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Abstract: We prove that the angular velocity equations can be 
smoothly stabilized with a single torque controller for bodies 
having an axis of symmetry. This complements  a recent result 
of Aeyels and Szafranski. 
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1. Introduction 

The existence of smooth feedback controllers 
has been recently linked to the construction of 
coprime right factorizations; see [5]. 

To make this note more self-contained, we re- 
mind the reader of the framework in [1]. There is 
given a rigid body, with the components of x = (xl,  
x 2, x3) denoting the angular velocity coordinates 
with respect to the principal axes, and the positive 
numbers 11, I2, 13 denoting the respective prin- 
cipal moments  of inertia. Thus the system that 
interests us evolves in R 3 and has equations 

I2= S(x ) Ix  + Tu (1) 

where I is the diagonal matrix with entries 11, 12, 
13 and where T = (7"1, T2, T 3)' is a column vector 
describing the axis on which the control torque 
applies. We assume that 

In a recent paper, Aeyels and Szafranski [1] 
established that a rigid body can be smoothly 
stabilized even if just one control torque (aligned 
with an axis having a nonzero component  along 
all principal axes) is allowed. Their construction 
results in a linear control law. Though as pointed 
out in that paper the feedback so obtained is 
highly nonrobust, it was nonetheless a rather 
surprising result. Their proof needs that the body 
have no symmetries in order for the construction 
to be correct. In fact, we remark below that no 
possible linear feedback law will work in the pres- 
ence of symmetries. On the other hand, many 
objects, such as satellites, do typically exhibit such 
symmetries. In this paper we show that there 
exists a nonlinear control law which achieves 
asymptotic stabilizability. 
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T,. =~ O, i =  1 ,2 ,  3. (2) 

(See the paper  [1] for a study of what may happen 
when some of the components  of T vanish.) The 
controls u( . )  are allowed to take arbitrary real 
values. The matrix S(x) is the rotation matrix 

s ( x )  = 

0 X 3 - - X  2 

- - X  3 0 X 1 

X 2 - - X  1 0 

In [1] it is claimed that the control law u = - T'x 
stabilizes the system (1). However, this is false if 
some I i = Ij, i ~ j .  (The gap is in the sentence "a  
simple calculation shows t h a t . . . "  in page 36. Ac- 
tually, it is easy to prove that Ii 4: Ij for all i v~j is 
necessary as well as sufficient for their argument 
to be valid.) We concentrate then on that case. 
Without loss of generality, we assume that I a = I 2. 

If 13 = 11 as well, then the equations become 2 = 
Tu, which cannot be stabilized in any reasonable 
sense. So we assume that 13 ~ 11 , i.e. that the 
object is not spherical. 
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For the rest of this note, we assume that 11 = 12 
and 134:11 . Letting a := (11-13) /11  and b,:= 
T , / I  i, we obtain the final set of equations 

21 = ax2x  3 + blu , (3) 

2 2 = - a x l x  3 + b2u , (4) 

23 = b3u, (5) 
where the hypotheses imply that a 4:0 and all 
b , ~ 0 .  

Definition 1.1. Assume that f : R n × R  ~ R "  is 
smooth (i.e., c ~ ) ,  f(0,  0 ) =  0. We shall say that 
the control system 

2 = f ( x ,  u) 

is (globally) smoothly stabilizable if there exists a 
smooth function k : R" ---) R such that k(0) = 0 
and the origin is globally asymptotically stable for 

2 = f ( x ,  k ( x ) ) .  

Our main result is as follows: 

Theorem. The system (3)-(5) is smoothly stabiliz- 

able. 

Note that it will never be possible to find a 
linear k as in [1], even if only local stabilization is 
required. This is because in that case there would 
exist states x arbitrarily close to the origin of the 
form 

( X  1 , X 2 , 0 ) ,  X 2 1 + x 2 * O ,  

for which k ( x ) =  O. Since such points are equi- 
libria for the closed loop system, asymptotic sta- 
bility cannot result. Thus truly nonlinear feedback 
is needed for our problem. 

The next section provides the main steps of the 
proof of the above theorem; technical details are 
left for the last section. Some of the results are 
stated in more generality than for the particular 
system that we study here, and may be useful in 
other contexts. 

2. Proof of the theorem 

First of all, it is convenient to make a linear 
change of coordinates in (3)-(5). This will be done 
in two steps. First introduce variables 

t t 
X 1 : =  b3x 1 - b lx3 ,  x 2  : =  b3x 2 - b2x 3. 

Next introduce variables 

X 1 : :  blX; -1- b 2 x ; ,  x 2 : :  blX;  - b2x; .  

This latter change of coordinates is invertible be- 
cause its determinant is the nonzero number 

bf + 

Finally, we let x 3 := ax 3, b := (b 2 + b~) /a ,  and we 
change coordinates in the input space by u := ab3u. 
After all this, the equations become 

21 = X3X2, (6) 

2 2 = - x 3 x  l - b x  2, (7) 

23 = u. (8) 

This can be thought of as a cascade of a system 
with an integrator. To stabilize such a system, we 
use a lemma that has appeared often in the liter- 
ature. It may be thought of as a 'generalized 
principle of PD control',  since it asserts for mech- 
anical systems that if one knows how to control 
the position of an object then one also has a 
feedback law for control of both position and 
velocity. The proof, which for completeness we 
repeat in the next section, can be found also in [3], 
as well as in [7] and [2]. The result can also be 
proved using the 'bounded- input  bounded-output '  
ideas in [5]; it is only necessary to make the first 
system stable in that sense by a prehminary feed- 
back [6]. 

Lemma 2.1. Suppose that the following system is 
smoothly stabilizable: 

2 = f ( x ,  u) .  

Then the system (on R ~+1) given by 

2 = f ( x ,  y ) ,  (9) 

);' = u, (10) 

is also smoothly stabilizable. [] 

In order to prove the theorem, it is then neces- 
sary to verify the hypotheses of Lemma 2.1, to be 
applied with 

( ux2 1 f ( x ,  u) = - u x ,  - bu2 ] " (11) 

This will be in turn a consequence of the proposi- 
tion stated below. 
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By a weak Lyapunov function for 

= f 0 ( x ) ,  (12) 

where f0 : R n ~ R" is smooth, we mean a continu- 
ously differentiable scalar function V:R"--+ R 
with V(0) = 0 and such that 

V(x) > 0 

(V is positive definite) and 

LfoV(x ) .'= V V ( x )  . i v ( x )  < 0 (13) 

for each nonzero x and further, ( x l V ( x )  <_ 3} is 
compact for each 3 > 0. 

A k as in Definition 1.1 that satisfies k ( x )  > 0 
for all x ~ 0, will be called a positive feedback. If 
such a k exists, we say that the system is smoothly 
stabilizable with positive feedback. 

Proposition 2.2. Assume that fo, f l  : R n __. R ~ are 
smooth, fo(0) = 0, and there exists a weak Lyapunov 
function for (12). Suppose further that for every 
complete trajectory ( x( t ) ,  0 < t < oo} of (12) which 
satisfies 

L / V ( x ( t ) )  > 0 for all t 

it follows that x(  t ) = O. Then the system 

= f o ( x )  + u f l ( x )  (14) 

is smoothly stabilizable with positive feedback. 

This result will be proved in the next section. 
We now show that Lemma 2.1 and Proposition 2.2 
imply our main result. To do this, we use the 
proposition to show that the system given by 
(3)-(4) satisfies the hypotheses of the lemma. We 
need to prove that the system (11) can be smoothly 
stabilized. Consider first the system obtained by 
dropping the factor u from these equations, which 
is just a forced harmonic oscillator: 

-'¢1 = x 2 ,  ( 1 5 )  

"~2 = -- Xl  -- b u .  (16) 

then ½(xa 2 + x 2) is a weak Lyapunov function for 
the corresponding system with no controls, and 

L i V ( x ( t ) )  = bx2(t  ) = b (a  sin t +/3 cos t ) ,  

so that LAV(x( t ) )  can only have constant sign if 
a = fl = 0, which implies x ( t )  - O. By the proposi- 

tion, there is a smooth positive feedback stabilizer 
k ( . )  for (15)-(16). But then 

& =k(x)x2, 

= - k ( x ) x ,  + b k ( x )  2, 

is also asymptotically stable. This latter conclu- 
sion follows from the fact that (since k ( x )  re- 
mains nonzero) the nonzero trajectories of this 
system coincide with those of the system without 
the factor k(x ) .  (Equivalently, one may argue via 
Lyapunov functions.) Thus the theorem will be 
established once the proposition is proved. 

3. Proof of the proposition 

To prove the proposition we first establish the 
following claim: 

There is a feedback stabilizer k such that k ( x )  
> 0 f o r a l l x .  

We simply define k to be any smooth function 
such that k ( x )  >_ 0 for all x and so that 

k ( x ) > 0  if and only if L f V < O .  

(Since the set where the latter inequality holds is 
open, there is always some such k.) We need to 
see that the origin is asymptotically stable for the 
corresponding closed loop system. This follows by 
the LaSalle invariance principle: observe that 

/~jo+,<i V(x)  = S_,joV(X) + k/v V(x ) (17) 

and both terms are always nonnegative, the first 
by definition of weak Lyapunov function and the 
second by definition of k. In particular, the only 
way in which (17) can be zero is if both terms 
vanish, that is 

LioV( X ) = 0  

and 

G V ( x )  >_ O. 

Thus there are no complete trajectories for which 
(17) vanishes identically, and the invariance prin- 
ciple applies. This establishes the claim. 

We now want to perturb the feedback k in 
order to make it everywhere positive, as needed 
for the proposition. By standard inverse Lyapunov 
theorems (see for instance Theorem 14 in [4],) we 
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know that there is a strong Lyapunov  function for 
the system 

2 = f 0 ( x )  + k ( x ) f l ( x  ), (18) 

that  is, there is a weak Lyapunov  funct ion which 
satisfies also the strict inequali ty 

L/o+kfV(x ) < 0 (19) 

for all nonzero x. The proof  will be concluded 
provided that  we find a positive and smooth  ~ ( x )  
such that 

a ( x ,  oh(x)) < 0 for all x 4:0 (20) 

where 

a ( x ,  u) := Lso+ki,+~iV 

is a smooth  funct ion defined for x ~ R"  and u ~ R. 
This is a consequence (with W =  R" and X = 1) of  
the following more  general result. 

Lemma  3.1. Let W E  R ~ be an open neighborhood 
of 0 and a : W × R ~ R continuous. Assume that 
a(x ,  0 ) < 0  for each x 4=O. Then there exists a 
smooth k : W ~ R such that k(O) = 0 and so that, 
for all nonzero x and for each 0 < X < l, k ( x )  > 0 
and a(x,  X k (x ) )  < O. 

Proof.  Let W 0 : = W \ { 0  }. We  first obta in  a 
smooth  u ( . ) :  W 0 ~ R such that  

(1) u(x)  > 0 and 
(2) a(x,  Xu(x))  < 0, 

for all x 4= 0 and each X such that  0 < X < 1. Then  
we shall show that  there exists a smooth  ~ : R --* 
[0,1] such that  q~(x) > 0 for x E W0, ~(0)u(0)  = 0, 
and q~u is smooth  on all of  W. This, together  with 
(1) and (2) above,  will imply that  k .'=q~u is as 
desired. 

Let { K~, i > 1} be a locally finite sequence of 
compac t  subsets of  W 0 such that  their interiors 
int K, give a covering of W 0. Local finiteness 
means  that  

N,= {jlKjnK,* } 

is finite for all i. Since the set where a < 0 is open 
and a(x,  0) < 0 for all x ~ W o, there is for each i 
a positive number /~ i  so that  

~(x, ~) < o 

whenever x ~ K~ and 0 </~ < ~ .  Pick for each i a 

smooth  nonnegat ive  funct ion u , ( . )  suppor ted  in 
K~ and such that  

1 
0 < u , ( x )  _< ,min{2,  /~i' J ~ Ni } 

for each x ~ int K,. Finally, let 
oo 

U:= E Uj. 
j =  1 

This is well-defined and smooth  in W0, because 
about  each x there is only a finite n umb er  of 
nonzero  terms. Fur thermore ,  if x ~ K~ then by 
const ruct ion 

0 < u(x)_<t~ 

so bo th  proper t ies  (1) and (2) told. N o w  we must  
build q5 as described earlier. 

Fix R > 0  such that  {x: Nxll < R }  G W, let N 
be an integer such that  NR > 1. For  j > N, let A j  

be the com pa c t  annulus  {x, 1 / j  < II x [I < R},  and 
let 0 j : • - -*  [0,1] be a smooth  funct ion such that  
Oj(x) > 0 if and only if 1 / j  < II x II < R. Then  the 
suppor t  of  0j is precisely Aj. Let oj = Oju, so vj is a 
compac t ly  suppor ted  smooth  funct ion on R. Let 
/£j denote  the supremum,  taken over  all of  R n (or, 
equivalently,  over  A j),  of  the values of  the func- 
tions % and all their par t ia l  derivatives up to 
order  j .  Similarly, let Kj denote  the supremum,  
taken over  all of  R n, of  the values of  0j and all its 
part ial  derivatives up to order  j .  Let Kj = max( l ,  
Kj, K,).  Let 

qS0= J=~=N2JKj " 

Notice  that  if k is any nonnegat ive  integer 
then, if we look at the terms of the series for which 
j > k, all the derivatives of  order  < k of the j - th  
te rm are bounded  by  2 - j  (because Kj < Kj).  So 
the series converges uni formly  together  with all 
the part ial  derivatives of  all orders, and the limit is 
a smooth  funct ion on R. Moreover ,  since Kj > 1, 
the funct ion q50 satisfies 0 < ~0(x)  < 1 for all x 
R. Clearly, qS0(x) > 0 if and only if 0 < N x II < R. 
The  funct ion ~0 u is given by 

¢oU= ~ Ojvj. 
j =  N 2JKj 

Since /£j < Kj, we see that, if k > 0 then, if we 
look at the terms of the series for which j > k, 
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then all the derivatives of order < k of the j- th 
term are bounded by 2-J. So the series converges 
uniformly together with all the partial derivatives 
of all orders, and the limit is a smooth function on 
R. Hence ~0 u is smooth on R. Further, qb0u 
vanishes at the origin because each term does. 

To conclude the proof, take a smooth function 
qh :R ~ [0,1] such that q~l(X) > 0 whenever II x II 
> R, and ~1 vanishes on a neighborhood of the 
origin. Then let q5 = ½(q~0 + ~1). It is clear that 
satisfies all the desired conditions. [] 

and take the feedback 

k'(x, y):= Wk(x)'f(x, y) 
- v V ( x ) ,  g ( x ,  z )  - 

where z:=y-k(x). Then, the derivative of W 
along trajectories of (9), (10) with u = k'(x, y) is 

L ,  oV( x ) - < o 

for all nonzero (x, y),  and global stability is 
assured. 

The proof of the theorem is now complete. 

We conclude by providing the proof of Lemma 
2.1 (cf. [3,7,2]). Assume that 2=f(x, u) is 
smoothly stabilizable, and let 

fo(x) : = f ( x ,  k(x)) 

be the stable closed-loop system. Again by the 
Lyapunov inverse theorem, we know that there 
exists a positive definite function V such that 

LloV( X ) < 0 

for all x :g O. Since f and k are smooth, there is a 
smooth g defined on Rn+a so that 

f(x, k(x) + z) = f 0 ( x )  + zg(x, u) 

for all x, z. Introduce the positive definite func- 
tion on R n+l" 

W(x, y):= V(x) + ½(y- k ( x ) )  2 
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