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Abstract 

This paper deals with the problem of global stabilization of linear discrete time systems by means of bounded feedback 
laws. The main result proved is an analog of one proved for the continuous time case by the authors, and shows that such 
stabilization is possible if and only if the system is stabilizable with arbitrary controls and the transition matrix has spectral 
radius less than or equal to one. The proof provides in principle an algorithm for the construction of such feedback laws, 
which can be implemented either as cascades or as parallel connections ("single hidden layer neural networks") of simple 
saturation functions. @ 1997 Elsevier Science B.V. 
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1. Introduction 

This paper is concerned with the global stabilization 
to the origin x = 0 ot'the state x(t) of  a linear discrete- 
time system 

Z: x( t+ 1)=Ax(/,)+Bu(t),  (1.1) 

when the control values u(t) are constrained to lie in 
a bounded subset ~ o f  ~m which contains zero in 
its interior. (As usual, A E [R nxn and B E ~nxm.) The 
study of  stabilizatior under such constraints is not only 
a natural mathematical problem, but also arises often 
in many applied areas. 

The open loop question is well-understood. 
Call a system (1.L) asymptotically null control- 
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lable with bounded controls (ANCBC) if there is 
some 5// with the above properties such that, for 
each initial state x ( 0 ) E  ~n, there exists a sequence 
u(.) = u(0), u(1 ) . . . . .  with all values u(t) E J//, which 
steers the solution x(t) asymptotically to the origin, 
that is, so that the solution of  (1.1) converges to 
zero. (It turns out, and in fact follows also from the 
results to be given, that if this property holds for 
some such 5// then it also holds for every ~// which 
contains the origin in its interior.) Now, it is known 
(cf. [3]) that a system is ANCBC if and only if 
(1) the pair (A,B) is stabilizable or "asycontrollable" 
in the usual unconstrained sense (equivalently, the 
rank of[2I-A,B] is n for all complex 2 with I)~1 ~> 1, 
cf. e.g. [5, Exercise 4.4.7]) and (2) the spectral ra- 
dius of  A is less or equal to one. This provides an 
elegant algebraic solution of  the open-loop question. 
What is proved in this paper is that, under exactly the 
same conditions, there is in fact a simple feedback 
synthesis that achieves closed-loop stabilization. The 
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feedback laws that achieve this goal can be optionally 
of  a form that involves series (cascade) connections 
of  linear functions and saturation devices or, alterna- 
tively, if desired, of  a parallel form involving such 
saturations. 

The results in this paper are in no way surprising or 
unexpected, since they are closely analogous to simi- 
lar results presented by the authors, and by A. Teel, 
for continuous time systems, in the sequence of  
papers [6-9] .  Although the organization o f  the cur- 
rent work is tightly patterned after that of  [8], and 
many of  the arguments but not all are, concep- 
tually, straightforward generalizations of  the corre- 
sponding arguments in that continuous time paper, it 
seems appropriate to present the discrete time results, 
because there are many technical estimates that have 
to be carefully established for this particular case and 
which are not totally obvious. 

To simplify the presentation, we present a result 
that is weaker than the complete analog of  the result in 
[8]: we restrict the saturations to be used when imple- 
menting feedback laws to be o f  a special kind, while 
in the continuous time result we showed that rather 
arbitrary saturation functions could be used as the 
building blocks. However, for applications, it would 
appear that our choice of  primitive saturation func- 
tions is sufficient. 

The organization of  the paper is as follows. In 
Section 2 we introduce notations as well as state the 
main results; this is almost a verbatim translation 
of  the corresponding continuous time material. In 
Section 3 we provide a technical lemma on changing 
to a suitable canonical form, while another technical 
lemma, dealing with an ultimate boundedness result, 
is given in Section 4. The result in this section is not 
proved in a manner analogous to the corresponding 
result in [8], since doing so would require first ob- 
taining the discrete time analogues of  the finite gain 
results given in [2]; a direct proof is given instead. 
Finally, in Section 5 we give the proof of  the main 
result, with arguments that are again quite similar to 
those used for continuous time. 

The results in this paper are extracted from 
Chapter 6 of  the doctoral thesis [11]. Other references 
to closely related problems are [1, 10]: the former 
gave a result on semi-global stabilizability (feedback 
laws that are guaranteed to work on any given com- 
pact, though not necessarily globally) using a simple 
saturated linear feedback, and the latter provided par- 
tial results on global stabilizability for some special 
systems. 

2. Statement of the main results 

We start by introducing notations for the classes 
of  functions which will be used to describe the feed- 
back laws to be synthesized. (These definitions and 
notations are essentially the same as in the paper [8], 
except that they are built out of  a special saturation 
function, defined next, instead of  the far more general 
saturations used in that paper.) We let J consist of  
the saturations at various levels b > 0, that is, the set 
of  all functions R ~ R of  the type 

a(s) = i~ sat(s~6), 

where 6 > 0, and 

sat(s) = sign(s),  min{]s I, 1}. 

Next we introduce, for each nonnegative integer k 
and each finite sequence o" = (al . . . . .  ak ) of  functions 
in 5 ~, a set of  functions from [~n to R, denoted Yn(a),  
which consist of  "cascades" of  saturations. By induc- 
tion on k, we define these sets as follows: 
• when k = 0 (which we can interpret as correspond- 

ing to the "empty sequence" a),  ~ ( a )  consists o f  
just one element, namely, the zero function from 
~n to R; 

• when k = l, we define ,~(tT1 ) as the set of  all the 
functions h : R ~ --~ R of  the form h(x) = al(g(x)),  
where g : ~n _~ ~ is a linear function; 

• for k > l ,  ~ , ( a i  . . . . .  ak) is the set of  all those 
functions h : ~ n - ~  R that are of  the form h(x)- -  
ak ( f ( x )  + c9(x)), for some linear f :  R n--+ R, 
some g E J~,(al . . . . .  ak 1 ), and some c ~> O. 
A second family of  sets of  functions ~n(a), cor- 

responding to "parallel combinations" of  saturations, 
is defined as follows: for each nonnegative integer k 
and each finite sequence a - (al . . . . .  ak ) of  functions 
in ,50, (¢n(a) is the class of  functions h : [j~n ____+ [~ of  the 
form 

h(x) = a l ( f l ( x ) )  + a2(f2(x ) ) + . . .  + ak(fk(x)  ), 

where f l  . . . . .  fk are linear functions. 
Finally, given any m-tuple 1 = ( l  I . . . . .  l m )  of  

non-negative integers, and any finite sequence a = 
(al . . . . .  alll) of  functions in 5 ~, where [ l l=  l l +  . . -  

+ I m, we define the following classes of  vector 
functions built out of  the classes o f  scalar functions 
which were just defined. We write in partitioned 

_ _  1 1 m m form a - (or 1 . . . . .  a t, . . . . .  a 1 . . . . .  al~ ), and let o~( t r )  
I (respectively, ~f~'(a),) be the set o f  all functions 

h : Rn---+ R m that are of  the form (hi . . . . .  hm), where 
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hi E ~n(tTil . . . . .  (7~i ) ( :respectively,  h i C ~n((7] . . . . .  tT/i ) )  
for i = 1,2 . . . . .  m. (So .~-/(a) = Y , ( a ) ,  f#~t (tr) = f¢,(a) 
when m = 1.) For a sequence o f  saturations as here, 
we denote as Ilall the maximum bound (the "6" 's  in 
their definition) amcng all the ai's. (We use Ix] for 
the Euclidean norm of  a vector x, in order to avoid 
confusion.) 

Let 6 > 0. We say that a function ~ : 7/>/o -~ ~ is 
even tually bounded by 6 (and write 1¢1 ~< ev6), if there 
exists T > 0 such that I~(t)l ~< 6 for all t ~> T. Given 
an n-dimensional system 8 :x( t  + 1) = f ( x ( t ) ) ,  we 
say that ~ is IICS (in txgrable-input converging-state) 
if, whenever {e(t)}~ ': C Ii, every solution t ~ x ( t )  of  
x( t + 1) = f (x( t ) ) + e( t ) converges to zero as t ~ exp. 
(We need this concept in order to be able to state 
a result which can be used in an induction proof.) 
For a system x( t  + 1 ) = f ( x ( t ) , u ( t ) ) ,  we say that 
a feedback u = k(x)  is stabilizing if 0 is a globally 
asymptotically stable', equilibrium of  the closed-loop 
system x( t  + 1 ) = f ( x ( t ) ,  k (x( t ) ) ) .  If, in addition, this 
closed-loop system is IICS, then we will say that k is 
IICS-stabilizing. 

For an n × n real raatrix A, let N ( A )  be the number 
of  eigenvalues z of  A such that Izl = 1 and Imz  >/0, 
counting multiplicities. 

This is the explicit version o f  our main result: 

Theorem 1. Assume that S is an A N C B C  linear 
system x( t  + 1)=~[x( t )  + Bu(t)  with state space 
~ and input space ~m. Let  N = N ( A ) .  Then, f o r  
every ~ > O, there exist a sequence a = (61 . . . . .  aN) 
o f  functions belonging to 5f  with Ilall ~< ~ and an 
m-tuple 1= (l I . . . . .  l ~ ) o f  nonnegative integers such 
that Ill = l~ +'"  "+ l'' = N ,  f o r  which there are IICS- 
stabilizing feedback,~: 

u = k ~ ( x ) ,  (2.1) 

u = k~(x)  (2.2) 

The following is an easy corollary of  Theorem l, 
and conveys the main conclusions in a simplified form. 

Theorem 2. Let  X be a linear discrete-time system. 
Then the following conditions are equivalent: 

1. X is SFS, 
2. S is BFS, 
3. S is A N C B C .  

Note that the implication 3 ~ 1 follows from 
Theorem 1, while 1 ~ 2 and 2 ~ 3 are trivially true. 

3. A useful change of coordinates 

In this section we present a technical lemma which 
is needed in the proof of  Theorem 1. It follows the 
lines of  the analogous continuous-time result, Lemma 
3.1, in [8]. 

Lemma 3.1. Consider an n-dimensional linear single- 
input system 

S: x ( t +  1 ) = A x ( t ) + b u ( t ) .  (3.1) 

Suppose that (A, b) is a controllable pair and that all 
the eigenvalues o f  A have magnitude 1. 

(i) I f  ) ,=  1 or ) ~ = - 1  is an eigenvalue o f  A, 
then there is a linear change o f  coordinates 
Tx = (yl  . . . . .  Yn )' = (fi', Y , ) '  o f  ~ that trans- 

f o rms  S into the f o rm  

)5(t + 1)=A1)3(t)  + bl(yn(t)  + u(t)), 
(3.2) 

yn(t + 1 ) = J.(yn(t) Jr u(t)), 

where the pair (A l, bl ) is controllable and y ,  
is a scalar variable. 

(ii) I f  A has an eigenvalue o f  the f o rm  ~ + fli, with 
fl ~ 0, then there is a linear change o f  coor- 
dinates Tx = (Yl . . . . .  yn )t = (f i t ,  Yn-1 ,  Yn )r o f  
En that transforms S into the f o rm  

such that 1~ C ~-~t(o'), k~¢ E ~t(cr). 

We will say that (2.1), (2.2) are "feedbacks of  
Type ~ "  and "of  Type ~",  respectively. 

A linear discrete-time system S is bounded feed-  
back stabilizable (BFS) if there exists a bounded lo- 
cally Lipschitz feedback k that stabilizes S. A linear 
discrete-time system S is small f eedback  stabilizable 
(SFS) if for every e > 0 there exists a stabilizing feed- 
back k for 2" such that ]k(x)l ~< e for all x. 

fi(t + 1) =Al f i ( t )  + bl(yn(t)  + u(t)), 

yn--l(t + 1)=~yn-- l ( t )  -- fl(yn(t) + u(t)), 

yn(t + 1) = flyn_~(t) + c~(y,(t) + u(t)), (3.3) 

where the pair (Al ,b l )  is controllable and 
Y,-1,  Y, are scalar variables. 

Proof. We first prove (i). I f  2 =  1 or 2 = - 1  is 
an eigenvalue of  A, then there exists a nonzero n- 
dimensional row vector v such that vA = 2v. It follows 
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from the Hautus condition for controllability (see 
e.g. [5, Lemma 3.3.7]) that v b ¢ O ;  thus, we may 
normalize v so that vb = 2, which we assume from 
now on. We apply a preliminary linear change of  co- 
ordinates Tx  = (Z',z,,)~, where the matrix T is picked 
so that zn = vx; in the new coordinates, the system 
equations take the following block form: 

£(t + 1) = A l £ ( t )  +zn( t )b l  + u(t)b2, 

zn(t + 1 ) = 2zn(t) + 2u( t ) .  

We now apply a second coordinate change, letting 
35 = £  + z~/B, Y~-zn ,  where the vector b3 will be 
specified below. The system equations now become: 

)5(t + 1 ) = A1 35(t) + yn(t)([)l  + (Z1 - A I ) b3) 

q- u(t)(D2 q- 2/'3), 

yn(t  + 1 ) = Z(yn( t )  + u( t ) ) .  

We pick b3 to be an_y solution of/}2 + 2/~3 = D1 + 
(21 - A 1 ) / B ,  i.e., Alb3 = b l  - t52. (This is possible 
because A i is nonsingular; note that all its eigenvalues 
are in the unit circle.) With bl = bl + (21 A 1 )/B, the 
equations have the desired form (3.2). 

We next prove part (ii). Let 2 = c~ + fii, fl ~ 0, be an 
eigenvalue of  A. Let v be a left eigenvector associated 
to 2, i.e. vA = 2v, v ¢ 0. Again by Hautus '  condition, 
vb 7; O. Write v = vl +iv2,  with vl and v2 real. We may 
assume that vl b ¢ 0 (otherwise, use iv in place of  v), 
and, hence, normalizing, that v l b = - f t .  Let z =  v2b 
and consider the following real 2 x 2 matrix: 

1 ( fi2--OCT fi(3C--Z')) 
P -  f12 _1_ g~ fi('c -- ~x) fi2 _1_ ~.  • 

Make a linear change of  coordinates T x =  

( £ ' , Z , _ l , Z , ) '  so that (z~_l , zn) '  = P ( v l x ,  v2x) ' .  In the 
new coordinates, the system equations become: 

£(t + 1 ) = A l £ ( t )  + z,_l(t)/~l 

+ z~(t)g2 + u(t)b3, (3.4) 
Zn_l(t  -}- 1) = ~ % - l ( t )  - fl(z~(t) + u(t)), 

Zn(t q- 1 ) : f i Z n  l(t)  q- ~(Zn(t) q- U(I)), 

and every eigenvalue of  A1 has magnitude 1. Finally, 
we change coordinates once more, by letting )3 = £ + 
Zn--i [)4 q- Zn {)5, Y~ 1 = Z~_~, y ,  = Z,, where the vec- 
tors b4, /~5 will be chosen below. Then the last two 
equations of  (3.4) are as desired, and the equation of  

35 becomes 

) ( t  + 1) 

= Alf i ( t )  + yn-l(t)(D1 Alb4 

+ d ,4  + fibs) 

q-yn(t)([)2 -- AIt~ 5 q- (Xt~ 5 -- flt~4) 

-I-u(t)(b3 -- fl[34 ~- @b5). 

I f  we could choose [34, t~ 5 such that 

t~l - -A lg4  -l- ~84 -[- f i b 5 : 0  

(3 .5)  

(3.6) 

and 

(3.7) 

then we could let 

bl = b2 - Alg5 - fib4 + :~b5 (3.8) 

and the system equations would become (3.3) as de- 
sired. To prove the existence of  b4 and/B, we rewrite 
(3.7) as AI/B =b2 - /B, from which we get /B be- 
cause A1 is nonsingular. Then from (3.6), we have 
(A1 c~I)D4- bl + rids. Since the eigenvalues of  A1 
have magnitude 1 and ~ ¢; 4- 1, the matrix A I - c~l is 
nonsingular, and so b4 exists as well. [] 

4. An ultimate boundedness result 

The main technical lemma needed for the proof  of  
our main result is given in this section. Though its con- 
clusions are similar to Lemma 3.2 in [8], the proof  that 
we provide is quite different. Because we restricted 
attention to a special type of  saturation functions, the 
argument is substantially simpler than that in the cited 
paper. 

Lemma 4.1. L e t  a, b be two real constants  such that 
a2 + b  2 = 1 andbT~ O. L e t  ej = ( e j ( O ) , e j ( 1 ) , e j ( 2 )  . . . .  ), 
j = 1,2, be two e lements  o f  ll. P i c k  any  6 > 0 and 
any  e E (0, di/4). Suppose  that  v : 2~>~o ---* ~ is" so that  

Ivl ~<ev~. Then, zf 7 = ( x ( . ) , y ( . ) ) : 7 / > 0 - * R  e is' any  
solution o f  the s y s t e m  

x ( t  + 1 ) = a x ( t )  - by ( t )  + bu( t )  + el(t) ,  

y ( t  + 1 ) = bx ( t )  + ay ( t )  - au ( t )  + e2(t), 
(4.1) 

where 

u ( t ) = a ( y ( t ) + ~ v ( t ) ) + q v ( t ) ,  (4.2) 
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and  ~ + t l = l ,  ~,rj>~O, and  c r ( s ) = f s a t ( s / 6 ) ,  it 
fo l lows  that 

1 
lim sup 17(01 < r = (71a I + 4)e + 7e. (4.3) 

Proof.  Without loss of  generality, we assume b > 0 
( if  this were not the case, the result can be proved 
for the negatives - a ,  - b ,  etc., substituted for the orig- 
inal data; note that ;:he assumptions hold for these, 
and the conclusions involve only absolute values). 
Let 0 = aretan(b/a),  0 < 0 < re, if a ¢ 0, and 0 = n/2 
if a = 0 .  Then a + i b = e  i°. Let z ( t ) = x ( t )  + iy(t), 
e( t )  = e l ( t )  + ie2(t). Then 

z( t  + 1 ) = ei°(z(t)  - iu(t)) + e ( t ) .  (4.4) 

Again, without loss of  generality, we assume that 
[[elll <e ,  (otherwise we can find T > 0  such that 
}-]~t~>r le(t)[ <e ,  and then we only need to con- 
sider the solution for t ~> T). Similarly, we assume 
[v(t)l ~< e for all t. So 

Iz(t + 1)l 

~< Iz(t) - i u ( t ) l  + le(t)l 

= V/X(t) 2 + ( y ( t )  - u(t)) 2 + le(t)l 

= @ z i t ) l  2 - u ( t ) (2y ( t )  - u( t ) )  + le(t)l 

= Iz(t)l + w ( t )  + leO)l, (4.5) 

where 

- u ( t ) ( 2 y ( t )  - u ( t ) )  
w( t )  = (4.6) 

[z(t) I + V/~z(t)[ 2 - u ( t ) ( 2 y ( t )  - u ( t ) )  

If t is so that ly(t)l  >>, 3e, then from (4.2) it follows 
that 

2~ ~< lu(t)t ~< ~ly(t)l~ 

and u(t)  has the same sign as y( t ) .  So 

2E. ~ ly(t)l 2~ 2 
w ( t )  <~ <~ - -  

21z(t)l Iz(t)l  " 

Thus, from (4.5), we, have 

2e 2 
Iz(t + 1)l ~< Iz(t)l - - -  + [e(t)l 

Iz(t)l 

If  instead t is so that 
ly ( t )  + ~v(t)[ < 4e <.; 6, it follows that 

u( t )  = y ( t )  + v(t) .  

if ly(t) l /> 3e. 

(4.7) 

[y(t)[ <3e ,  then since 

(4.8) 

So 

w(t )  = 

and hence 

v ( t )  2 - -  y ( t )  2 
w( t )< ,  

2lz(t)l 

v ( t )  2 - - y ( t )  2 

Iz(t)l + x/lz(t)l  2 + v(t)  2 --  Y(t) 2 

g2 

~< 2[z(t) ~ .  (4.9) 

We conclude that, provided [y(t)l < 3e, 

~2 
Iz(t + 1)1 <~ [z(t)l + ~ + [e(t)[. (4.10) 

In addition, 

]y(t + 1)l > b l x ( t ) l  - ]al ( ly( t ) l  + [ u ( t ) [ ) -  le2(t)l 

> b l x ( t ) l  - (7lal + 1)~, 

for ly(t)l < 3~. If  Ix(t)[ > (1 /b) (7 la[  + 4)~, then 

[ y ( t +  1)1 ~>3e, (4.11) 

and also Ix(t)l > 4e (recall that b ~< 1 ), which implies 
Iz(t)l > 4~. Since le(t)l ~< ~, From (4.10) it follows that 

g2 
41 Iz(t + 1)l ~< Iz(t)l + ~ + e ~< ~ lz ( t ) l .  (4.12) 

On the other hand, since [y( t+ 1 )1 >/3e, applying (4.7) 
For z( t  + 2), we conclude that 

2e 2 

]z(t + 2)1 ~< Iz(t 4- 1)1 Iz(t + 1) I + [e(t+ 1)1. 

(4.13) 

Using (4.1 O) and (4.12) to substitute Iz(t + 1 )1 in the 
first and second terms of  (4.13), we end up with 

Iz(t + 2)1 

Iz(t)l~ 
g2 64e2 

21z(t)l 411z(t)l 
+ le(t)l + l e O +  1)l 

g2 
< Iz(t)l - - -  + le(t)l + le(t + 1)1. 

Iz(t)[ 

Summarizing, we have proved: 
Fact I: (i) if ly(t)l ~> 3e, then 

2~ 2 
Iz(t + 1)1 ~< [z(t)l - - -  + [e(t)l; 

Iz(t)l 
(4.14) 
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(ii) if ty ( t ) l  < 34, and Ix(t)l ~ (1/b)(7lal  + 4)~, 
then 

[z( t + 2) I ~ Iz( t )l - - -  
~2 

Iz(t)l + le(t)l + l e ( t  + 1)1. 

(4.15) 

As a consequence of  Fact I, we have 
Fact II: there exists t > 0 such that z ( t )  is in the 

region 

~ =  { x  + yi:  lxl <~ l (Tlal + 4 ) e , , y ,  <~ 3 e } .  

Indeed, if Fact II were not true, then for any 
t > 0 we would have either ly(t)] ~> 34 or Ix(t)] >~ 
(1/b)(7lal  + 4)e. Now we select a sequence (t0, tl, 
t2 . . . .  ) of  integers in the following way: 
• to=O,  
• for j~>0 ,  if (4.14) is true for t=lj, then t j + l  = 

tj + 1; otherwise tj+1 = tj + 2. 
Then we have 

/3 2 (j+i -- 1 

Iz(tj+l)l ~< Iz(t#)l- Iz(tj)~ + ~ le(k)l. (4.16) 
k=tj 

Summing (4.16) f o r j  = 0 ,  1,2 . . . . .  n, we have 

In+ I -- l 

Iz(t~+l )l ~< Iz(0)l - ~2 1 k:0 [z(tk)~ + ~k:0 le(k)l. 

(4.17) 

In particular, we have 

]z(t~+,)] ~< Iz(0)l + ]lelll = M  (4.18) 

for all n/> 0. So from (4.17) it follows that 

Iz(to+l)l-< Iz(0)l - (n + 1)e2/M + Ilella- (4.19) 

Let n ~ ec. Then [z(t~+l )] ~ - o c ,  which is a contra- 
diction. So Fact II is proved. 

To complete the proof  of  the lemma, it is enough 
to show the next fact. 

Fact III: i f z ( T ) E ~  for some T ~> 0, then ]z(t)] ~ r 
for all t /> T. 

Note that i f z ( t ) E ~ ,  then 

Iz(t)l ~< l (71a I + 4)e + 3e. (4.20) 

If  for some T1, z ( T l ) ~ ,  but z(T1 - 1 ) E ~ ,  then 
from Fact II (applied to the trajectory which starts 
at the state (x(  TT ), y (  Tl ))), it follows that there ex- 
ists T2 > T1 such that z ( T 2 ) E ~ ,  and z ( t ) ~  for 

T1 ~< t < T2. Now we select to = T1, h,  t2 . . . . .  t, = T2 
as we did above such that (4.16) is satisfied for 
j = 0, 1,2 . . . . .  n. Then 

tJ-- 1 

Iz(tj)l <~ Iz(t0)l + Z le(k)l (4.21) 
k=to 

for l < . j < . n .  Note that z ( t o ) = e i ° ( z ( T l - - 1 ) -  
iu(Tl  - 1)) + e(T1 - 1), and z(T~ - 1)EN.  

There are two cases to consider now, depending on 
the sign ofw(T1 - 1 ). I f  this quantity is negative, then 
from (4.5) we know that 

Iz(T1)l < Iz(T, - 1)l + ~. 

Together with (4.21 ), we conclude (recall that to = Tl ) 
that 

t : --I  

]z(tj)] <~ Iz(T1 - 1)l + e + Z le(k)l" (4.22) 
k-Tt 

I f  instead w ( T 1 -  1 ) >  0, then from (4.9) it follows 
that ly(Tl  - 1)l < e, so we have that also lu(T1 - 1)l 
< 24. Thus Iz(t0)] ~< Iz(T1 - 1)l + 24 + le(Tl - 1)1. 
Substituting this into (4.21 ), we obtain the estimate: 

ti-- 1 

Iz(tj)l<~lz(T~- l)[+2~+ ~_, ]e(k)], O<~j<.n. 
k-Ti  1 

(4.23) 

For the times of  the form tj, the above bounds will 
provide the desired conclusions. However, we must 
take into account as well the cases when tj - t j_ 1 = 2, 
so that we need to bound the states x ( t j  + 1 ) for such 
j ' s .  In that case, from (4.10) and (4.23) we have 

~2 

Iz(tj + 1)l ~< [z(tj)l + 21z(tj)~ + le(tj)l 
~2 

<~ Iz( r~ - 1)1 + - -  + 3~. 
2[z(tj)l  

Since by z(tj)  is not in ~ ,  it foilows that [z(tj)[ 
~> min{4e/b, 3E} > e/2, so we have ]z(tj + 1)l ~< 
Iz(Tl - 1 )] + 44. From (4.20) we conclude that 

]z(t j  + 1)1 ~< b(7lal + 4 ) e  + 74 (4.24) 

when tj+l - tj = 2. Finally, from inequalities (4.20), 
together with (4.22) or (4.23) when t is in the se- 
quence o f t j ' s ,  or (4.24) when t is not in this sequence, 
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imply that Iz(t)[ ~< v for T1 ~< t < T2. So Fact III is 
established. [] 

We can summarize the above result, as well as 
an analogous one-dimensional property, as a general 
property of  certain systems with orthogonal A matri- 
ces, as follows. 

Corollary 4.2. For n = 1,2, let J be an n x n matrix, 
equal to either 1 or - 1  i f  n = 1, or o f  the fo rm 

in the case n =  2, frith ~2 + ~2 = 1 and ~ ¢ O. Let  

b = 1 i fn  = 1, and b = (0, 1 )' i fn  = 2. Then for  every 
e > 0, g > 0 there exists 0 > 0 such that fo r  any func- 
tions v : 7/>1 o ---* ~ and e : 2_ >1 o ~ ~ ,  where v <<. ev O, 
ee l1 ,  i fT:  7/>/0 ~ ~l" is any solution o f  the system 

x( t  + 1) 

= J ( x ( t )  - cr(Xn(t) - ~v( t ) )b  + qv( t )b)  + e(t) ,  

where or(s) = gsat (s/g), ~ + r I = 1, ~, ~ >~ O, it fol lows 
that 

lira sup I~(t)l < ~. 
t----~ + o c  

Proof.  Assume first n = 2 .  We pick any 0 < 0 <  
min{(g/4),  e/(7 + (7[a I + 4)/[b I)}, and apply Lemma 
4.1 with "e" there equal to 0, from which the conclu- 
sion follows. 

Next, we prove lhe conclusion for n = 1. In this 
case, the equation o:~ the system becomes 

x(t  + 1 ) --- 2(x(t) - ~(x(t)  - ~v(t)) + fly(t)) + e(t),  

where 2 = 4-1. Pick any 0 > 0. Arguing as earlier (start 
from a large enough time), we may without loss of  
generality assume that Ilella < 0. If  Iv(t)l ~ 0 ~< g/B, 
then for Ix(t)l/> 30 we have [~r(x(t) - ~v(t)) - r/v(t)[ 
>~ 20, and a(x( t )  - ~v(t)) - qv(t) has the same sign 
as x(t) .  So if  Ix(t)l/> 30, then 

I x ( t +  1) I 

~< Ix(t) - a(x( t )  - ~v(t)) + ~/v(t)l + le(t)] 

~< I x ( t ) l -  0. 

Thus there is some to so that Ix(to)l ~< 30. However, 
the interval [ -30 ,  30] is invariant: it follows from the 
equation and the fact that 0 ~< g/3 that Ix(t + 1 )l ~< 30 

whenever Ix(t)l ~< 30. So l imsupt~+ ~ Ix(t)[ ~< 30. 
Now, to obtain the conclusion of  the corollary, it 
suffices to take 0 = min{g/3, e/3 }. [] 

5. Proof of Theorem 1 

First, we notice that under the conditions o f  the 
theorem there exists a linear change of  coordinates o f  
the state space that transforms S into the block form 

X: ~ X l ( t + l ) = A a x l ( t ) + B l u ( t ) ,  x l ( t ) C R " ' ,  

[xz( t  + 1) A2x2(t) +B2u( t ) ,  x 2 ( t ) E R  "2, 

where (i) nl + n2 = n ,  (ii) all the eigenvalues of  A1 
have magnitude 1, (iii) all the eigenvalues o f  A2 have 
magnitude less than 1, and (iv) (A l ,B l )  is a control- 
lable pair. Suppose that we find an IICS-stabilizing 
feedback u = k(Xl ) of  Type ~ or Type f# for the sys- 
tem Xl(t + 1) =AlXl ( t )  + B l u ( t )  such that the result- 
ing closed-loop system is asymptotically stable. Then 
this same feedback law will stabilize Z as well, be- 
cause the second equation, x2(t + 1 ) = A 2 x z ( t ) +  
Bzk(Xl (t)),  can be seen as an asymptotically stable lin- 
ear system forced by a function that converges to zero. 
Thus, in order to stabilize 22, it is enough to stabilize 
the "critical subsystem" xl (t + 1 ) = A lxl (t)  + B1 u(t). 
Without loss of  generality, in our proof of  the theo- 
rem we will suppose that 22 is already in this form, 
that is, we assume that all the eigenvalues of  A have 
magnitude 1 and that the pair (A,B)  is controllable. 

5.1. Single-input case 

We start with the single-input case, and prove 
the theorem by induction on the dimension n of  the 
system. 

For dimension zero there is nothing to prove. Now 
assume that we are given a single-input n-dimensional 
system, n >~ 1, and suppose that Theorem 1 has been 
established for all single-input systems of  dimension 
less than or equal to n - 1. We consider separately the 
following two possibilities: 

(i) 1 or - 1  is an eigenvalue of  A, 
(ii) neither 1 nor - 1  is an eigenvalue of  A. 

Write N = N ( A ) ,  and pick any e > 0 .  We want to 
prove the existence of  IICS-stabilizing feedbacks 
u = - k ~ ( x )  and u = - k ~ ( x ) ,  where k .~E~n(a ) ,  
k~ C Nn(~), for some finite sequence ~ = (Crl . . . . .  CrN) 
of  functions in 5~, with 11611 ~ .  (The negative 
signs are merely for notational convenience; since 
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saturations are odd functions, the signs can be 
switched by changing coefficients of  linear combina- 
tions.) 

In Case (i), we apply Part (i) of  Lemma 3.1 and 
rewrite our system in the form 

35(t + 1) =Al)5(t)  + (yn(t)  + u( t ) )b l ,  

yn(t + 1 ) = 2(yn(t) + u(t)),  
(5.1) 

where ) 3 = ( y  1 . . . . .  Yn-1)'. (Note that if n =  1, only 
the second equation appears.) In Case (ii), since 
n > 0, A has a pair of  eigenvalues of  the form c~ + fli, 
with fl # 0. So we apply Part (ii) of  Lemma 3.1 and 
make a linear transformation that puts S in the form 

35(t + 1)=A1)5(t)  + (y~(t) + u( t ) )bl ,  

Y n _ l ( t + l ) = C t Y n _ l ( t ) - - f l ( y n ( t ) + u ( t ) )  , (5.2) 

y , ( t  + 1 ) =  fly~_a(t) + c~(yn(t) + u(t)) ,  

where ) 5 = ( y l , y 2  . . . . .  yn_2) t. (In the special case 
when n = 2, the first equation will be missing.) So, in 
either case, we can rewrite our system in the form 

)5(t + 1)=A1)3(t) + (y~(t) + u(t))bi, 
(5.3) 

)~(t + 1) = J (p ( t )  + u(t)bo), 

where J is as in Corollary 4.2 and b0 is like b in that 
corollary. To consider the problem of  IICS-stabilizing 
feedback, we must study solutions of  the following 
system: 

)5(t + 1)=A1)5(t)  + (y~(t) + u( t ) )b  1 -r- e(1), 

~(t + 1) = J @ ( t )  + u(t)bo) + Y(t), 
(5.4) 

where Y, ~ are arbitrary elements of  11. 
We will design a feedback of  the form 

U = aN(-- yn + ~V ) + rlV = -- aN(Yn -- ~v) + rlv , (5.5) 

where ~ and r /are  constants such that ~r/= 0, ~ + r/ 
= 1, a N ( s ) =  esat (s/~), and v is to be chosen later. 

From Corollary 4.2 we may pick a 0 < 0 < e/2 such 
that, if  Iv(t)] ~< ~v 0, then all trajectories of  (5.4) satisfy 
]33] ~<ev e/2. Consider one such trajectory. Then, for 
all t sufficiently large, u ( t ) =  - y n ( t )  + v(t),  and the 
first block equation in (5.4) becomes 

)5(t + 1) =Al)5(t)  + v(t)bl  + Y(t) (5.6) 

for all large t. Note that (A1, bl ) is controllable and all 
eigenvalues of  A~ have magnitude 1. By the inductive 

hypothesis, we conclude that there exist 

k~E.~-n(a)  and k~ENn(6)  (5.7) 

for some 6 =  (al . . . . .  aN 1) such that ]]6]] ~< 0, 
each of  which is IICS-stabilizing for the system 
flu + 1)=Al)5( t )  + u(t )bl .  

We let 

k.~(y)  = aN(-- yn + k.~(f~)) 

and 

k<~(y) = aN(-- yn) + lc(¢(fi) 

(cases ~ = 1, r /=  0, and ~ = 0, t / =  l, respectively), 
and claim that these are IICS-stabilizing for the origi- 
nal system. Locally around the origin, the closed-loop 
system is linear, so stability is not an issue, and it 
is enough to prove the attraction property. We must 
show that, for any Y,Y elements of  11, all solutions 
converge to zero. Pick any such trajectory. As dis- 
cussed, u is eventually linear in the variables Yn and v, 
where we are taking v = / ~ ( 3 5 )  or v = /~( )5) .  By the 
inductive construction, we know that also )3(t) ~ 0 
as t ~ 0, which means that, since v is a linear func- 
tion of  33 when )5 is small, (5.4) will eventually be- 
come a linear asymptotically stable system with a con- 
verging input, and thus the state indeed converges to 
zero. The sequence o" = (a~ . . . . .  aN-1, aN) clearly sat- 
isfies ]]a]] ~< e. The proof  for the single-input case is 
completed. 

5.2. The 9eneral case 

Next, we deal with the general case of  m > 1 inputs 
and prove Theorem 1 by induction on m. 

First, we know from the proof  above that the theo- 
rem is true if m = 1. Assume that Theorem 1 has been 
established for all k-input systems, for all k ~ m - 1, 
and let S: x( t  + 1 ) = A x ( t )  + Bu(t)  be an m-input 
system. 

Assume without loss of  generality that the first 
column bl of  B is nonzero and consider the Kalman 
controllability decomposition of  the system Z'l: 
x ( t +  1) = A x ( t ) + b l U l ( t )  (see e.g. [5, Lemma 3.3.3]). 
We conclude that, under a change of  coordinates 
Y = T - i x ,  Y,1 has the form 

y l ( t  + 1 ) = A l y l ( t )  + A2Y2(t) +/)lUl(t), 
y2(t + 1)=A3Y2(t) ,  
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where (A j,/~1 ) is a controllable pair. In these coordi- 
nates X has the form 

yl(t  + 1 )=Aly l ( t )+A2y2( t )  +/~lUl(t) +/~lU(t),  

yz(t + 1) = A3yz(t) 4- /}2~(t), (5.8) 

where f i=(u2 . . . . .  u , )  ~ and B~,B2 are appropriate 
matrices. So it suffizes to show the conclusion for 
(5.8). Let nl,n2 denote the dimensions of  Y,,Y2, re- 
spectively. Recall that N = N(A). For the single-input 
controllable system 

yl(t  + 1 ) = A l y l ( t ) + / ~ l u l ( t ) ,  

there is a feedback 

ul = klO'l ) (5.9) 

such that (i) kl E Y,~ (al . . . . .  aN, ) (respectively, kl C 
%,(o-1 . . . . .  aN,)) where NI=N(AI) ;  (ii) the re- 
sulting closed-loop system is IICS; (iii) UalU ~< e, 
where at = ( a l  . . . . .  aN,). Since (5.8) is control- 
lable, we conclude that the (m - 1)-input subsystem 
yz( t  + 1 ) = A 3 y z ( t )  4-/~2fi(t) is c o n t r o l l a b l e  as  we l l .  

By the inductive hypothesis, this subsystem can be 
stabilized by a feedback 

fi = k ( y 2 )  = (kz ( y2 )  . . . . .  kin(y2)) ( 5 . 10 )  

such that (i) kES~n((OU~+l . . . . .  Om) (respectively, 

/~ c c~[2), where ] = ( N 2  . . . . .  Nm) is an ( m -  1)-tuple of  

nonnegative integers and 111 = N - Na; (ii) the result- 
ing closed-loop system is IICS; (iii) 11o"211 ~< ~, where 
0" 2 = (O'xl+l . . . . .  O'X). We let k(y)  = (kl(Yl),/~(y2)). 
This globally stabilizes (5.8), and the resulting 
closed-loop system is IICS. Indeed, around the origin 
the system (5.8) ha.,; a block triangular linear form, 
whose diagonal blocks are asymptotically stable, so 
stability is automatic. Consider now any el,e2 El l  
and any solution of  (5.8) with el,e2 added to the 
respective blocks. Then y2(t) ~ 0 as t ~ 0 because 
/~ is IICS-stabilizing. Moreover, since near the origin 

the system is linear, y2 is an ll function itself. Now 
consider the first block of  equations, viewing 

A2y2(t) + Blk(y2(t)) + el( t)  

as an  Ii perturbation. Since kl is IICS-stabilizing, 
it follows that yl(t)---~0 as t---~0 as well. So if 
we let I=(N1,N2 . . . . .  Nm) and k=(kl(yl ) ,k2(y2) ,  
. . . .  km(Y2 ) ), then k E ~ t ( a )  (respectively, k E N~(a)), 
a= (a, . . . . .  aN), satisfies all the required properties 
as desired. [] 
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