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ON THE CONTINUITY AND INCREMENTAL-GAIN 
PROPERTIES OF CERTAIN SATURATED LINEAR FEEDBACK 

LOOPS 
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SUMMARY 
This paper discusses various continuity and incremental-gain properties for neutrally stable linear systems 
under linear feedback subject to actuator saturation. The results complement our previous ones, which 
applied to the same class of  problems and provided finite-gain stability. 
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1. INTRODUCTION 

We continue in this paper the study, which we started in Reference 5, of operator stability properties 
for saturated-input linear systems. In the previous paper, we studied feedback systems of the form 

i =ku + B u ( F x +  U )  

Here U denotes a vector of saturation-type functions, each of which satisfies mild technical con- 
ditions that are recalled later (at this point, it suffices to say that all reasonable ‘sigmoidal’ maps such 
as u(x) = tanh(x) and the standard saturation function uo(t) = sign(t) min[ I t I, 1 } are included). The 
matrix A is assumed to be neutrally stable and one uses the standard passivity theory choice of 
feedback F that makes the origin of the unforced closed-loop system i = A x + B a ( F x )  globally 
asymptotically stable. (For instance, if A has all eigenvalues in the imaginary axis and the pair (A, B)  
is controllable, F = -BTP, where P is a positivedefinite mauix satisfying ATP + PA = 0.) 

We proved in Reference 5 that this system is finite-1”-gain stable, that is, the zero-initial state 
operator F , ,  mapping input functions U ( . )  to solutions x ( . )  is a welldefined and bounded operator 
from L,( [0, -), R m )  to L/’([O, -), Rn). The result is valid for each p in the range [l ,  -1. Estimates 
were provided of the operator norms, in particular giving for p = 2 an upper bound expressed in 
terms of the H”-norm of the same input-state map for the system in which the saturation U is not 
present. We also dealt with partially observed states, generalizing the result to the case where an 
observer is inserted in the feedback construction. The assumption of neutral stability is critical: we 
also obtained examples showing that the double integrator cannot be stabilized in this operator sense 
by any linear feedback, conuadicting what may be expected from the fact that such systems are 
globally asymptotically stabilizable in the state-space sense. (Recently, Lin, Saben, and Tee14 
obtained related results, showing in particular that under the restriction that the input signals be 
bounded one can drop the stability assumption in obtaining finite-gain stability. See also References 
7-9 for state-space stabilization of linear systems subject to saturation, under minimal conditions.) 

(C ) 

CCC 1049-8923/95/050413-28 
0 1995 by John Wiley & Sons, Ltd. 

Received 24 January I994 
Revised I September I994 



414 Y. CHITOUR, W. LIU AND E. SONTAG 

Finite-gain stability, studied in the abovementioned papers, means that the ‘energy’ of inputs 
is amplified by a bounded amount when passing through the system. Another property which is 
extremely important in the context of feedback systems analysis is that of incrementally finite 
gain (‘ifg’) stability. In mathematical terms, this latter property is the requirement that the 
operator F,,,, be globally Lipschitz. That is to say, if ymm is the output produced in response to a 
nominal input U,,,,, then a new input U,, + Au produces an output whose energy differs from 
that of ynom by at most a constant multiple of the energy of the increment Au. This stronger 
notion measures sensitivity to input perturbations; for differentiable mappings, one would be 
asking that the derivative be bounded. In the context of stability, the usual formulations of the 
small-gain theorem involve ifg stability, because fg stability by itself is not sufficient in order to 
guarantee the existence and uniqueness of signals (‘well-posedness’ ) in a closed-loop system. ’’ 
In the recent work,3 it is shown how to generalize the gap metric, so successful in robustness 
analysis of linear systems, to the context of ifg stability of nonlinear systems. Even stronger 
properties may sometimes be needed; for instance, the work in Reference 2 requires what the 
author of that paper calls ‘differential stability,’ which means that ifg stability holds and FU,/] is 
Frkchet differentiable as well. Motivated by this, we ask here if stronger properties hold for the 
feedback configuration studied in Reference 5. 

Our results can be summarized in informal terms as follows: 

(1) The operator Fo,/, is continuous if p is finite, but is not in general continuous for p = - 
(uniform norm). 

(2) F,,/] is locally Lipschitz under additional assumptions on the saturation (for p finite, a 
sufficient condition is that the components of (I be differentiable near the origin; for 
p = m  one asks in addition that they be differentiable everywhere, with positive 
derivative). A much stronger statement than the local Lipschitz property is established 
which we call ‘semi-global Lipschitz’ - a. incremental gains are shown to depend only 
on the norms of the controls; on the other hand, we also show by counter-example that 
these operators are not generally globally Lipschitz (so ifg stability does not hold). 

(3) Assume that U is continuously differentiable. For p=- ,  we show that Fu,p  is Fr6chet 
differentiable (under the assumption that U‘ is always positive), but this may fail for finite 
p. In the latter case, however, we can prove that directional derivatives always exist. 

The paper is organized as follows. First we review some needed facts from Reference 5 ,  to 
be used in this paper. After that, we introduce our basic definitions and state the main results. 
Proofs of the positive statements are given first, and we close with counterexamples that justify 
the negative results. 

2. PRELIMINARIES 
In order to state our results, we need to first recall some definitions and basic results from 
Reference 5, including those of ‘saturation function’ and finite gain L/’-stability. 

By a saturation function (‘S-function’ for short) we mean any U: R + R which satisfies the 
following properties: 

0 0 is locally Lipschitz and bounded; 
0 ta(t) > Oif t+O;  

0 liminf,,, a > O,limsup,,, < 00; and 
t t 

0 lim infl,+ la(t)l >O. 
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We remark that the locally Lipschitz assumption on U is not really needed in establishing 
Theorem (FG) below. This purpose of this condition is only to guarantee that system (1) in 
Theorem (FG) has uniqueness of solutions for any input U. 

All the interesting saturation functions found in usual systems models, including the standard 
saturation function U,(t )  = sign(t) min( l t l ,  11 as well as the functions arctan(t) and tanh(t) are 
S-functions. 

where each component U ;  is an 
S-function and 

We say that U is an R"-valued S-function if U =  (o1, ..., 

4.4 (01 (4 ), * * 9 un(xJT 

for x = (x,, . . . , x,JT E R ". (Here we use (. . . )T to denote the transpose of the vector (. . .).) 

system 
We now turn to the stability definitions. These can be introduced for any initialized control 

i= f (x ,u ) ,  x ( O ) = O  (Cl 
The state x and the control U take values in R"  and R" respectively. With appropriate 
assumptions on f (for example f :  R" x R"+ R" is globally Lipschitz with respect to its 
argument &U)), the solution x of (E) corresponding to any input U E  Lp([O,-), R") for 
1 Q p Q - is well defined for all t E  [0, -). When defined for all te [0, -), we denote this 
solution x ,  which is a priori just a locally absolutely continuous (1.a.c. for short) function, as 

In general, for any 1 c p c - and any vector function x E Lp( [0, m), R"), we'll consider the 
F&). 

standard Lp-norm 

(For vectors in R" we use Euclidean norm 

We use the same notation for matrices, that is, IISII is the Frobenius norm equal to the 
square root of the sum of squares of entries, i.e. IISll =Tr(SST)"*, where Tr denotes 
trace.) 

We define the L'-gain of a system (E) as the norm of the operator F,, that maps inputs to 
solutions, assuming a zero initial state. That is, the Lp-gain of (C), to be denoted by G,, is the 
infimum (possibly +-) of the numbers M so that 

II F,,,(u) II LP M II U II LP 

for all U E  Lp([O,u), Rm).  (If F , , , ( u )  is undefined for any U E  Lp([O,-), R"), we also write 
G ,  = -.) When this number is finite, we say that the operator is finite gain L"-stabfe (in more 
usual mathematical terms, it is a bounded operator). 

for a specific class 
of input-saturated linear systems. We quote this result next. 

The main result in Reference 5 concerns the finiteness of the LY-gain of 



416 Y. CHITOUR, W. LIU AND E. SONTAG 

Theorem ( F G )  

that A is neutrally stable. Then there exists an m x n matrix F such that the system 
Let A ,  B be 11 x 1 1 ,  11 x m matrices respectively and let U be an R“-valued S-function. Assume 

R=A.X+BO(Fx+U) 
x(0) = 0 

is finite gain L’-stable for all 1 s p d 00. 

By neutral stability, we mean as usual that the origin of the differential equation 1 = Ax is stable 
in the sense of Lyapunov (not necessarily asymptotically stable, of course; otherwise the result 
would be trivial from linear systems theory); equivalently, there is a symmetric positive definite 
matrix Q which provides a solution of the Lyapunov matrix inequality ATQ + QA d 0. 

The results in this paper will refer to the specific feedback F that is found in the proof of the 
above-cited result. In order to understand the choice of F (which is the most natural choice of 
feedback to use in this context), we need to recall the preliminary steps in the proof of 
Theorem (FG). The first step consisted of the observation that one can assume without loss of 
generality that the pair ( A , B )  is controllable, because the trajectories lie in the controllability 
space R ( A ,  B). Next we applied a change of basis to reduce A to the block-diagonal form 

(: :,) 
where A ,  is an r x r Hurwitz matrix and A, is an ( n  - r )  x (n - r )  skew-symmetric matrix. 
(Recall that A is assumed to be neutrally stable.) Thus one only needs to obtain finite gain L’- 
stability of the subsystem corresponding to A,; then feeding back a function of these variables 
does not affect the finite gain LP-stability of the first subsystem. Since A, is skew-symmetric and 
the pair (A,, B,) is controllable, the non-saturated closed-loop matrix A g A 2  - B2BT is Hurwitz. 
Therefore, the proof of Theorem (FG) is reduced to showing that the following system: 

R =h + B U ( - B ~ X  + U ) ,  X ( O )  = o (3) 

is finite gain L,’-stable for every 1 d p S m, provided that A is skew-symmetric and A = A - BBT 
is Hurwitz. Thus, except for two coordinate changes (first to restrict to the controllability space 
and then to exhibit the above block structure), the F used in the proof of Theorem (FG) is 
F = -BT. This is the standard choice of feedback suggested by the passivity approach to control 
for a discussion and references see Reference 5 .  

(For completeness, we point out that, after these trivial preliminary steps, the proof of 
Theorem (FG) then centers upon the hard part, which consists of finding a suitable ‘storage 
function’ V ,  and establishing for it a ‘dissipation inequality’of the form 

for x = F , , ( u ) ,  where now (E) is the system in equation (1) and K, ,>O is some constant. 
Surprisingly, a nonsmooth V,, is needed.) 

In conclusion, we will denote by 
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the (nonlinear) input/state operator F,,, for system (1) when the feedback F is chosen as in the 
above discussion, for any fixed U and any fixed p. 

3. REGULARITY PROPERTIES OF F,,,, 

Now we can turn to the precise statement of the regularity properties of F,,/, such as continuity, 
incremental gains, differentiability, and so on, which we will study in this paper. 

3.1. Statement of the incremental gain results 

Recall that a X-function g: R +  + R' is one that is continuous, strictly increasing, and satisfies 
g (0) = 0. 

Definition 1 

if 
The operator F,,/, satisfies the generalized incremental gain property (with respect to L") 

(GIG,) there exists a %function g such that for all U, v in L/'([O, -), R"), 

It is obvious that F,,, satisfies the GIG, property if and only if it is uniformly continuous, i.e. 
iff for any given E > O ,  there exists a 6>0 such that IIFu,,,(u)-F,,,,(v)JJL~s E whenever 
11 U - v I I  L~ s 6. Note that if g is linear, this is the standard 'finite incremental gain' property, or 
in mathematical terms, a global Lipschitz property. 

It turns out that GIG,, is a very strong property. For most S-functions, even smooth ones, the 
operator F,,/, does not satisfy the GIG, property. For general S-functions U ,  F , ,  even fails to 
be continuous. However, for restricted classes of S-functions, more precisely the classes % (0) 

and % I * +  defined below, F,,/, satisfies the following SLP,, property (semiglobal Lipschitz 
property): 

(SLP,,) there exist X-function g and a constant c > 0 so that, for all U ,  v in Lp( [0, -), R'"), 

I I  F,,, ,(v) - Fu,p(411 L P  s (c + g(ll U II LP)) II v - U I I  LP 

This property clearly implies the continuity of F 

differentiable at 0 and satisfy 
The class % (0) is defined as the class of functions U: R R which are globally Lipschitz, 

An RI"-valued S-function U belongs to % (0) if each of its components belongs to % (0). 

The class % I * +  is defined as the class of functions U :  R+R which are continuously 
differentiable and satisfy that (T' is everywhere positive. An R "-valued S-function U belongs to 
% I * +  if each of its components belongs to % I * + .  

The main results of this paper are summarized in the next theorem. 
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Theorem I 

Let U be an R"-valued S-function and let 1 d p s w. We have 

(A) For each 1 s y < OQ, the following conclusions hold: 
(i) F,,,, is continuous, but in general does not satisfy the SLP, property. 

(ii) Assume that U belongs to Then F,,p satisfies SLP,. 
(iii) Even for smooth nondecreasing saturation functions U, F,,!, does not in general 

satisfy the GIG,] property. 
(B) For y = 00, the following conclusions hold: 

(i') In general, F,,, is not continuous. 
(ii') Assume that each component of U is nondecreasing. Then for n = 1, Fu,- is 

globally Lipschitz. If n > 1, even for m = 1 and U nondecreasing, F , ,  need not be 
continuous. 

(iii') Assume that U belongs to % I * + .  Then F,,, satisfies SLP,. 
(iv') Even for a smooth U E % I . + ,  Fu,- need not satisfy the GIG, property. 

3.2. Statement of the differentiability results 

We can also discuss the differentiability properties of F,,/,. First if CI is an 08"-valued S- 
function, we say that U is of class '&I if each component of U is of class % I ,  i.e. continuously 
differentiable. We have: 

Theorem 2 

1. For p = - and U E % I * ' ,  F , ,  is Frechet-differentiable. 
2. For 1 6 p < 00 and U of class % I  and globally Lipschitz, Fu,p  is G2teaux-differentiable. 

We will give an example (Example 6 in Section 5 )  to show that Fu,l need not be Fr6chet- 
differentiable even for smooth 0. 

If U E  % ' * +  and U, U E  L"([O,w),  R'"), we will use D F , , ( u )  v to denote the differential of 
F,,- at U applied to U .  For each 1 d p < -  and U of class % I ,  we use D,F, , / l (u)  to denote the 
Giteaux-differential of F , ,  at UE L p ( [ O , - ) ,  R m )  in the direction U .  It is well known that both 
DFu,,(u) v and DvF, , I l (u)  are given by the linearization of (E) along the trajectory x of (E) 
corresponding to U (cf. Reference 6). In other words, D F , , ( u )  v and D,F,,/l(u) are the 
respective solutions of the following time-varying initialized systems 

( Z * ( p ,  u .u ) )  ~ = A 5 + B ~ ' ( F 5 + u ) ( F 5 + v ) ,  5 ( 0 ) = 0  (6) 

where F is the m x n matrix given in the proof of Theorem (FG) and if CI= (ul, ..., U,,,), 
Z E  R'", then u'(z) =diag(u;(z,), ..., ujn(zm)). 

4. MAIN PROOFS 

Now we prove the positive statements in Theorem 1 and Theorem 2. The negative results are 
covered in the next section. 

When the context is clear, for simplicity, we will drop the indices U, p or U, w and simply 
write F for F,,,] or F,,,, and use D,F to denote D , F , , ( u )  for 1 ay<=. 
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4.1. Proof of (ii') 
When 11 = 1, system (1) is written as 

i = - a x  + Bu(-BTx  + U) (E,) x(0) = 0 
where A =-as 0, B = ( b ,  , . . . , b,,,) is a row vector, and u= (a,, . . . , u,,,)~. 

Let 

where 

Letx=F(u) . I f  visalsoinL"([O,-), [W"),definey=F(v), z=F(v ) -F (u )and  h = v - U .  

D ( t )  = diag(d,(t), ..., d,,,(t)) 

and d,( t )  = 1 if -b,z(t) + h,(t) = 0. Since each 0; is nondecreasing, di ( t )80  a.e. 
Now z satisfies 

i ( t )  = -az( t )  - B D ( ~ ) B D B ~ z ( ~ )  + B D ( t ) h ( t )  
z(0) = 0 

First assume that a > 0. Let d ( t )  = BD(t)BT.  Then d ( t )  2 0. Let 

t ( t )  = J: (a + d(s)) d~ 

Then z is strictly increasing on [0, w), and onto [0, w). Let Z ( s )  = z(t) and 

For each 0 6 a < -, let 

c, = sur 

i =  1 

Note that 0 c C, s 00. Now for a > 0, we have 11 H 11 L-IO,..) d Call h 11 L-. Therefore 

II F ( v )  - F ( u )  II L- = II z II L - s  cull 2, - U II L' 

This is also true for a=O because C,sCo and the trajectories of (E,), for fixed U, v, 
converge to the trajectories of (Eo), uniformly on compact intervals as a + 0 +. 
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In the last section, we will show (Example 7) that the above constant C, is in general the best 
possible Lipschitz constant. 

4.2.  Proof of (iii') 

First observe that from the sketch of the proof of Theorem (FG) and the definition of 
F , ,  we may without loss of generality assume that A is skew-symmetric and ( A , B )  is 
controllable. 

Take now any two U, v in L"([O, m), R"'), where 1 s p s  00. We may also assume without loss 
of generality, when proving both of statements (ii) and (iii') on SLP,,, that 

(7) 

Indeed, assume that for any constant C it would be the case that 11 v - U ( 1  L~~ > C 11 U 11 L ~ .  Then, 
using finite gain L"-stability, we have 

I b -  U 1lr.s II U l l L P  

l I E J , / > ( ' )  - E J . / > ( U ) l l L P  llFO,/>(v)l\LP + ~ ~ & , / > ( U ) ~ ~ ~ P  

d GJII v l lp  + II U lip) GJllv - U l lLP + 2 II U I ILP)  

Thus the desired result holds and there would be nothing more to prove. 
Since A is skew-symmetric, in this case system (1) is written as 

i =Ax +Ba(-BTx + U) 
x(0) = 0 

We will show that there exists a function K: R +  +R+ such that for any two functions 
U , V E  L-([O,m),R"),wehave 

(8) 
Once this is proved, the conclusion of (iii') would follow trivially, as follows. Consider the 
function 

II F ( u )  - F(v)ll L' K(ll U II L'Nl U - v II L" 

g(r) = sup K ( S )  - K(0) 
0s ss r 

Then g(0) = 0 and g is increasing. Clearly we can take a %-function g such that g ( r )  d g ( r )  for 
all T E  R,. Then we have 

II F ( u )  - FWll L' (W) + g(ll U II L-))ll U - II L" 
as desired. Now we show (8). Let U, V E  L"([O,m), Rm). Let h = v -U, x = F ( u ) ,  y=F(v) ,  

i = A z  + B (  a(-BTy + v) - a(-BTx + U) 
and z = y - x. We assume that (7) holds for U ,  v. Then z is the solution of 

(9) z (0 )  = 0 
Write 

i= (El ,  ... ,Sm)T=BTX 
j =  (fl ,  . . . , j m ) T =  BTy 
z =  (E,, ..., Zm)T=BTz 
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For each r E [0, -), 1 d i d  m, by the mean-value theorem, there exists a 

E i ( t ) E  [min(fi(t) + u;(t ) ,  j j i ( r )  + vi(t)) ,  max{f;(t) + U;(?), -yi(t) + v,(r))]  

ai(-jjj(t) + v i ( t ) )  - aj(-fi(r) + u; ( t ) )  = a ; ( ~ i ( r ) ) ( - T i ( r )  + h,(t)) 

such that 

Let 

d;( t )=a:(E;( t ) ) ,  
D(t)=diag(d,(t) ,  a ' . ,  d,"(t)) 

for i =  1, ..., m 

We may assume that each di ( t )  is a measurable function, since whenever Z i ( t ) + h i ( r )  it is a 
quotient of two measurable functions and if r , ( t )  = h, ( t )  any value can be chosen. Then (9) can 
be written as 

i ( t ) )  = Az(t) - B D ( t ) ( B T z ( t )  - h ( t ) )  
z(0)) = 0 

For r>O, let I - Z(r) = 3(11 B 11 G, + 1)r. Using (7) and the finite gain L"-stability, we have 

IEi(t)l dmax( I - ~ i ( t ) +  vj(t)l,l-ii(t)+ui(t)lJ 

d I Y ; ( t )  + v;(t)  I + I - - f i ( t )  + U;(?) I 
c II II L" + II 21 II L" + I I  f II L" + I I  U II L" e ( II U II L") 

For each r > 0, let 
m(r) = min inf o,!(E) 

M(r)  = max sup o,!(E) 

I i m E €  [-e(r).e(r)] 

1 c i c m fE [-&)&)I 

Then we get 

0 < m(ll u II L-) c di(t) c M(ll u II L-)<-  

(Note that the positivity of m(llu and the finiteness of M(II U [ I L - )  follow from the 
assumption that QE %'*+.) Now the existence of K: R, + R +  such that (8) holds follows from 
the next lemma. (We state the lemma for arbitrary p, not just p = -, since it will be used again 
later. 

Lemma I 

Let A be an n x n skew-symmetric matrix and B an n x m matrix. Assume that A = A - BBT is 
Hurwitz. Let D ( t )  be an m x m matrix with bounded measurable entries. Assume that there 
exists a constant a > 0 such that 

D,(r) 4 D ( t )  + DT( t )  a d for almost all c in [O, +-) (1 1) 

Then the following initialized system 

i = ( A  - BD ( t )BT)x  + U 
x ( 0 )  = 0 

where U E L"( [0, +a), Rn) ,  is finite gain L"-stable, and the Lp-gain depends only on p ,  a, A, B ,  
and b=SUP,. [O.")II D(t)ll. 
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This lemma has been given in Reference 5 .  For the sake of completeness, we enclose the proof 
here. 

Proof of Lemma I. Fix a 1 < p < - Since A is Hurwitz, there exists a differentiable function 
V,: R“ + R + such that for all x E R“, we have 

(1) q,ll XII ’S v/,(x)~b/,llxIIp 
(2) I I  q ( x > _ l l  6 C/,Il x IIp-I 
(3) D V , ( x ) h s  - 1 1  x 111’ 

where a/,, b!,, cI, are some positive constants. We can choose V, so that lim supp+,+ c,, = c, < w. 

Forany 1 a y < = ,  let 

2k/,(b + llB Ill’ a/, = a 
For 1 < p < w ,  let 
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Since v2(x) a <A2/2)llxll *, we end up with 

Thus the proof of (iii‘) is completed. It remains to show that the positive parts of (i) and (ii) 
hold. Let 1 d y < -. 

4.3. Proof of (i) 

Let us fix a U in L”([O,-), RIn). To prove the continuity of F, it is enough to show that for 
any sequence (uJ)m=, in LI’([O, -), RI“) such that limi +- []U’- U 11 ,P =0, then 
lim, IIF(u’)-F(u)I( ,P=O. Let uj and U be functions in LP([O, - ) ,  R m )  such that 
11 U’ - U 11 ,P +O as j + - .  Let x = F ( u )  and x’ = F(d). For any T > O  and j >  0, we have 

11 xi - x ]/’Ip G JOT 11 d ( s )  - x(s)ll“ ds + 2” 1; 11 x’(s) - x(s)ll’ ds + 2” J; 11 x’(s)ll” ds 

Recalling ( 4 )  and integrating it from T to - we have 

s,” 11 d(s) l l ”  ds ‘ YJ (x’(T)) + J,” 11 u’(s)ll” ds 

‘ Y J  (”(T)) + 2”Kp(11 ‘J - l l fP + 11 IIfPITp,)) 

Next we observe that x ( t )  +O as t +-. (This has been remarked in Reference 5 in a similar 
context. We only need to consider pj(t)= x?( t )  for i =  1, ..., m. Then we know that pi is 
integrable on [0, -). It is easily verified by a direct computation that qi is also in L/’ on [0, -). 
Therefore pj(t) +O as t + - as claimed.) 

Fix an E > 0. There exists T > 0 such that 

2’’(!; 11 x(s)ll’ ds + 2b(x(T)))  4“Kp 11 u II;q,,, ‘ E/2 

For the fixed T, it can be proved that the xi  converge uniformly to x on [0, T]. Therefore there 
exists a J >  0 such that, if j ”  J, V,’(xj(T)) s 2V,,(x(T)) and 

IoT IIx’(s) - x(s)ll’ ds + 4”~Jl U’ - U 11‘1. s ~ / 2  

Therefore, when jaJ ,  we have l l x j -  x l l f ~ s  E. 

4.4. Proof of (ii) 

controllable. 

matrix 

As in the proof of (iii’), we again assume that A is skew-symmetric and ( A , B )  is 

Assume that a= (a,, ..., aJT. Since A is skew-symmetric and ( A ,  B )  is controllable. The 
= A-BDBT is Hurwitz, where b = diag(a; (0), . . . , ak(0)). Let P > 0 satisfy 

Pli + ATP = -I (14) 
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Let A,,, and Amin be respectively the largest and smallest eigenvalue of P and let 

1 

I1 B II I1 PB II B =  

Since U belongs to % (,,), there exists an a > 0 such that, for I sl d a, I tl d a and t # s: 

Fix U and v in L”([O,-),  Rm) for which (7) holds. As in the proof of (iii’), letting x = F ( u )  
and y = F (  v ) ,  then x ,  y satisfy 

A? = Ax + Ba(-BTx + U) 
3 =Ay + Ba(-BTy + v )  

x ( 0 )  = y(0) = 0 

Write z = y - x, h = v - U and let Zi, j j ; ,  .fi denote respectively the ith component of BTx, BTy, 
BTz. We have 

i = A z  +BD(t ) ( -BTz  + h )  
z(0) = 0 

where 

D(t)  9 diag(d,(t), . . ., d,(t)) 

u;(-j;(r) + V;( f ) )  - a(-&(t) + U&)) 

-z;.(t) + h(t) 
G(r) p 

(If f i ( t ) -  h,(r)=O we just let d , ( t )=  ai(O).) Let K>O be a Lipschitz constant for a (more 
precisely, let K be a Lipschitz constant for each component of a). Then IIdjllLpsK. So 
I l ~ ( t ) l l  c m. 

Let 
m 

E = U It I I dj(t) - a;(O)I > B )  
i -  1 

Clearly 

Therefore, by Chebyshev’s inequality we get 

I E l ~ ~ ( I I U I I G +  IIvllb) 
for some constant d > 0 independent of U and v. Noticing (7) we have I E I s C 11 U 11 fp ,  where 
C > 0 is a constant independent of U, v. 

If we let V(z) = zTPz for Z E  R”, where P is defined in (14), we get along the trajectories of 
(15): 

V(z(t)) = -Ilz(r)ll* - ~ z ( ~ ) ~ P B [ ( D ( ~ )  - b)BTz(r) - ~ ( t ) h ( t ) ]  
c - [ ~ - ~ I I B I I  IIp~tt IID(t)-DII I I I z ( t ) I I 2 + 2 ~ I p ~ I I  IIz(t)tI Ith(t)tI 
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Therefore, along the trajectories of ( 1 3 ,  V satisfies the differential inequality 

V ( z ( r ) )  c 2 ~ ( t ) ~ ( z ( t ) )  + 2~,vl '~(z( t ) ) l l  h(t)ll 

V(0)  = 0 

where 

C, i f t € E  
-C, i f t  E E 

A( t )  = 

and the constants C, , C2 and C, are respectively equal to 

Let A(t) =jhA(s) ds. From (16), if W(r)  = e-2"(')V(z(t)), we obtain 

W (  t )  s 2C I W1I2 (t)e-"") 11 h ( t )  11 
and then 

But for Z E  R", V"2(z)aA:nllzII, and if tas, A ( t ) - A ( s ) s ( C 2 + C 3 ) 1 E I  -C,( t -s) .  
Therefore, we have 

where 

We conclude from the previous inequality that 

II ~ l l L ~ ~ ~ ~ l l ~ l l L ~ ~ l l  llL. 
for some r( 11 ull p )  > 0. 

4.5. Proof of Theorem 2, Parr 1 

Again we may assume that ( A ,  B )  is controllable. We first show conclusion 1 under the extra 
assumption that A is skew-symmetric. 

Let U, ~ V E  Lm([O, =), R'"), and let DF,,,(u) v be the solution of (6). For simplicity, we write 
F for F,,,. Let x = F ( u ) ,  y = F ( v )  and w = F ( v ) -  F ( u )  - DF(u) (v - U). Assume now that U is 
fixed. We want to show that 

II w II L- = 0 ( II - U II L-)  as II v - II L- + 0. 
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Let h = u - U and z = y  - x .  Then from TheoEm 1 part (iii') we know that IIzIIL-c C(ll ~ l l ~ - ) 1 1 1 z 1 1 ~ -  
for some constant C( 11 ull L-) > 0. Let 2 = BTx, 7 = BTy and 2'= BTz. Again by the mean-value theorem, 
for each i, there exists a 

E ; ( ~ ) E  [min(-ii(t)+ u;(t), -J i ( t )+  uj(t)],max(--fj(t)+ u,(t), -j j;(t)+ u , ( t ) ) l  

such that 

Since II-BTx+u(IL- is finite and U is in ( & I * + ,  there exist O c a s  b e -  such that 
ul c a' ( -BTx( t )  + u(t)) c bl a.e. in [0, -). Applying Lemma 1, we have 

IlwllL-G G"p?ll II[D - a' ( -BTX+U)](BTZ-h) l lL-  
G"11B11 [al l  Ull L-)  1P11 + 1 I) llD - a'(-BTx + U>ll L"II hll L- (19) 

where G.. is the L"-gain of the system w= [ ( A  - Ba'(-BTx(t) + u(t))BT]w + 6 ,  w(0) = 0. By 
definition we have 

~ ( t )  - a'(-BTx(t) + u(t)) 

But we know that 

=diag[a;(E,(t))- u:(--fi(t)+ ~ i ( ( t ) ) ,  -..) &(Em(t))- u Z ( - f m ( t ) +  u,(t))l 

15;(t)-(-x;(t)+u;(t))l s /2';(t)-h;(t)l c <C(llUll,->+ 1 ) l l ~ l l L "  
If we assume that llhllL-* 1, then lEi(t) l  is bounded. Let M be such that I i j i(t)l  GM, 
I Z , ( t ) -  u,(t)l c M if IlhllL-a 1 (M may depend on U). Let K=G,IIBII(C(l(ull,-)Il BII + 1). 
Then by the uniform continuity of a; on [-M,M] we conclude that for any given E >  there 
exists a 0 < 6 c 1 such that 11 D - a' (-BTx + U) 11 L- s E/K if 11 h 11 L- 6 6. So from (19) we conclude 
that IIwllL-c ~ l l h l l ~ - .  

This was all assuming that A was skew-symmetric. Now consider a general (neutrally stable) 
A. Let U, v E L"( [0, -), Rm) with U being fixed. Then we know that under a suitable change of 
coordinates, system (1) can be written as 
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Again let h = v - U ,  z = y  - x, w = z - DF(u)A. Write w = (wl ,  w , ) ~ .  Then the above proof 
implies that 11 w? 11 L- = o( 11 h 11 p) .  We need to show that 

I1 w1 II L’ = 4 II h I I  L’) (21) 
Clearly wI  satisfies 

cl = A l w ,  + B,(a’(E(t))-a’(-Bfx,(t) + u(t)))(-BTz,( t )  + h ( t ) )  

- B,a’(-B;x,(t) + u(r)B:w,(t) (22) 
where tisdefinedsimilarto (18). Since IIBIz,- h ~ ~ L - ~ ~ ( ~ l u l ~ L - ) ~ ~ h ~ ~ ~ -  for some c(II u l l ~ - ) > O ,  
A ,  is Hurwitz, lla’(5)- a ‘ ( - B T x 2 +  u)l lL-=o(l) ,  and IIB,a‘(-B;xz+ u)B;w,ll =o(llhIIL-), 
(22) implies that (21) holds too. This finishes the first part of Theorem 2. 

4.6. Proof of Theorem 2 ,  Part 2 

Let 1 b y < -  and U ,  U E  L”([O, -), R”’). As in establishing Part 1 ,  we will first show 
conclusion 2 under the assumption that A is skew-symmetric. Let Y be a real number such that 
0 c I Y I  G 1. Write 

(23) x = F(u), y” = F(u + vz)), Z” = - and wv = zv - D,F(u) 

where D,F(u)  is the solution of (6). We have to show that lim,,+l 11 w,II L~ = 0. In the sequel, C j  
will denote positive constants depending on A ,  B ,  a,  U ,  v and p .  

Yv - x 
V 

Now z ,  satisfies 

i = AZ + BD,(t)  (-BTz + v( t ) )  

D V ( 0  = diag[(a;(Ev,l(~)), o a - 9  al(Ev.,(t))l 

a i ( - j j v , i ( t )  + ~ i ( t )  + w i ( t ) )  - ai(--fj(t) + ui( t ) )  = 4 ( E v , i ( t ) ) ( - j v , j ( t )  + f i ( t )  + vvi(t))  

(24) 

with 

where the E , , ;  satisfy 

Exactly by the same proof as in part (ii) of Theorem 1 (cf. (17)), we can prove that there exist 
constants C,, C2 > 0 (independent of Y E  [ - 1,1]) such that 

11 zv(t)ll c cI 1; ec2(.r-f)ll v(s)l~ 

Let g ( t )  = C, 
can be written as 

eC2(s-f)ll v(s)ll ds. Then IlgllL4 is finite for any p s  4s”. The above inequality 

II z,(t)II g ( t )  (25) 

(26) 

for all t E [0, -). So 11 z,ll ,-c 11 g 11 L-. By the definition of z ,  we have 

II Y Y - XI1 L’ II g I I  L’I 4 
Let D = diag(a:(O), . . ., &(O)). Let A = A  - BDBT. Then A is Hurwitz. Let P > 0 satisfy 

PA+ATP=-I 

Define e l  P 1/(4&IIBII I(PBI1). Let E be such that O >  EG c l .  We show that I I w , I ( ~ P G  E if v is 
small enough. 
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Writei=BTx. Forany constant M > O ,  let HM=UZ1 { t l  Iax-i(t)-uj(r)(~M}.Then weknow 

(27 )  

that there exists C3 > O  such that [HMI d C3/Mp.  Let’s fix an M >  1 large enough such that 

SHH 11 zv(t)ll” dr c &(cf. (25)) 

By the continuity of the a: there exists 0 < E’ s 1 / 2  such that for i = 1, . . . , m 
I U X E )  - a:(tt)l< E (29) 

if 5,711~ [ - 2 M , 2 M ] a n d  ( [ - q l > ~ ’ .  
Let E ; =  { tl I i i ( t )  - u,(r)l > E ’ ]  and E= U:, E? By Chebyshev’s inequality we have 

I E 1 d C4 for some constant C4>0. 
Write j v =  ..., j v , m ) T =  BTy,. Define 

m 

G,, = U { t  I bvTyj(t) - &(t) - vxj(t)l > E ‘ )  

i=  1 

Noticing (26), we have for I v I small enough 
rn 

G , L U  
i -  1 

Therefore by Chebyshev’s inequality again w have 
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Similar to the proof of part (ii) in Theorem1 we obtain an inequality similar to (17), namely 

for some constants C8, C,, > 0. Using (34) and the definition of A?, there exists Clo> 0 such that 

Noticing (25), (27) and (28) we get that 

II wv I I ~ P  d cin(Ep II B ~ Z ~  - V I I ~ P  + ~ " ( I I  11' + 1 ) ~  + 2'' JG, (IIB IIpgp(r> + II V(~>II'? dt) 

Now from (30) we get that the last integral in the right-hand side of the above inequality goes to 
0 as Y + 0. Since E is arbitrary, we have lim,+,, 11 w,ll L~ = 0. 

Assume now that A is not skew-symmetric. Let 1 c p < - ,  U, ZIE Lp([O,-) ,  Rm) and for 
O <  I vI s 1 use the functions introduced in (23). Write w,= ( w , , ~ ,  w , , , ) ~ .  Then we need to show 
that 

As in (22), w,,, satisfies 

"it,,, = Alwuv.1 + BI[DV,,(t) - a'(-B:x,(t)  + ~ ~ ~ ~ ~ l ~ - ~ ; ~ v . z ~ ~ ~  + v( t ) )  
- BI(T'(-B;X*(t) + U(t))B;w,, (36) 

where Dv,,(t) is defined in the same manner as D,( t ) ,  with the difference that ZV,; and y,.; are 
now equal respectively to the ith component of B 2 T ~ 2  and B;y,,,. Fix E>O. Then taking into 
account the fact that A ,  is Hurwitz, lim, 11 W , , ~ I I  L~ = 0 and (25), we can get that there exists a 
constant C > 0 independent of Y such that 

From the previous paragraph, the proof of conclusion 2 is now complete. 

5 .  COUNTER-EXAMPLES 
We now turn to the negative statements in Theorem 1. These are established by exhibiting 
counter-examples. More precisely, Examples 1, 2, 3, and 4 below refer respectively to (i'), 
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(ii'), (iv'), and (i), while Example 5 refers to (iii). Finally, Example 6 refers to the fact that 
Fa., need not be Frdchetdifferentiable in general. 

5.1. Fa,- need nor be continuous 

Example I. Consider the one-dimensional initialized control system 
i= - a ( x  + U )  

x(0 )  = 0 (37) 

where the S-function U verifies the following condition: there exists an a>O such that for 
&=il andIrIsa,wehave 

a ( & + r ) = & - t  

Let 

- 1 on [2n, 2n + l), n 3 0 I 1 on (2n + 1,2n + 2) ,  n 3 0 h(t) = 

and x = -  I', a(h(s ) )  ds. Then IlxllL-= 1. Letting u( t )=  h ( t ) - x ( t ) ,  we know that x is the 
solution of (37) corresponding to U .  Clearly 11 u I I  L- = 2. 

For rn > 1, let s, = ae- ,  and 

v,,,(t) = h(r) + s,e' + 1; a(h( t )  + s,,,e') d t  

for O S  t d  m and v,(t) = u( t )  for t >  m. Let ym be the solution of (37) corresponding to v,. If 
we let z ,  = ym - x and h, = v,  - U ,  then on [0, m] we have 

z,(t)  = s,(e'- 1) and h,(t) = s, 

Therefore, IIh,,,llL-=s, and IIz,llL-~s,(em- 1). Since lim,+.. s,=O and IIzm(lL-aa/2 for m 
large enough, F is not continuous at U. 

5.2. Fa,- Need not be continuous even for  nondecreasing U 

using Example 1. However, it is far more complicated to analyse than the preceding one. 
Note that the example that follows could of course also be used to establish (i'), instead of 

Example 2 .  We provide an example in which the input to state operator defined at the very 
end of Section 2, Fw.- (or F) corresponding to the system 

i = A x -  ba,(x, + U )  

x(0)  = 0 

is not continuous. The data are 

A = (i -;), b =  ( y )  
and a, is the standard saturation function. The idea is to argue by contradiction: in a first step, 
we construct an 1.a.c. curve Z ( r )  such that 
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and a bounded input i; in a second step, using the curve Z ( t )  we exhibit another 1.a.c. curve x ( r )  
such that there exists an input U for which 

Now define 
IIUIIL’<-. x = F ( u )  

(39) 
F(u + sh) - F(u) z, = 

S 

and assuming that F is continuous at U, we have lims-,,-, sz, = 0. We show then that for s > 0 
small enough, z,~= 2, which contradicts (38). Therefore, F cannot be continuous at U. 

Let us start by the construction of 2. In the plane ( z , ,  z 2 ) ,  define for t 2  0 the 1.a.c. curve z ( t )  
as follows: 

(a) ~ ( 0 )  = (fi, 0) 
A z +  bz, iflz2( s 1 

ifIz,I> 1 
(b) i= 

Since z T i r  0, 11 z(r ) l l  is nondecreasing and in particular 

Ilz(t)ll> IlZ(0)II =.Iz 
at the times t > O  for which z ( t )  is defined. 

Furthermore, one checks that in fact, the curve z ( t )  is well defined for fro. (The times t so 
that Iz,(t)l = 1 are isolated because for each of them, there exists an open neighbourhood 
( t -  z, t +  z) where li21 >O). 

Now, by writing z ( t )  in polar coordinates, if 
&Zl - i,z* 

z: + zz’ 

i s e s l  I ’  

is the angular velocity, we have for all t r 0, 

2 

The previous remarks imply that there exist two increasing sequences (T,,),*, (T‘:),,>o and two 
positive numbers C,, C2 such that 

(1) Tn=O, T , < T L < T , , ,  for na0; 

- c2 . 
(2) T,’ - T, - n + -  nl13 ’ 

(3) lim,,+- T, , ,  - TL= x; 
(4) 1z21 d 1 on [T, ,  T’,] and 1z21 > 1 on (TL, T,,+l) for naO; 

(6) lim,- &t) = 1. 
( 5 )  I l z (0 l l  , -Clt”3; 

From this construction, we have lim,+ IIz(t)ll = -. Let 
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f(x, 0 = 

Then z is the solution of the system (Eo)  

2 iftE(T,' ,T,+l),IxlI > 2andx2 2 0 
-2 i f E ( T ~ , T , + , ) , I x , I >  2 a n d x 2 c  0 

9n 1 In 
- S  K + l  - T L <  - 
10 10 

Then writing (E,) in polar coordinates gives 

(40) 

Consider the positive constant ro = 15 and the first time to" T ,  such that IIx(to)ll = r(t,) 2 r,,. 
Define also 

1 18 - 1 I s - 
t 

J = -sin Ba,(t(x, t)) ,  

If such ro does not exist then we are done. Otherwise, in the worst case, there exist T' < T" in rno, T n l + , )  such that for re [T', T"] 

xl(T')= -2,~l(T")=2,  I x , ( t ) l ~ 2  and x , ( t ) ~ O  

A direct computation shows that one of the two following cases occurs: 

(1) II N ' n o + I )  II d ro, or 
(2) for n b no, 11 x(T,) I[ is decreasing and 

as long as llxqn)l12 ro 

Therefore, if the n 2 no for which (2) is satisfied are unbounded, we are again done. Otherwise, 
there exists an n, 2 no for which 11 x(Tnl)ll s r,,. Once again, consider the first time t ,  a n, such 
that 

II XQ'nI) = IIxVnI )I1 = r(Tn1) 2 r n  
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If t ,  does not exist, the assertion is proved. Otherwise one shows that IIx( T,,, +,>II d ro and 

By repeating this argument if necessary, it follows that 

11 x ( 1  L- 6 2rl< 00 and 11 L- C 11 x 11 L- + 2 
Furthermore, there exist r;*O and two bounded inputs U, and h ,  such that: 

(i) the solution of 

R = Ax - buo(x2 + U ,  ) 
x ( 0 )  = 0 

reaches x g  in time r; and I x 2 ( r )  + u,(t)l  s 1/2 for t e  [0, r ; ] ;  
(ii) the solution of 

i = A z -  b(z2+ h,) 
z (0 )  = 0 

reaches (fi, 0) in time r,!,. 
Concatenate uI and u,'f(x(t) ,  t) - x,( t ) ,  h ,  and ho to respectively the bounded inputs U and 6. 
For x the solution of 

i = Ax - buo(x2 + U) 
x ( 0 )  = 0 

we get IIxllL-<m. Note that for all rP0, Ix2(t) + u(t)l c 1/2 or I x 2 ( t )  + u(t)l = 2. Then, 2, the 
solution of 

i = A z  - d(t)b(z ,  + h )  
z(0) = 0 

where 

is in fact the solution of 
(E, )  i = AZ - u ; ( x ~  + u)b(z2 + h )  

z ( 0 )  = 0 
where a,!,(.) stands for the derivative of U, with respect to its argument. 

Suppose that F is continuous at U. For 0 c s < 1, define z, by (38) and note that it is the solution of 

z(0) = 0 
Since F is continuous at U, 

Is(zs,2(t) + h(t))l s 1/4 

for s small enough, and then z,  is the solution of ( E 2 )  and then z,=Z. 
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Therefore, for s > O  and small enough, lirn,+ sllz,(t)ll = 00, which contradicts the continuity 
of F at U. 

5.3. Failure of GIG,, even for UE % I * +  

Example 3. The next example serves to show that GIG, does not hold for all OE % I , + .  

Pick any element U of % I * +  (i.e., U is continuously differentiable and U' > O )  such that in 
addition, U is smooth, a(t) = t for t E  [-a,, a,], where ao>O is a positive constant, U" >O on 
(-CO, -ao) and a" c 0 on ( a,, -). Let A and b be as in the previous example. Thus, the system 
that we consider now is essentially the same as in Example 2, with the only difference that 
the standard saturation function U, is now replaced by any U which satisfies the above 
properties. 

If Fo,, = F is the corresponding input-to-state operator, we will prove that for any a, /? > 0, 
there exist U, v in L"( [0, m), W) such that: 

11 v - ull L- Q a and 11 F (  v )  - F( U) 11 L- 3 /? 
The strategy is to construct two 1.a.c. curves z ( t )  and h ( t )  such that 

lim IIz(t)ll= -, Ilhll,- Q a 
I+-  

and then two other 1.a.c. curves x ( t )  and y ( t )  such that: 

(a) y ( t )  - x ( t )  = z ( t )  for t E [0, t;  J where t; is chosen so that 11 z(t ; ) I I  B /?; 
(b) there exist two essentially bounded inputs U, v such that x =  F(u),  y = F(v),  

Consider a, /?>O. We choose a zo = (Z.O)+O so that 121 Q 1 and there exist rgaO and a 

v ( t )  - u(t) = h(r )  for re [0, r ; ]  and v ( t )  = u(r)  = 0 for fa t ; .  

bounded input 6 for which 

(i) II A II L - ~  a; 
(ii) the solution c = ( cl, c2) of 

< = A &  u(c2(t) + K ( t ) ) ,  
c(0) = 0 

reaches zo at time t .  and t2(t) + h( t )+O a.e. in [0, r g ) .  

Define the constants a' > 0 and ro such that 

a'= min(1, ;, -i-) II zl II 

28n3 r, = - 
ar3 

For E > 0 in (0,l) and for t a t .  consider z , ( t )  the 1.a.c. curve defined by 

(a) z&*) = 4); 

Az, + b ~ , , ~  if I z , ,~  I d a' I Az, + b&zrS2 if I zF.2 I > a' 
(b) 2, = 
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(Note that for a given E E (0,1), z ,  need not be defined for all t 3 t..) It is easy to see by using 
polar coordinates, that if we choose E~ > 0 small enough, then there exists to 3 t .  such that 

d t o )  = II Z,,,(to>lI>2ro, ZrO.2(~o)>O and z,,z(to) = -a 
Now, for t b to consider the 1.a.c. curve z‘ (t) defined by 

(a) z’(td = z,.(td; 

IAz’ + bz; 

Write Z ’  (t) and i’ (t) in polar coordinates r ( t ) ,  O ( t )  and define for n 3 1 

r,, = r ( t , - , )  with z ; ( t , - , )>O and zi(t,,-,) = -a’ 

By an induction argument, we show that 

(1) the sequences (t,),,o,(r,,)n, I are well-defined, 
( 2 )  V n a l ,  r ( t )br , i f  t z t , , , ,  
(3) there exists a constant C > 0 depending only on ro such that for all n 3 0, 

r:+, z r:+ cr, 
Therefore lim,- r ( t )  = 00. 

tbO,  the functions d(r) ,  h ( t )  by 
Concatenate f;, z y ,  and z‘ to obtain an 

and 

I: d(t) = 

1 I- 

1.a.c. curve z ( t )  from [O,-) to R2. Then, define for 

a.e. in [0, t.) 

h(t) = -2z2(t) if t 3 t,, I z2(t)l s a‘ 
if t 3 t,. (z2(t)( > a’ l o  

We observe that z is actually the solution of 
i = A z - d ( t ) b [ z , +  h(r)l 

z ( 0 )  = 0 

and therefore weget that l l h l l L - ~  a andlim,, I I z ( t ) ( (  =-. 

the following formula: 
In order to construct x and y as we want, it is enough to know E(t )  4 x 2 ( t )  + u( t ) ,  because of 

(41) x(t) = eA‘ 1; e-Asbo[c(s)l d~ 
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This is simply done by considering the equation in 5 

with z , ( t ) +  h ( t ) + O  and u'O(lj)=d(t) if z 2 ( t ) +  h ( t ) = O .  The times t a t *  for which 
z 2 ( t )  + h(t) = 0 are isolated and then z2 + h is a piecewise continuous function. Therefore, for 
the times t a t ,  such that I z2( t ) l  *E a it is enough to set E=O in (42) and for the other times t a t,, 
we can choose a piecewise continuous selection for l j  in (42).  

Therefore, if t ,  is picked so that IIz(t,)lla /? (without loss of generality we can suppose 
t ,  b to),  we construct x on [0, t.) by taking x = 0, then on [t., q), by using the solution of (42) 
in (41)andfinal lyu=Ofortat , .Asfory, i t isdefinedbyx+zon [O,t,)and v = O f o r t b t , .  
To conclude the construction, notice that 

5.4. Failure of SLP, for  arbitrary U 

Example 4 .  Next, we deal with counter examples to property SLP,. Let u(t)  = j b  U' (s) ds, 
where U' is an even function and for t > 0 is given by 

I o i f t a  1 
1 1 + -, -), n b 1 1 u'(t) = I 1 i f r E  [ - 

(n+ I)* (n+ 1)4 n* 

It is easy to verify that U is an S-function and obviously U does not belong to '& (o). Consider the 
system 

x = -u(x + U) 
x(0 )  = 0 (43) 

Let 
0 on [0, 11 

h(r) = U, 

-4 
on [n, n + 1/2), n 2 1 
on [n + 1/2, n + 1) 

1 U,=- 

1 
with 

(n + I)* 2(n + 114 
for n b  1. Let x ( t )  = -jh u(h(s))  ds. Then, if we let u = h - x ,  x is the solution of (43). Clearly 
for all 1 s p e w ,  IlxlJpe-, IIuIILpe-. 

For m a 1, define 
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and let w m =  a(g(s) )  ds, where 

if c E [0, 11 
g ( t )  = h(t) + s,d if t E [I, m] 

if t E (m, =) 1: 
Now let ~ , ~ = g ( t ) -  w,(t) on [O,m] and v,=u for r>m. Let y,“ be the solution (43) 
corresponding to U,. Then, if z, = y m  - x and h, = v, - U, we have on [ 1,  m]: 

z,”(t)  = s,(e‘- e )  and h,(t) = s,e. 

Therefore, form large enough, (IhmllL~srn”’s,eand ( (~ , (~~~~s ,~[ l ;” (e ’ -e )~’ds] ’ ’~’ .  Let 

We get 

which goes to 00 as m +CO. Therefore F does not satisfy SLP, at U. 

5.5. Failure of GIG,,, even for nondecreasing U 

Example 5 .  Let (T be an S-function that satisfies the following condition. There exists a 6 > 0 
such that a(t)  = t if I tl s 6 and a(t)  = sign(t) if It1 b 1 + 6. For example, a could even be the 
standard saturation function. Consider the one-dimensional system 

1= - a ( x  + U) 
x(0) = 0 

Let 1 s p < 00 be a real number. Let a > 1 + 6, 0 < E < d be two real numbers. Take two inputs 
U, V E  L”([O,=),  03) as follows: 

u ( r ) = v ( t ) = - t -  1 - 6 ,  f o r 0 s t c a  
u ( t ) = - a ,  v ( t )=-e ( t -u ) -a -  E ,  f o r a > t s a +  1 
u ( t )  = v(r) = 0, 

Let x , y  be the solutions of (44) corresponding to U, v respectively. Then we have for 
a s t s a +  1, 

x ( t ) = a , y ( t ) = a +  ~ ( t - U )  

x(t) = 2 a +  1 - t ,  y ( t ) = 2 a +  E +  1 - t 

if t >  a + 1 

and 

for U + 1 s t s 2a - 6. Therefore 

s,” Iy(s) -x(s)l” ds > I.,-, Iy(s) -x (s )yds  = E P ( 0  - 1 - 6) 
n + l  

So, IIy - x I I  L~ 3 &(a - 1 - d)”!’. On the other hand, 
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Noticing that a and E could be almost arbitrary, we have shown that for any a, B > 0, there exist 
U ,  U in L"( [0, =), [w) such that 

11 U - U L P  11 (X and 11 F( V )  - F( U) ,P 11 3 

5.6. Nondifferentiability of F0,' 

Example 6 .  Consider a saturation function (I continuously differentiable, linear in a 
neighbourhood of 0 (i.e. a(t)  = t for I t I small enough) and the control system 

x =  -(I(x+ U )  

x(0 )  = 0 (45) 

Fix an a > 1 and let K =  11 ( 1 1 1 ~ ~ .  Take U = 0 and consider the sequence ( ~ 2 } 7 = ~  of inputs defined 
by 

= j on [o, j -"I 1 0 on(j-",=) 

Then 11 LCILi = j '-" + 0 as j + m. Note that for any U E L' ([0, -), R), D,F(O) is the solution of 

i = -z + U, z(0) = 0 
Then for j large enough and t r j - " ,  we have 

Then 
IF(uj)(t)l GKj-"e-'+i-" and D,,iF(O)(t) =j( l  - e-i'n)e-"i-n 

3 1/2 
IIF(J) - D,,JW>IILI 

II UJllLl 

for j large enough. Therefore, Fo,, is not Frkchet-differentiable at 0. 

5.7. One last example 

Theorem 1 is the best possible one. We keep the notations used in the proof of Theorem 1. 
The last example shows that the Lipschitz constant C obtained in the proof of part (ii'), 

Example 7 .  Let (I be a saturation function. Consider the system 
R = - a x  + Ba(-BTx + U) 

x(0 )  = 0 

With no loss of generality, we can assume that b, > 0 for k = 1, ..., m. Fix E > O  and an 
w =  (q, ..., 0,) such that 

O C O , <  IIa;llL-(~-), k =  1 ,  ..., m 
and 

k =  I 
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We can pick E > 0 small enough so that 

Let 5, = ( E , ,  . . . , 5,) be chosen so that for k = 1, . . . , m, uk is differentiable at E k  and 

I - W J  c E / 2  

Define Q = diag ( o1 , . . . , w J .  Furthermore, there exists an E > 0 such that if 11 5 - toll < E ' ,  then 

For a > 0, let x ,  be the solution of the system 

x = -ax+Ba(t , )  
x ( 0 )  = 0 

If we let u,( t )  = 6, + BTx, ( t ) ,  then x ,  is the solution of (46) corresponding to U,. 
Pick a constant h, > 0 so that h,( 1 + 11 B 11 C,) < E ' .  Let 

and U, = 5, + B T x ,  + h. Let y, be the solution of (46) corresponding to v,. Let z ,  = ya  x,. Then 
z (I satisfies 

i = - a z  - d(  t ) z  + BD ( t)h 
z(0)  = 0 

where 

a(& + BTz, + h) - a(&) 
BTza + h 

D( t )  = 

and d(  t )  = BD ( t)BT. 

IIBTz, + h,-c I( B 1 1  C,h, + ho < E ' .  Then, for t a O ,  we get 
By the choice of h, and the fact that F , ,  is globally Lipschitz, we have 

Il D ( t )  - Qll E 

In that case, IIxaIIL-, IIyallL-<m and a direct computation shows that there exists a positive 
constant p (independent of E )  such that 

Letting E + 0, we prove that C, is the desired Lipschitz constant. 
Now assume that a =O. For T > 0, define x,(t)  = Ba(E0)t on [O, T ]  and as the solution of 

1 = Ba(-BTx) ,  x ( T )  = Ba(60)T 
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for t B T. Then consider y r  defined on [0, T ]  as the solution of (46) corresponding to 
v = &, + BTxT + h and for t B T ,  defined as the solution of 

i = B u ( - B T x ) ,  x ( T ) =  yT(T) 

Finally set zr = y r -  x p  If we define the input hr = h for t E  [0, T ]  and 0 for t B T, we obtain 
for T large enough, there exists a positive constant p (independent of E )  such that 

As in the case a > 0, we conclude that CO is the desired Lipschitz constant. 

for some integer k, C, is independent of a20 and is equal to ( i n f ~ = l , , , , , ~ ~ ~ ~ ~ ) - l .  
One can also notice that C, + CO as a + 0 + and under the extra assumption that 11 U ;  1 1  L- = 00 
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