Section VI1 contains the statement and proof of the result 
on output feedback stabilization. Finally, in Section VI11 we 
present applications to the stabilization of cascaded systems. 

Remarks 1.1: If C > 0, let CC denote the system C with 
control values U restricted to satisfy ~ u I  < C. Let C1 > 0, 
CZ > 0, and write T = 2. Then it is easy to see that if 
t -+ z ( t )  is a trajectory of Cc, ,  then t -+ m ( t )  is a trajectory 
of Cc2. In particular, a state $0 can be asymptotically steered 
to zero by means of a control bounded by C1 if and only 
if TZO can be asymptotically steered to zero using a control 
bounded by Cz. Therefore, if all initial states z o  can be steered 
to zero using open-loop or feedback controls bounded by C1, 
then the same is true using controls bounded by CZ. So the 
property that C is ANCBC with bound C holds for one C if 
and only if it holds for every C, and the same is true for the 
property that C is stabilizable by means of a smooth feedback 
bounded by C. 

11. STATEMENT OF THE M m  RESULTS 

We first define S to be the class of all locally Lipschitz 
functions (T: R --f R such that S ( T ( S )  > 0 whenever s # 0, (T 

is differentiable at 0, (~’(0) > 0, and liminf~s~+mlo(s)l > 0. 
For any finite sequence a = ( ~ 1 ,  . . . , ( ~ k )  of functions in 

S, we define a set Fn(a) of functions f from R“ to R 
inductively as follows: 

If IC = 0 (i.e., if a is the empty sequence), then F,(a) 
consists of one element, namely, the zero function from 
IR” to R, 
F,((T~)  consists of all the functions h: R” ---f R of the 
form h(z)  = al(g(x)>, where g: R” -+ R is linear, 
For every IC > 1, Fn(al, . . . , ( ~ k )  is the set of all functions 
h: R” -+ R that are of the form h(x) = ok(f(x) + 
cg(z)), with f linear, g E  TI, .. . , ~ k - l ) ,  and c 2 0. 

We also define &(a) to be the class of functions h: IR” -+ 

IR of the form 

where f1, . . . , fk are linear functions and al, . . . , ak are non- 
negative constants such that a1 + . . . + ak  < 1. 

Next, for an m-tuple 1 = (Z1, . . .  , I m )  of nonnegative 
integers, define 111 = 11 + . . . + 1,. For a finite sequence a = 
((TI, .. . , q) = ( U ; ,  . ., , (T:~, . . . , ay,. . ., 02) of functions 
in S,  we let F.(a) ,  BL(a) denote, respectively, the set of all 
functions h: IR” -+ Rm such that hi E Fn(ai, . . . , (T;) for 
i = 1 , 2 , .  . . , m, and the set of those h: R” -+ IR” such that 
hi E G,((T~,...,(T~) L ) f o r i  = 1 , 2 , . . - , m ,  where hl,...,hm 
are the components of h. (It is clear that 3A(a) = 3,(a) and 
G;(a) = &(a) if m = 1.) For a system (l.l), a feedback 
control law U = -IC(z) will be said to be of type 3 (or of 
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type 9) if k E FA(a) (or k E BL(a)) for some 1 and some 
finite sequence Q of bounded functions belonging to S. 

lR be an interval, and let f:I -+ R" 
be a vector-valued function on I. We say that f is eventually 
bounded by 6 (and write I f 1  I,, 6) if there exists a T E IR 
such that [T,+co) g I and If(t)l 5 6 for all t 2 T. Given 
a control system C: x = f(x, U) in lR", with inputs in lR", 
we say that C is SISS (small-input small-state) if for every 
E > 0 there is a S > 0 such that, if e: [0,+00) -+ lR" 
is bounded, measurable, and eventually bounded by 6, then 
every maximally defined solution t -+ x(t) of x = f(x, e@)) 
is eventually bounded by E .  For A > 0, N > 0, we say that C 
is S I S S L ( A , N )  if, whenever 0 < 6 5 A, it follows that, if 
e: [O, +CO) -+ IR" is bounded, measurable, and eventually 
bounded by 6, then every maximally defined solution of 
2 = f(x,e(t)) is eventually bounded by NS. A system is 
SISS,  ("SISS with linear gain") if it is S I S S L ( A , N )  for 
some A > 0 , N  > 0. A differential equation j. = f(x) will 
be called SISS, S I S S L ( A , N ) ,  or SISSL,  if the control 
system x = f(x) + U is, respectively, SISS, SISSL(A ,  N) 
or SISSL. 

Remark 2.2: We will frequently use the fact that if a system 
x = f(x) is S I S S L ( A , N ) ,  and A > 0, then the system 
x = Af(;) is SISSL(XA,N).  To prove this, assume that 
x takes values in R", and let e: [0,00) -+ R" be bounded, 
measurable, and eventually bounded by a S such that S 5 AA. 
Let I 3 t -+ x( t )  E R" be a maximally defined solution of 
x( t )  = A~(T) + e(t>. Let y(t) = A-lx(t) for t E I. Then 
y(t) = f(y(t)) + A-le(t), and it is clear that y is a maximally 
defined solution of this equation, since any extension of y to 
a larger interval yields in an obvious way an extension of 2. 
Since IX-le(t)I 5," A - l S  5 A, we see that there is a T such 
that [T,co) C I and Iy(t)l 5 NA-lS for t 2 T. But then 
1x(t)l 5 N6 for t 2 T, and our conclusion follows. 

Remark2.2: The terminology "SISS' should not be con- 
fused with the different-but closely related-notion of "input 
to state stability" (ISS) given in [ 101 and other recent papers. It 
should also be possible to restate and prove the results given 
in this paper in terms of the ISS property, but the property 
called here SISS was exactly the one needed for the induction 
step in the proof of Theorem 2.3. 

For a system k = f (x ,u) ,  x E R", U E R", we say 
that a feedback U = k(x) is stabilizing if zero is a globally 
asymptotically stable equilibrium of the closed-loop system 
x = f ( x , k ( x ) ) .  If, in addition, this closed-loop system is 
SISSL,  then we will say that IC is SISSL-stabilizing. 

For a square matrix A, let p ( A )  = s ( A )  + z ( A ) ,  where 
s (A)  is the number of conjugate pairs of nonzero purely 
imaginary eigenvalues of A (counting multiplicity) and z ( A )  
is the multiplicity of zero as an eigenvalue of A.  We recall that 
an eigenvalue A of a matrix A is stable if Rex < 0, unstable 
if Rex > 0, and critical if Rex = 0. Our main result is as 
follows. 

Theorem 2.3: Let C be a linear system x = Ax + Bu 
with state space lR" and input space R". Assume that C is 
ANCBC, i.e., that C is stabilizable and A has no unstable 
eigenvalues. Let p = p ( A ) .  Let a = (a~,-..,a~) be an 

Let 6 > 0. Let I 

there exists an m-tuple 1 = (11 ,  ... , I m )  of nonnegative 
integers such that 111 = p, for which there are SISSL- 
stabilizing feedbacks U = - k ~ ( x )  and U = -kp(x) such 
that l c ~  E FA(a), ICp E G;(a). Moreover, ICF and ICE can be 
chosen so that the linearizations at zero of the corresponding 
closed-loop systems are asymptotically stable. 

Precise procedures to compute these feedbacks, and dia- 
grams describing their structure, will be discussed in later 
sections. 

Remark 2.4: The definitions of FA(a) and BL(a) clearly 
imply that every member of FA(a) U BL(a) is differentiable 
at the origin, so the linearizations referred to in the statement 
of Theorem 2.3 are well defined. 

Remark 2.5: We chose to formulate our main result in terms 
of the SISSL property for two main reasons, namely, a) that 
even if we were only interested in stabilization, our inductive 
proof of Theorem 2.3 requires that we prove the SISSL 
property at each step to carry out the induction, and b) because 
it will be needed later in our proof of Theorem 7.1 on output 
feedback. 

Remark2.6: A stabilizing feedback need not have the 
SISS property, even if it is linear near the origin. To illustrate 
this, consider the double integrator C : i  = y, i = U. Let 
a: lR -+ lR be an odd continuous function such that sa(s)  > 0 
for s # 0, a ( s )  = s for Is1 < 3 and a ( s )  = for s > 1. 
Then the feedback U = -a(x + y) stabilizes C. (This can 
be proved by verifying that V(x,y) = J:+Ya(s)ds + 3y2 
is a Lyapunov function for the closed-loop system with 
U = -a(x+y), and applying the LaSalle Invariance Principle.) 
Let e(t> = a( log( t+1)+ h) - d. Then clearly 
e(t) -+ 0 as t -+ CO. But not every solution of x = y, 
@ = -a(z + y) + e(t) converges to zero. For example, 
x( t )  = log(t + l), y(t) = & is a solution, but x(t) -+ CO 

as t -+ 00. 

111. Two TECHNICAL LEMMAS 

The proof of Theorem 2.3 will be based on two lemmas. 
Lemma 3.1: Let C :  x = Ax+bu be an n-dimensional linear 

single-input system. Suppose that ( A ,  b) is a controllable pair 
and all the eigenvalues of A are critical. Fix a v > 0. 
i) If zero is an eigenvalue of A, then there is a linear change 

of coordinates Tx = (yl,. . .  ,yn)' = (jj',yn)' of R" that 
puts C in the form 

5 = Aig + bi(yn + VU), 
Yn = U (3.1) 

where the pair ( A I ,  bl) is controllable and yn is a scalar 
variable. 

ii) If A has an eigenvalue of the form iw, with w > 0, 
then there is a linear change of coordinates Tx = 
( y l , . - - , y n ) '  = (jj',yn-l,yn)' of R" that puts C in 
the form 

5 = Aijj + h ( y n  + V U ) ,  

Yn-1 = WY", 

arbitrary sequence of bounded functions belonging to S.  Then in = -wyn-1+ U (3.2) 
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where the pair (A l ,  b l )  is controllable and Y,.-~, y ,  are 
scalar variables. 
Proof: We first prove i). If zero is an eigenvalue of A, 

then there exists a nonzero n-dimensional row vector v such 
that vA = 0. Let I:Rn --f R be the linear function z 3 vz. 
Then 4 = (&)U along trajectories of E. Controllability of 
( A , b )  implies that vb # 0. So we may assume that v b  = 1. 
Make a linear change of coordinates Tx = ( 2 , ~ ~ ) ’  so 
that z,  tL Then the system equations are of the form 
Z = AlZ+z,bl +ub2, in = U. It is clear that every eigenvalue 
of A1 also has zero real part. Now change coordinates again 
by letting 3 = Z + z,b3, yn = z,, where the vector b3 will be 
chosen below. Then the system equations be_come y = A13 + 
y,[b1 --Alb3)tU(bZ+-b3), yn = u.Cho_ose b3 fo be-a solution 
of b2+b3 = v(b1 -Alb3) ,  i.e., VAlb3+b3 = vbl -b2. (This is 
possible because vA1 +I is nonsingular.) Let bl = bl - Alb3. 
The equations now become y = A l y  + ( y ,  + vu)b l ,  6, = U ,  

as desired. 
We now prove ii). Let w > 0 be such that iw  is an 

eigenvalue of A. Then -w2 is an eigenvalue of A2. So there is 
a nonzero n-dimensional row vector V such that VA2 = -w2V. 
Let w = w-lVA. Then WA = -wV and G A 2  = -w2W. 
Moreover, 6 cannot be a multiple of V because, if 6 = AV, 
then G A  = -wV would imply that VA = -A-lwV, so 
-A-’w would be a nonzero real eigenvalue of A. So the linear 
span S of V and w is a two-dimensional subspace, all whose 
members v satisfy vA2 = -w2v. In particular, we can choose 
U E 5’ such that vb = 0 but v # 0. If we then define w by 
w = w- lvA ,  we get w A  = -wv. Moreover, wb cannot vanish 
for, if it did, the subspace { x : u x  = wx = 0 )  would contain 
b and be invariant under A, contradicting controllability. So, 
after multiplying both v and w by a constant, if necessary, we 
may assume that wb = 1. Let 6 ,  11 be the linear functionals 
x --f vz, z -+ w x .  Then, along trajectories of C, = wq and e = -WE + U .  Make a linear change of coordinates T x  = 
(Z’,Z,-~,Z,)’ so that z,-1 = I ,  z, 3 11. Then the syste_m 
equations are of the form t = Alz  + znp1bl + z,b2 + ub3, 
i,-l = wz,, 2,  = -wzn-l + U ,  and every eigenvalue of A1 

has zero real part. NOW change coordinates again by letting 
y = Z t ~,-1b4 + z,bg, yn-l = znP1, y,  = z,, where the 
vectors b4, b:, will be chosen below. Then the system equations 
become 

5 = ~ ~ j j  + yn-l(bl  - ~ 1 b 4  - 

+ ~ ~ ( 6 2  - Ai&, + ~ b 4 )  + ~ ( b 3  + i s ) ,  

Yrt-1 = W Y n ,  

y, = -wy,-1+ U .  (3.3) 

If we could choose b4, such that 

bl-Alb4-w&, = 0 and b3+b5 = ~ ( b ~ - A i b 5 + ~ & 4 )  (3.4) 

then we could let bl = b 2  - Alb5 + wb4, and (3.3) would 
become y = AID+(yn+vu)bl, $,-I = wy,, yn-= -wyn-l+ 
U ,  as desired. To prove the existence of b4 and _b:,, we rewcte 
the second equation of (3.4) as (vA1 +I)b:, = ub2 -b3+vwb4, 
multiply both sides by w,  and plug in the v_alue of_wbs giv_en 
by the first equation of (3.4), namely, wb:, = bl - Alb4. 

- -  

We end up with the equation (vA: + A1 + vw21)& = 
vAl& + b1 - vwb2 + wb3. Since all the eigenvalues of A 1  
are critical, the matrix vAq + A1 + vw21  is nonsingular, so b4 
exists. 0 
Lemma 3.2: Let w > 0. Let a:R -+ JR be a continuous 

function such that so(s) > 0 whenever s # 0, liminfi+w 
la(s)l > 0, liminf,,o(*) > 0, and lim sup,,o(*) < 
CO. Then the three-input control system 

x = wy + 113, y = -wx - c ( y  - V I )  + 0 2  (3.5) 

has the SISSL  property. 
Proof: First, we remark that, if e1,e2,e3 are bounded 

measurable real-valued functions on [O, CO), then every max- 
imally defined solution y = (z(.),y(.)): I -+ JR2 of the 
system 

(3.6) 

defined on a subinterval I of [O, CO) such that 0 E I, is in fact 
defined on [0,00). (To see this, assume that I = [O,a) with 
a < 00. Let V ( x ,  y )  = x2  + y2. Then limt,,- v(y(t)) = 
+CO. On the other hand, the derivative V of V along a 
solution is easily seen to be equal to 2x( t )e3( t )  +2y( t ) e z ( t )  - 
2 y ( t ) c ( y ( t )  - e l ( t ) ) .  Let M > 0 be such that lei(t)l 5 M 
for all i = 1 ,2 ,3 ,  t E [O,CO), and let N > 0 be such that 
Io(s)l 5 N whenever Is1 I 2M. Then y c ( y  - e l ( t ) )  2 0 
if J y J  2 M, and J y a ( y  - e l ( t ) ) l  5 M N  if JyJ 5 M ,  so 
V I V + 2 M 2  + 2 N M .  But then t 4 V ( y ( t ) )  is bounded on 
I, and we have reached a contradiction.) 

In view of the above observation, it clearly suffices to find 
positive constants A, v1, ~ 2 ,  v3 with the property that 

x = w y  + e3( t ) ,  y = -wx - g ( y  - e l ( t ) )  + e z ( t )  

P) whenever 0 < 6 < A, and e1,e2,e3 are bounded 
measurable real-valued functions on [O, CO) such that 

6 
t-++w vi 

limsup le i@)[  5 - for i = 1 ,2 ,3  (3.7) 

then, if y = ( x ( . ) ,  y ( . ) ) :  [O, C O )  --f R2 is any solution 
of (3.6), it follows that limsup,,+, Ilr(t)ll 5 6. 

Actually, it suffices to find A, V I ,  v2, v3 such that 

I) if 0 < 6 < A, and y: [O, CO) --f IR2 is a solution of 
(3.6) for some triple of functions e l ,ez ,e3:  [O,CO) -+ 

IR such that IleillL- 5 for i = 1,2,3,  then 

(Indeed, if I) holds, e l ,  e2, e3 are bounded measurable on 
[O, CO), (3.7) holds for some 6 E (0, A), and y: [O,CO) -+ IR2 
is a solution of (3.6), then for every 8 E (6, A) there is a T 2 0 
such that the restections E l , & , &  of e l ,e2 ,e3  to [T,co) 
satisfy I l E i l l ~ -  5 $. Applying I) to the curve t -+ y ( t  + T) 
we find that limsup,,+, Ilr(t)II 5 8.) 

V %  

limsup,,+, Ilr(t)ll I 6. 

For a > 0, w > 0, we let Aa,, be the matrix (-: :a) 
and define Pa,, to be the symmetric matrix P t at satisfies 
the Lyapunov equation A;,,P + PA,,, = -21, so 

(3.8) 
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Then P > 0. We write B1 = ( l , O ) ,  B2 = ( 0 , 1 ) ,  Pi,,,, = 
llBiPa,wll, SO 

It is clear that I Z ~ X A ( Z )  5 A. In addition, (3.14) implies 
that the term Ie111a(z)l can be replaced by j e l l y  + 
lellblzlxA(z), whichisbounded by le11?+/e,lbA. Assume 
lei1 5 C i A  for i = 1,2,3,  where the Ci are constants to be 
chosen below, and write llXll = tA. Let C = d m .  
Then (3.17) implies 

(3.18) 

1 
aw PI,,,, = /= and = - d w .  

We let p i , ,  and p t ,  denote, respectively, the smallest and 
largest eigenvalues of Pa,,. Then llPa,wll = pt,. and 

pa,, - 5/32,a,w * $/32,a,w. (3'9) 

For each A > o, we define three numbers .(A), b(A),  c(A) by 

VK,L L ~ i ~ t z a ( z )  + ~ ~ 5 ( ~ 2  - ~ 3 t )  
f - a 2  

where K1 = 2P2 - 3 K ( 1  - Cl) ,  and 

K2 = 3 K C l b  + 2C3/31+ 2C2/32 + 2Cla/32 + 2/32(b - a), 
K3 = 2 - 3 K C .  (3.19) 

.(A) = inf { ?: Is1 5 A , 

b(A) = sup { +: Is1 I A , 

.(A) = inf{la(s)l: Is1 2 A}. 

Now choose the Ci such that 

0 5 C 1 < 1 ,  C 2 2 0 ,  C32O, and 

I 
I 

(3.10) c1 +p2 J- < 1 (3.20) 

and observe that (3.20) guarantees the existence of a K ,such 
that 

Our hyPOtheses On a are 
finite and nonzero and, moreover, .(A) 5 b(A),  with equality 
holding iff a is linear on [-A, A]. 

From now on we fix a A0 > 0 and an w > 0, and let 

that '('1, b(A) and 

3 K ( 1 -  C1) 2 2/32 and 3 C K  < 2. (3.21) 
a = a(&) ,  b = ~ ( A o ) ,  c = ~ ( A o ) ,  A = A,,,, P = P,,,, 

Choose K so that (3.21) holds. Then K1 5 0, K2 > 0, and 
K3 > 0. So, if we define P* = P:,, Pi = /3i,a,w- We let 

(3.22) 0 K2 
K 3  

- - _  
U -  

A = min (Ao, E) .  (3.1 1) 

Then 
we see that if > E then 

A 5 A + ( Ia(s) l  2 ah for all s such that Is1 2 A). 
(3.12) V;C,A(X> 5 -A3K35(5 - E) < 0. (3.23) 

NOW let 7 A  be the set of all trajectories 7: [o, m) + R~ of 
(3.6) corresponding to inputs e ; ( t )  that satisfy and l l e i l l~= 5 
C i A  fori = 1,2,3.  For T > 0, write p(r) = Kr3+hp+r2,  and 
let S, = { X :  V K , A ( X )  5 V ( T ) } .  Choose T > Eh.  Then the 
equality V K , A ( X )  = p(r) implies llXll 2 T ,  so (3.23) implies 

TA, then (3.23) implies that 7( t )  E S, for all sufficiently large 
t. On the other hand, every X E S, satisfies the inequalities 
KllX113+p-AllX112 I V K , A ( X )  I Kr3+p+Ar2.  Therefore 

lim sup (KIIX(t)l13 +p-AllX(t)l12) 5 K r 3  +p+Ar2.  

This implies that 

34s) if 0 < A 5 A, then / a s  - a(s)l 5 - A + ( b  - a) ls lxA(s)  for all s E IR (3.13) 

where X A  is the indicator function Of the [-A, A]* we that S, is forward-invkant under all trajectories in 7*. If 7 E 
will also need the trivial estimate 

la(s)l 5 34s) + b l ~ l ~ ~ ( s )  whenever s E IR, 0 < A 5 A. 
(3.14) 

For K > 0,O < A 5 A, we define a function VK,A: IR2 4 IR t++m 

by Since this is true for all T > EA, we can conclude that 

lim sup (KllX(t)113 +p-AllX(t) l12)  I A 3 ( K E 3  +p+E2) .  

Now let E be the number characterized by 

VK,A(X)  = KllX113 +AXtPX for x = (xc,Y)t E IR2. 

Then the derivative VK,A of VK,A along a solution of (3.6) 
is given by 

(3.15) t++m 

5 > 0 and K g 3  + p - g 2  = K E 3  +p+E2.  (3.24) 
V K , A  = 3KIIXII (EX - a(z) '! /)  - 2A11x112 

+ 2 A ( E  + ( a y  - a ( z ) ) & ) P X  (3.16) Then 

where z = y - e l ,  E = (e3,eZ). Writing y = z + e l ,  and 
using (3.13) and IBiPXl  5 /3illXll, we get 

lim SUP (KIIX(t) l13 +p-A l l x ( t ) l12 )  I A 3 ( K g 3  + P - g 2 ) .  

Writing IlX(t)ll = At(t), we find that limsup,++, 

t ( t )  5 E, and then limsup,,+, IIX(t)ll 5 EA. So we 
have shown that (I) holds with A = eA, and vi = for 

+ 2/3211XIIza(~) + 2A/32(b - a ) l l X l l l z l x ~ ( z ) .  (3.17) i = 1,2,3.  0 

t++m 

v . , L  5 3 K l l X 1 1 2 \ I E l I  + 3KIIXlllell l a ( z > l  - 3 K l l X l l  ( ~ t ( t ) 3  + p - 5 ( t ) 2 )  5 ~ g 3 + ~ - g 2 .  Therefore limsupt++, 
- 2AllX112 + 2A(/31le31 + /32le2l)llxll 
+ 2 w 3 2  le1lllXll 
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Remark3.3: The proof of Lemma 3.2 actually yields ex- 
plicit formulas for possible choices of ul,  u2, u3, and A. The 
constants Ci can be chosen in an arbitrary fashion, subject 
only to the condition that (3.20) hold, and then one can take 
K to be any number that satisfies (3.21). Formulas (3.19), 
(3.22) and (3.24) then determine IC2, K3, Z and E. We can 
then let A = ZL, vi = e. 

A particularly simple choice of A and the U; results from 
taking 

1 1 
C1 = 3, C = -, C2 = a2C, C3 = Q ~ C ,  K = P 2  

3P2 
(3.25) 

Proof: When n = 2 ,  the conclusion follows from Lemma 
3.2. Assume n = 1 .  Pick ho, A, a, b, c as in the proof of 
Lemma 3.2. Let A = 2L, u1 = 2 ,  u2 = 2. Let 0 < S < A. 
Let V ( x )  = x2.  Let x(.):[O,m) --+ IR be a solution of 
3 = -o(x - e l @ ) )  + e2(t)  for some pair of measurable real- 
valued functions on [0, m) such that limsup,,, lei(t)l 5 $ 
for i = 1,2.  Pick s" such that 6 < s" < A, and then T 2 0 such 
that le;@)[  5 $ for i = 1,2 and t 2 T. Then, if Ix(t)l 2 8, 
it follows that 

. . ,  
where a 2  2 0, a 3  2 0, and a$ + a: = 1 .  Then (3.20) and 
(3.21) clearly hold, and IC3 = 1 .  So Therefore, Ix(t)l 5 s" for sufficiently large t. Since s" can be 

taken arbitrarily close to 6, we conclude that limsup Iz(t)l 5 
0 

Corollary 3.6: Let J, b, n, o be as in the statement of Corol- 
p2. (3.26) '. 

The value of E can then be found by solving (3.24). This 
equation implies the inequalities E < < @E, and it is 

easy to see that = Ja2$F2+a 5 1 + E from which 
we get the bounds Z < e < ( 1  + E):. We can then take 
u1 = 3Z, a224 = a3v3 = 3p2Z, and A = Zh. Moreover, it 
is clear that if we replace A by a smaller number and the U; 
by larger ones, then the resulting values still have the desired 
properties. So we can also take A = EA, V I  = 3(1 + E)Z, 
a2v2 = a3u3 = 3p2(1+ ;)E. Using the value of Z computed 
earlier, we get 

- -  

4- (9b - 4a)/i2) ( 1  + 2 ) ,  (3.27) 
2a3P1 

v1 = ( Z a 2  + - 
P 2  W 

a2u2 = a3u3 = p2u1. (3.28) 

A particularly simple formula for a possible choice of A is 
obtained by replacing the value of A given in (3.27) with the 
lower bound obtained using the inequalities b 2 a, up2 2 2,  
P I  2 P 2 ,  and a2 + a3 2 1 .  This leads to the choice 

A = 4A. (3.29) 

Remark 3.4: In Remark 3.3 we allow the possibility that 
ai = 0 for i = 2 or 3. In that case, the corresponding constant 
U; is infinite, which means that the corresponding input e; has 
to vanish. For example, if we choose a2 = 1 ,  a3 = 0, we 
obtain constants A, u1, u2 with the property that, whenever 
0 < 6 < A, and e l ,  e2 are bounded measurable real-valued 
functions on [0, CO) such that limsupt,+, lei(t)l 5 $ for 
i = 1 , 2 ,  then, if y = (x(.), y(-)): [0, m) + IR2 is any solution 
of 3 = wy, y = -wx - o(y - e l ( t ) )  + ea@), it follows that 

Corollary 3.5: Let o: R + IR satisfy the assumptions of 
Lemma 3.2. For n = 1 or 2, let J be an n x n skew-symmetric 
matrix. Let b = 1 if n = 1 ,  and b = (0 , l ) '  if n = 2 .  If n = 2, 
assume that J # 0. Then the control system 

lim SUPt-+, I Ir(t) I I I 6. 

3 = Jx-cT(xn-q)b+'U2, z E IR", 211 E IR, w2 E R "  
(3.30) 

is SISSL.  

lary 3.5. Let e l :  [O,m) + R and e2: [O,m) + IR" be 
bounded measurable functions such that lim e ; ( t )  = 0. Let 
y: [0, m) + IR" be a solution of (3.30) with v1 = e l ( t ) ,  
w2 = e2(t) .  Then lim y ( t )  = 0. 

Remark 3.7: The above proof of Lemma 3.2 is an adap- 
tation of ideas of [ 5 ] .  Using a similar technique, it can be 
shown that Corollary 3.5 also holds in higher dimensions, 
for controllable pairs ( J ,  b) such that J is skew-symmetric, 
although in the general case it becomes more difficult to get 
explicit formulas for the constants. 

t+m 

t+w 

Iv. THE PROOF OF THEOREM 2.3 

First, we notice that under the conditions of the theorem 
there exists a linear change of coordinates of the state space 
that transforms C into the block form 

= A l ~ l +  B ~ u ,  5 1  E R"', {I: = A222 + B ~ u ,  2 2  E Rn2 C: 

where i) n1 +n2 = n, ii) all the eigenvalues of A1 are critical, 
iii) all the eigenvalues of A2 are stable, and iv) ( A I , & )  is 
a controllable pair. Suppose that we find a SISSL-stabilizing 
feedback u = -Ic(xl) of Type F or Type E for the system 
31 = A l z l  + B l u  such that the linearization at zero of the 
resulting closed-loop system is asymptotically stable. Then 
it is clear that this same feedback law will work for C as 
well. Thus, to stabilize C, it is enough to stabilize the "critical 
subsystem" 31 = Alxl  + Blu.  Without loss of generality, in 
our proof of the theorem we will suppose that C is already 
in this form. 

We start with the single-input case and prove the theorem 
by induction on the dimension of the system. As discussed 
earlier, we may assume that all the eigenvalues of A have 
zero real part and the pair ( A ,  B) is controllable. 

For dimension zero, there is nothing to prove. Now assume 
that we are given a single-input n-dimensional system, n 2 1, 
and suppose that Theorem 2.3 has been established for all 
single-input systems of dimension 5 n - 1 .  We consider 
separately the following two possibilities: 
i) zero is an eigenvalue of A ,  

ii) zero is not an eigenvalue of A.  
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Recall that p = p(A). We want to prove that for any finite 
sequence U = (01, . . . , a,) of bounded functions in S there are 

On the other hand, the second equation of (4.3) becomes 

SISSL-stabilizing feedbacks U = -k3(2) and U = -k~(z) y = Jjj - nP(yn - <v)bo - ~ v b o .  (4.5) 
such that k 3  E Tn(a), E Gn(a), and the linearizations at 
zero of the resulting closed-loop systems are asymptotically 
stable. 

Assume that aL(0) = K. > 0. In Case i) we apply Part i) of 
Lemma 3.1 and rewrite our system in the form 

Yn = U (4.1) 

where g = (yl, ,yn-l)'. (Notice that if n = 1 then only 
the second equation occurs.) In Case ii), since n > 0, A has 
an eigenvalue of the form iw, with w > 0. So we apply Part 
ii) of Lemma 3.1 and make a linear transformation that puts 
C in the form 

Corollary 3.5 implies that there exist AI, z q ,  v2 > 0 such that 
A) whenever S 5 AI, and el,  e2: [0, CO) + R are bounded 

measurable functions such that lei1 Lev $, i = 1,2, it 
follows that all the solutions of 6 = Jjj - crn(yn - 
e1)bo + e2bo are eventually bounded by S. 

Recall that U, is diffefentiable at zero and crL(0) = K. Then 
for every E > 0 there exists A2 > 0 such that 

1 d S ) l  s 44 for I4 5 A2. (4.6) 

Now, fix a positive number a < 1. Choose E > 0 such that 

E(M(SV1 + QV2 + t )  + Al)l(b311 < ffA (4.7) 

and 

(4.8) 
1 

ENL(<Vl+ QV2 + <) < 4. 
Yn-1 = WYn (4-2) Then there exists a A2 > 0 such that (4.6) is satisfied. (Notice 

that in the special case when a, is linear near 0 the existence 
of a A2 > 0 such that (4.6) holds is also guaranteed if E = 0, 

we can actually choose E = o.) 
so that 

$n = - W Y n - 1 +  U 

where 9 = (91,927 . ' . 7 9,-2)'. in the ' p i a l  case and then of course (4.7) and (4.8) hold as well. So in this case 
when n = 2, the first equation will be missing.) So in both 
cases Lemma 3.1 enables us to rewrite our system in the form Now, choose So > 

SO 5 min(A1, aA2) (4.9) 

y = Jjj + Ubo (4.3) 

where J is a skew-symmetric matrix, (J, bo) is a controllable 
pair, and we have jj = yn,bo = 1 in Case i) and j j  = 
(yn-l, y,)', bo = (0 , l ) '  in Case ii). 

Let U = -a,(yn - <U) - QV, where < and Q are constants 
such that t~ = O , <  + Q = 1, and v is to be chosen later. 
Define g(s) = a,(s) - 6s. Then 

and let X be such that 0 < X < 1 and 

XM L (1 - @)A2, 
qrv1 + w2)M I aS0.  

(4.10) 
(4.11) 

Then define 

Now choose v = -X i ($ ) .  Then the closed-loop system 
arising from (4.4) and (4.5) is 

Therefore the first equation of (4.3) becomes 

5 = Aijj + vb2 - g(yn - @)b3 (4.4) 

where b2 = (5 - i ~ ) b l ,  b3 = :b1. Notice that < - :Q # 0, 
and therefore (Al,b2) is still a controllable pair. From the 
inductive hypothesis we know that, if 'Fi is either T or 8, 
then there exist ]c E 'Fin(crl, - ,-cr,=1) such that the system 
5 = Aljj - i(jj)b2 is SISSL(A,N) for some A , N  > 0, 
and the linearization at zero of the closed-loop system is 
asymptotically stable. (For instance, in Case ii) there exists 
a SISSL-stabilizing feedback U = - E 3  for 5 = A1jj + b2v 

such that & E Tn-2(al,..-,a,-1). Then & can also be 
viewed in an obvious way as a function from R" to R. Thus 
& E  Fn(al,-..la,-l.)LetX > O.Then5 = Aly-XL($)bz 

is SISSL(XA, N). 
is bounded and locally Lipschitz, and i ( 0 )  = 

0, it follows that there exist L, M > 0 such that the inequalities 
Ii(g)I 5 LIS1 and li(y)l 5 A4 hold for all y. 

Also, since 

s = A i y - X k ( ~ ) b z - g ( y , + X < i ( $ ) ) b 3 ,  

b = J j j  - ap(yn + X < k ( i ) ) b o  + X $ ( $ ) b O .  (4.13) 

We will prove that (4.13) is SISSL(A, N) for some N > 0. 
This will imply the conclusion of Theorem 2.3 for the single- 
input case, as we now show. 

Notice that the linearization CL of (4.13) at zero is obvi- 
ously asymptotically stable. (Indeed, if we linearize the first 
equation we just obtain the linearization at 0 of the system 
5 = AI& - ]c(jj)bp, and this linearization is asymptotically 
stable by the inductive hypothesis. If we linearize the second 
equation and discard the terms involving y, we get the equation 
j j  = Jjj - 6yn, which is also asymptotically stable. The 
asymptotic stability of C L  follows easily.) As a consequence, 
the local asymptotic stability of (4.13) is guaranteed. To get a 
Type T feedback we take < = 1 , ~  = 0. Then the feedback 
U = -op(yn +X i (%) )  is as desired. To get a Qpe B feedback 
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l A r l q ; ) b o + E  

we take < = 0,q  = 1. Then, for any T > 0, the closed-loop 
system corresponding to (4.3) and the feedback 

se" 2qLp+6. (4.25) 

- 

(4.14) 

lAvi(;)bo + E  

is SISSL(TA, N). Choosing T sufficiently small, we can 
insure that the sum of the coefficients of all saturations in 
(4.14) is bounded by one. Therefore the feedback defined 
by (4.14) is as desired. This completes the proof that the 
conclusion of Theorem 2.3 for the single-input case follows if 
(4.13) is S I S S L ( A , N )  for some N > 0. 

We now show that (4.13) is SISSL(A, N) for some N > 0. 
Given 6 5 A, let e, E be bounded measurable vector-valued 
functions on [0, CO), eventually bounded by 6, and of the same 
dimensions as jj, 6, respectively. We consider the system 

I,, AqM + 6 5 -. v2 (4.17) 42(5v1 + v z  + <)Lp + v 2 S )  + s I A A  (4.27) 60 

From (4.7) and (4.12) we see that the right-hand side of (4.22) 
is bounded by A A .  Since the system y = Aljj - A i (  f ) b %  is 
SISS,(AA, N ) ,  it follows that 

I j j l  ANA. (4.23) 

Now, suppose lim sup,,,ly(t)) = p > 0. Then l j j l  I,, 
2p. So I@J)I 5 LIyI implies that 

and 

We now apply A) again to the second equation in (4.159, but 
this time we use (4.24) and (4.25). We then obtain 

From (4.11) we get 

(4.15) 
(Notice that if the right-hand side of (4.26) is greater than A,, 
then the inequality is trivial because of (4.20).) From (4.21), 

Inequality (4.1 1) and SVZ I (1 -a)& then imply that the right- 
hand side of (4.18) is bounded by 60. Therefore, it follows 
from (4.9) that 

151 Lev min{Al, aA2). (4.20) 

Then (4.20) and (4.10) imply that Iyn + A<k(f)l I,, A,. 
From (4.6) we then get 

Since 6 v ~  L (1 - a)A60 and 60 5 A,, using (4.19) we obtain 

Lev A(M(<v1+ 7 7 ~ 2  + <) + (1 - ..)Ai) 

and then 

+ A<i(;))b3 + El <,, A€ 

1 ~ 1  Sev ;P + ~ ( E v z  + 1)s. (4.29) 

Taking the lim supt+, of the left-hand side of (4.29), we get 
the inequality p 5 !jp + N(EVZ + 1)S, i.e., p 5 2N(&v2 + 1)s. 
Substituting this into (4.26) and (4.29), we find that 151 I,, 
( 4 ( h  + VVZ)LN(EVZ + 1) + V Z ) ~  and l j j l  I,, ~ N ( E V Z  + 
1)s. So, if we take N = 2N(&vz + 1)(1+ 2 ~ ( < y  + qvz)) + 
u2, then (4.13) is SISS,(A,N).  As explained before, this 
establishes the conclusion of Theorem 2.3 for the single-input 
case. 

Next, we deal with the general m-input case and prove 
Theorem 2.3 by induction on m. We already know that the 
theorem is true if m = 1. Assume that Theorem 2.3 has been 
established for all k-input systems, for all IC I m - 1, and 
consider an m-input system E: j: = Ax + Bu. 

Assume without loss of generality that the first column bl  
of B is nonzero and consider the Kalman controllability de- 
composition of the system C1: x = Az +blu (see [ l l ,  Lemma 
3.3.31). We conclude that, after a change of coordinates y = 
T-lx,  C1 has the form y1 = Alyl + A2y2 + & U ,  yz = A3yz 
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where (AI, 61) is a controllable pair. In these coordinates, C 
has the form 

ii = A i ~ i  + A 2 ~ 2  + 6 i ~ i +  BIG, 
i 2  = A3Y2 + B2c (4.30) 

where 21 = ( ~ 2 ,  are matrices of the 
appropriate dimensions. So it suffices to prove the conclu- 
sion for (4.30). Let n1,n2 denote the dimensions of y1,y2, 
respectively. Recall that p = p(A). Let cr = ( c l , - . . , u p )  be 
any finite sequence of bounded functions in S. Let 7f stand for 
either F or 8. Then, for the single-input controllable system 
11 = Alyl + 61211 there is a feedback 

ui =-ki(yi)  (4.31) 

, um)' and &, 

been summarized in Remark 3.3 and Corollary 3.5, so our 
discussion will be based on these results-and on the proof of 
Theorem 2.3-but not on the proof of Lemma 3.2. 

We will need the following corollary of the Kalman con- 
trollability decomposition. 

Lemma 5.1: Let C be a linear system of the form (1.1) 
with state space IR" and input space Rm. Suppose that all 
the eigenvalues of A have nonpositive real parts and all 
the eigenvalues of the uncontrollable part of C have strictly 
negative real parts. Then there exists a linear change of 
coordinates which transforms (1.1) into the form 

io AOOXO + Aolz l+  A o ~ x ~  + . + AOmxm 
+ b01ul + b 0 2 ~ 2  + . . . + bomum, 

such that i) kl E 7fnl(ul, . . - ,up1),  where p1 =  AI), 
ii) the resulting closed-loop system is SISSL(A~, NI) for 
some AI, NI > 0, and iii) the linearization at zero of the 

?I = A l l x l +  A1222 + * .  . + Almzm 

+ b 1 1 ~ 1  + b 1 2 ~ 2  + * . . + blmum, 

X2 = A 2 2 ~ 2  + * * .  + Aamxm 
(5.1) 

closed-loop system is asymptotically stable. Since (4.30) is 
controllable, we conclude that the (m - 1)-input subsystem 
y2 = A392 + B2c is controllable as well. By the inductive 
hypothesis, this subsystem can be stabilized by a feedback 

+ b 2 2 ~ 2 + * * . + h m ~ m ,  

x m  = Ammxm + bmmum 

ii = -E(Yz) = - ( k 2 ( ~ 2 ) ,  . . . , km(y2)) (4.32) 

suchthati)k E 7fL2(cpl+1,---,up), wherei= (p2 , - - . ,pm)  
is an (m - 1)-tuple of nonnegative integers and 111 = p - p1, 

ii) the resulting closed-loop system C2 is SISSL (A,, N2) for 
some A,, N2 > 0, and iii) the linearization at zero of the 
closed-loop system is asymptotically stable. Let C be such 
that l A 2 ~ 2  - &i(y2)l l e v  Clv21 whenever 1921 I N2A2. 
(Such a C exists because & is locally Lipschitz.) Let A3 be 
such that 0 < A3 I A2 and (CN2 + l)A3 < Al.  Then C2 is 
also SISSL( A3, N2). If el, e2 are bounded measurable vector 
functions of the appropriate dimensions that are eventually 
bounded by 6 I As, and t -, (yl(t),yz(t)) is a solution of 

il = AIYI + A2y2 - hkl(y1) - B I ~ ( Y Z )  + e l ,  

(4.33) 

then the fact that y2  = A392 - B2i(g2) is SISSL(A~,N~) 
implies that ly2l lev N26. Then IA2y2 - &&(y2) + ell lev 
(CN2 + 1)6 5 (CN2 + l)A3 5 AI. Since $1 = Alyl - 
&kl(y1) is S I S S L ( A ~ , N ~ ) ,  we conclude that 1911 I,, 
Nl(CN2 + 1)6. So 191 Lev N6, where N = NI + N2 + 
CN1N2. So the feedback given by (4.31) and (4.32) glob- 
ally stabilizes (4.30), and the resulting closed-loop system is 
SISSL (A3, N). Therefore, if we let 1 = (p1, p2, - . , pm) and 
k = (ki(yl), kz(y2), . , km(y2)), then k E 'HX(a) satisfies 
all the required properties. 0 

i 2  = A392 - B2E(y2) + e2 

v. AN ALGORITHM 

We now present a two-step procedure for computing sta- 
bilizing feedbacks of the kind described in the statement 
of Theorem 2.3. The first step is to transform C into a 
special form by means of a linear change of coordinates. The 
second step is the construction of a stabilizing feedback for 
the transformed system. This essentially amounts to keeping 
track of the constants that occur in the proof of Lemma 
3.2. All the relevant information about this proof has already 

where all the eigenvalues of A00 have negative real part, all 
the eigenvalues of Ai; with i 2 1 have zero real part, and all 
the pairs (Aii, b, i ) ,  i 2 1, are controllable. (The coordinate 
x, may have zero dimension. In that case, there is no equation 
for xi in (5.1).) 

From the proof of Theorem 2.3 we see that, if we find 
SISSL-stabilizing feedbacks ui = ki(zi) of Spe 3- or 
'I)qx 8 for the systems E;:& = Ai,xi + biiui and let 
k = (k1,. . . , km), then k is SISSL-stabilizing for C. So 
what we need is to stabilize each Ci separately, making sure 
that the SISSL property holds. To simplify the notation, 
we consider again an n-dimensional single-input controllable 
system C: k = Ax + bzl such that all the eigenvalues of A have 
zero real part. Our goal is to find SISSL-stabilizing feedbacks 
of Qpe 7 and Qpe 8 for C. For this purpose, we will use 
the following corollary of Lemma 3.1. 
Lemma 5.2: Let C: x = Ax+bu, x E IR", be a controllable 

single-input linear system. Suppose that all eigenvalues of 
A are critical. Let f w 1 i , f w 2 i , - - . , f w q i  be the nonzero 
eigenvalues of A, and let p be the multiplicity of zero as an 
eigenvalue, so p+2q = n. Let s = p+q, and let (VI, * * , ~ ~ - 1 )  

be a finite sequence of positive numbers. Let e j , k  = 1 for 

k = j + 1, and e j , k  = n vh for j + 2 I k L s + 1. Then 

there is a linear change of coordinates that puts C in the form 

k-2 

h=j 

2 .  
3 - 3Yj9 

S 

j = l , 2 , . . .  
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To derive this from Lemma 3.1, we notice that, if p > 0, 
then from Part i) of Lemma 3.1 it follows that there is a linear 
change of coordinates z --t (y', yn) that puts C in the form 

If p > 1, then relabeling j j  as x and applying Part (i) of Lemma 
3.1 to the system C1: x = A l z  + blv, with v,-z in the role of 
v, we find a linear change of coordinates z --f (y', yn-l) that 
puts C1 in the form y = A2y + b2(yn-l + v s - 2 w ) ,  $n-l = w, 
where ( A 2 ,  b2) is controllable. Substituting = yn + V , - ~ U ,  

we see that C has been transformed into 

Continuing in this way, we apply Part i) of Lemma 3.1 to 
each pair (Af ,be) ,  with ~ ~ - 6 - 1  in the role of v, until zero is 
no longer an eigenvalue of At ,  thereby generating a system 
whose last p equations are the last p equations of (5.2). We 
then apply Part ii) y times, until we obtain the representation 
(5.2). U 

Now let ( o l , . . . , o s )  be a finite sequence of bounded 
functions in S. Suppose oI(0) = ~ i .  Choose v. - L, and 
then use Lemma 5.2 to put C in the form (5.2). (To find a linear 
transformation that puts C in this form simply let (A, b)  denote 
the controllable pair corresponding to (5.2). Then y = T-lz, 
with T = R ( A ,  b ) R ( A ,  b)-', is the desired transformation, 
where R( A ,  b )  denotes the controllability matrix of (A, b). 
See [ I l ,  Section 3.31.) 

To get a stabilizing feedback of Type 3, we will choose 
positive constants XI, XZ, . . . , Xs-l  and let 

- K t + l  

+.  . . + X1ol ( X l X 2  y 1  ) . , .))). . . . Xs-l  (5.3) 

To get a Type G stabilizing feedback we choose positive 
numbers X I ,  X2,  . . . , As and let 

(see Figs. 1 and 2). In both cases, the crucial question is how 
to choose the constants A,. We now describe in detail how 
to find values of X I ,  X2,  . . . , X,-I for (5.3) that achieve the 
desired goal. (The procedure for (5.4) is similar.) 

The A, will be chosen recursively. As in the proof of 
Theorem 2.3, we first find (A1,Nl) so that the (z1,yl)- 
subsystem of (5.2) with U = -ol(yl) is SISSL(Al ,Nl) ,  
then find X 1  so that the (z1, y1,z2, yz)-subsystem of (5.2) with 
U = -o2(y2 + Xlol(?)) or U = -a2(y2) - X l a l ( e )  is 
S I S S L ( A ~ .  N2) for some A2. N2 > 0, and so on. 

I 

Fig. I .  Block diagram for (5.3). 

Step I :  For i = 1 ,2 ,  ... , s, find L; 2 1,M; > 0 such 
that loi(t)l 5 Lilt1 and la;(t)l 5 Mi for all t. Notice that 
Li exists beca_use (T; is-locally Lipschitz and bounded. Then 
define Li = . . . L;. The numbers L;, Mi will play the 
roles of L , M  in the proof of Theorem 2.3. 

Step 2: For z = 1,2,...,s, we apply Remark 3.3 (with 
a2 = 1, a3 = 0, cf. Remark 3.4) and Corollary 3.5 to find 
Ai ,  U ; ,  vi > 0 such that, whenever el ,  e2 are two bounded 
real-valued measurable functions on [0, ea) such that (el 1 5," 
.; and le21 lev -$ for some 6 5 Ai, it follows that the state 
+ of the system 6 = J ;4  - ai(y, + e1)b; + e&; is eventually 

bounded by 6, where i) J; = (-Lj :) and b; = ( 0 , l ) t  

for i = 1, . . . , y and ii) Ji = 0 and bi = 1 for i = y + 1, . . . , s. 
Step3: Let A0 = m,No = 0 and fix a E (0 , l ) .  We 

now describe how to find E ; ,  Ah, S& X i ,  A;,N; recursively for 
i = 1 , 2 , .  ..,s - 1. 

6 

Let E, > 0 satisfy 

(5.5) 

(If oi is linear near zero then it is also possible to take E; = 0.) 
Then let SA, Xi ,  A;, N; > 0 satisfy the conditions of the 

proof of Theorem 2.2, namely 
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~ 

Fig. 2. Block diagram for (5.4). 

With the above choices, the constants Xi, i = 1,2,  . . . , s - 1 
are such that (5.3) globally stabilizes (5.2), and the closed-loop 

Remark 5.3: When all oi, i = 1 , 2 , .  . , s - 1, are linear 
near the origin, the algorithm described above is very simple. 
As an example, we consider the case of ai (s) = sat (s), where 
sat(s) = sign(s) min{lsl,l}. Then L; = M; = K; = 1. When 
i 5 q, we use (3.27) and (3.29), and observe that we can take 
A = 1, a = b = 1, and then p2 = d q .  So we can 

choose Ai = 4, and 

system is SISSL. 0 

When i > q, we take A; = 2 and vi = 2. Next, we choose 
~i = 0, and AZ, = 1 in Step 3 of the above algorithm. (Notice 
that the choice ~i = 0 automatically guarantees that (5.5) and 
(5.6) hold, irrespective of the values of Ai-l, Ni-1. So there 
is no need to compute the Ai and Ni.) For every i, the facts 
that Ai > 1 and Ai = 1 imply that, after fixing a E (0, l), 
we can take 66 = a, and then it suffices to choose the Xi 
such that X i  5 min{$, 1 - a}. Then the feedback law (5.3) 

Example 5.4 Consider an oscillator with multiplicity two 
stabilizes (5.2). 0 

x1 = 22, x 2  = -21 + 23, $3 = 24 ,  x4 = -23 + U  

(5.8) 

where U is required to satisfy the constraint lzll 5 E. 
To get a feedback of the form 

we need to find a linear transformation that puts (5.8) in the 
form (5.2). In our case, (5.2) reduces to 

$1 = y2, y2 = -y1 + y4 + U, y3 = y4, y4 = -y3 + U* 

(5.9) 

We now write (5.8) as x = Ax + bu and (5.9) as y = Ay + 
bu. A simple computation then shows that 

/o 0 0 1 \  

/o 1 1 - l \  

If we let T = R(A, b)R(A, &)-l, then the coordinate change 
y = T-lx transforms (5.8) into (5.9). The matrix T-l is easily 
computed, and the transformation y = T-lz turns out to be 

Y1 = 2 2  + 23, y2 = -21 + 23 + 2 4 ,  y3 = 23, y4 = Z4* 

We now need to find X > 0 so that 

(5.10) 

stabilizes (5.9). To compute A, we follow the steps of Remark 
5.3. Notice that w; = 1. So we can take Ai = 4, U! = 
4 + lo&, and we can also replace the value of U! with 
any larger number, so we can actually take v! = 27. Let 
a E (0 , l ) .  Then A1 = min{$, 1 - a}. Choosing a = 
we obtain X1 = &, so we can choose X = &. Then the 
feedback defined by (5.10) globally stabilizes (5.9) and the 
resulting closed-loop system is SISS. Transforming back to 
the original z-coordinates, we have shown that the feedback 

is SISSL-stabilizing for the system (5.8). 0 

VI. MULTIPLE INTEGRATORS 
For special systems, the general method of Section V can be 

often be pushed further, yielding simpler formulas with better 
constants. We will now illustrate this by showing a simple 
procedure to stabilize multiple integrators. 

Theorem 6.1: Let 0 < E 5 a. Then for the nth order 
integrator 

there exists a feedback law of the form 

where each hi: Etn -+ R, i = 1, . . . , n, is a linear function, 
such that the origin is a globally asymptotically stable state 
for the resulting closed-loop system. 
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Prooj We first apply Lemma 5.2 to (6.1) and conclude 
that for every E > 0 there exists a linear change of coordinates 
(51, . . . ,xn) --f (y1, . . . , yn) which transforms (6.1) into the 
form 

y1 = En-1 y2 + F 2 y 3  + . . . + E& + U, 
y2 z En-2 y3 + . . . + E Y n  + U ,  

(6.3) 
yn-1 = EYn + U ,  

yn = U .  

(We only need to set vi = 6 in (5.2) and then make a di- 

2 2 , .  . . , xn).) We will show that, when E 5 i, the feedback 
lation (xl, x 2 , .  . . , xn)  --$ (E1+2+...+(11-1) zl, E1+2+...+(n-2) 

U = k(y) = --Esat(yn)-E2sat(yn-l)-.-~--Ensat(y1) (6.4) 

stabilizes (6.3). 
To prove this, we observe that, for any trajectory t -+ y ( t )  

of the resulting closed-loop system of (6.3) with the feedback 
given in (6.4), the nth coordinate y,(t) will enter and stay in 
the interval (- i, i) after a finite time. This is obvious from the 
facts that the sign of k(y) is opposite to that of gn if lgnl 2 i, 
since (E2sat(y,-l) + ...  + Ensat(yl)l 5 5 + E  < ~ 1 ~ ~ 1 ,  
and that $y: ( t )  5 --;E if Iyn(t)I 2 i. So, after a finite time, 
sat(yn) will be equal to yn, and the expression for IC(y) gives 

(6.5) 

Next, we consider the equation for &- l .  From (6.5), it follows 
that, after a finite time, this equation has the form 

- Psa t (y1 ) .  

k(y) = -cyn - E2sat(yn-1) - ...  - Psa t (y1 ) .  

yn-l = -E2sat(yn-l) - 

With an analysis similar to that done for yn, we conclude that 
the coordinate yn-l (t) will stay in the interval (- i, $) after 
a finite time, and then k(y) will be given by the expression 

- Psat(y1). k(g) = -qn - ~ ~ y , - l -  ~ ~ s a t ( y , - z )  - . 

Continuing in this way, we see that after a finite time k(y) 
becomes linear in all the coordinates of y, and is given by 

E n Y l .  (6.6) k(y) = -€yn - E yn-l - . . . - 2 

It is clear that the closed-loop system of (6.3) with the feedback 
U = k(y) given in (6.6) is asymptotically stable. So the proof 

In Section V we described how to find the linear transforma- 
tion that puts (6.1) in the form (6.3). We now develop another 
method to get the transformation for multiple integrators, 
which will also allow us to illustrate the stabilization of 
multiple integrators by means of a concrete systems diagram. 

Consider the nth order integrator (6.1). Let E > 0. Define 
linear functions f1, fz, . . . , f n  as follows 

is complete. 0 

fl(S1) = 31, 

fi(S1,SZ) = Efl(S1) + fl(SZ), 

Fig. 3. The design of stabilizing feedback for multiple integrators. 

Then the change of coordinates (21, . . . , x,) + (VI, . . . , yn) 
in R" given by 

Yn = fl(Xn),  

Yn-1 = fz(GL-1, xn), 

(6.7) 
Y l  = f n ( x l , x z r . . . , x n )  

puts (6.1) in the form (6.3). 
Indeed, the definition of y k  implies that yk - y k + l  = 

~ ~ - ' f ~ - t ( x k ,  ..., zn-l) for IC = 1,2 ,  ..., n - 1. Since 
fn--k(s1,. . . , s,-k) is a linear function, it follows that 
is the coefficient of si in f n - k .  Notice that & = xi+l 
for i = l , 2 , . .  .,n - 1, so we end up with the equality 
fn--lc(xk,...,xn-l) = fn-k(xk+l, . . . lxn).  Therefore 

$k - $k+l = En-'&+1, k = 1 ,2 ,  . . . n - 1. (6.8) 

Adding (6.8) for k = i, i + 1,. . . , n - 1, we conclude that 

yi - = 'Y i+ l  + r i - l y z + 2  + . ' .  + EYn 

which is the ith equation in (6.3). 
The change of coordinates given in (6.7) leads to the design 

of a bounded stabilizing feedback for multiple integrators 
shown in Fig. 3. 

VII. OUTPUT FEEDBACK 

We now tum to the problem of dynamic output feedback 
stabilization. 

Suppose we have a system 5 = Ax+ BU with an Rp-valued 
output y = Cx. We assume that ( A ,  B) is stabilizable, (A, C) 
is detectable, and A has no unstable eigenvalues. 

We proceed as in the classical case of stabilization by a 
linear feedback. That is, we consider the composite system 

i=AZ+BBZL, 
y = cx, 
Z = AZ + BU + L(Y - C Z ) ,  
'11 = k ( z )  

(7.1) 

where IC is any stabilizing feedback for the system i = 
A z  + Bu such that the closed-loop system is SISS,  and L 
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" + - p + - J M  =3 " J  '1 

Fig. 4. Cascaded system. 

is any matrix such that all the eigenvalues of A - LC have 
negative real parts. (Such a matrix exists because ( A , C )  is 
detectable.) As usual, it is better to analyze this system by 
using as state variables the coordinates z and e = z - x 
(which is interpreted as observation error). In these variables, 
the equations are 

d = ( A  - LC)e, 
i = Az + Bk(z)  - LCe. (7.2) 

We claim that the origin of this system is a globally asymp- 
totically stable equilibrium. Local asymptotic stability is im- 
mediate because (7.2) has the form of a cascade of two 
asymptotically stable subsystems. So we only need to show 
that all trajectories approach the origin. For this, it is enough 
to show that every solution of i = Az + Bk(z)  - LCe(t) 
for which e ( t )  + 0 as t -+ 00 must converge to zero. The 
SISS property insures the desired result. Summarizing, we 
have established the following theorem. 
Theorem 7.2: Consider a linear system of the form x = 

Ax + Bu, y = Cx, such that A has no unstable eigenvalues, 
( A , B )  is stabilizable and ( A , C )  is detectable. Then, for 
any observer system i = Az + Bu + L(y - C z ) ,  and 
for any stabilizing feedback U + k(z) given by Theorem 
2.3, it follows that the composite system k = Ax + Bk(z) ,  
i = Az + Bk(z)  + L(Cx - Cz)  has the origin as a globally 

We remark that, since the stabilizing feedback given in this 
paper causes the resulting closed-loop system to have the 
SISS property, Theorem 7.1 holds for any linear observer. 
In [12], the same problem was also considered, but the result 
in E121 required that all observer poles have real part less than 
a certain margin. So Theorem 7.1 answers a question posed 
in [12], namely, whether an arbitrary linear observer can be 
used for stabilization. 

asymptotically stable equilibrium. 0 

m. AN APPLICATION TO CASCADED SYSTEMS 

We now show how to extend our result to other classes 
of systems, such as those obtained by having a saturation 
nonlinearity in a forward path of integrators, as in Fig. 4. 
Consider an (n + m)-dimensional system in the following 
partitioned form 

m 

x = Ax + biai(zi), i = U (8.1) 
i=l 

where x E R", z = (zl,.e.,zm)' E R", U = 
(ul,-.-,um)' E IR", and all ai:R t IR are globally 
Lipschitz functions that are strictly monotonic near zero and 
satisfy ai(0) = 0. Let B denote (bl,-..,bm). Assume that 
(A, B )  is stabilizable and A has no unstable eigenvalues. We 

The stabilizability assertion follows trivially. In fact, the 
assumptions on the ai's, imply that there is an E > 0 such that 
all ai's are strictly monotonic on the interval ( - E ,  E ) .  From 
Theorem 2.3 we know that there exists an analytic feedback 
ZI = k(z) = (&(x),...,k,(x))', where Jki(x)l < E for 
x E IR", which SISSL- stabilizes the system x = Ax+Bv. If 
we regard z as a control in the first equation of (8.1), then the 
feedback z = k ( x )  = (a~'(k1(x)),...,a~'(km(x)))' gives 
rise to a SISSL-stable closed-loop system 

m 

x = Ax + b;a;(ki(x)) (8.2) 
i=l 

where ki = a$:'(ki(x)). Using the standard "backstepping" 
(or "adding an integrator") construction (see, e.g., Lemma 
4.8.3 in [11]), we conclude that (8.1) is stabilizable. 

To build a stabilizer for (8.1) using backstepping, however, 
we would first have to find a Lyapunov function for (8.2). 
Since this is usually hard to do, it is desirable to be able to 
build a stabilizer without using Lyapunov functions. We now 
show how this can be done. 

Since (8.2) is SISSL and the ai's are globally Lipschitz, 
the control system 

m 

X = f(x, U )  = Ax + b;~i(ki(x) + vi) (8.3) 
i=l 

is SISSL as well. Let w = z - k ( z ) .  Then, in the coordinates 
(x', w')' in the state space, the equations of System (8.1) are 

m 

X = AX + biai(ki(x) + wi), 
i=l 

m 

Ax + bia;(ki(x) + wi) 
i=l 

Now let 
m 

u = -w + V k ( x )  * (4. + C b i a i ( k i ( x )  + W i )  

) ( i=l 

i=l 
m 

= k(x) - z + V k ( x )  * Ax + biai(zi) . (8.5) 

Then the resulting closed-loop system for (8.1) becomes 
m 

which is stable because w(t) + 0 as t t 00 and (8.3) is 
SISSL-stable. So (8.5) is a stabilizer for (8.1). 

As an example to illustrate the above procedure, we consider 
the system 

21 = x2, x2 = 23, x3 = tanh(x4), x4 = U (8.6) 

which is of the form shown in Fig. 4. (See also [16], where 
the author considers the case when "tanh" in (8.6) is replaced 
by any function a satisfying a'(0) > 0.) First, we need to find 

claim'that (8.1) is stabilizable and, moreover, if all the ai's 
and their inverses are smooth functions near 0, then there 

ism&,., feedback that stabilizes the triple integrator 

exists a smooth feedback that SISSL-stabilizes (8.1). X I  =x2, x 2  = x 3 ,  E3 = U  (8.7) 
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and has absolute value less than one. To do this, we use the 
transformation 

1 3  1 
8 4  2 Y1 = -21 + - 2 2  + 2 3 ,  

Then (8.7) takes the form 

y2 = - 2 2  + 2 3 ,  9 3  = 2 3 .  

. 1  1 
y1 = - y 2 + - y 3 + u  , yz . = -y3 + U ,  $3 = U .  (8.8) 4 2  2 

Let cp:R 4 R be a smooth increasing function with the - 
if Is[ < For every E > sign(s) if Is1 > 1. 

property that cp(s) = 

0, we define (pE(s)  = E ( P ( ~ ) .  Then it is not difficult to see 
that the feedback 

stabilizes (8.8). Therefore 

1 3  

stabilizes (8.7). Clearly, the magnitude of this feedback is less 
than one. Let k(21,22,23) = t a n h - ’ ( i ( q , ~ , x 3 ) ) .  Then 
from (8.5), we conclude that the feedback 

stabilizes (8.6). U 
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