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Abstract

It is shown that, for neutrally stable discrete-time linear systems subject to actuator saturation, "nite gain l
p

stabilization can be
achieved by linear output feedback, for all p3(1,R]. An explicit construction of the corresponding feedback laws is given. The
feedback laws constructed also result in a closed-loop system that is globally asymptotically stable, and in an input-to-state
estimate. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we consider the problem of global
stabilization of a discrete-time linear system subject to
actuator saturation:

P: G
x`"Ax#Bp(u#u

1
), x3Rn, u3Rm,

y"Cx#u
2
, y3Rr

(1)

(we use the notation x` to indicate a forward shift, that
is, for a function x and an integer t, x`(t) is x(t#1)),
where u

1
3Rm is the actuator disturbance, u

2
3Rr is

the sensor noise, and p :RmPRm represents actuator
saturation, i.e., p(s)"[p

1
(s
1
) p

2
(s
2
) 2 p

m
(s
m
)] with

p
i
(s
i
)"sign(s

i
)minM1, Ds

i
DN, and the pair (A,B) is stabiliz-

able. The problem of global asymptotic stabilization (in-
ternal stabilization) of this system has recently been
solved using nonlinear state feedback laws and under the
condition that all the eigenvalues of A are inside or on the
unit circle (Yang, Sontag & Sussmann, 1997), and
for neutrally stable open-loop system using linear state
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feedback (Choi, 1999). Here, we are interested not only in
closed-loop state space stability (internal stability), but
also in stability with respect to both measurement and
actuator noises. More speci"cally, we would like to con-
struct a controller C so that the operator (u

1
, u

2
)C

(y
1
, y

2
) as de"ned by the following standard systems

interconnection (see Fig. 1):

y
1
"P(u

1
#y

2
),

y
2
"C(u

2
#y

1
), (2)

is well de"ned and "nite gain stable.
We note that the disturbance u

1
we consider here is

input additive and enters the system together with the
control input u through the actuators. Simple examples
show that the problem we consider does not always have
a solution if the disturbance enters the system from
outside the actuators.

The above problem was "rst studied for continuous-
time systems. It was shown in Liu, Chitour and Sontag
(1996) that, for neutrally stable open-loop systems, linear
feedback laws can be used to achieve "nite gain stability,
with respect to every ¸

p
-norm. For a neutrally stable

system, all open loop poles are located in the closed
left-half plane, with those on the ju-axis having Jordan
blocks of size one. In the case that full state is available
for feedback (i.e., y

1
"x and u

2
"0), it was shown in Lin,

Saberi and Teel (1995) that if the external input signal is
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Fig. 1. Standard closed-loop connection.

uniformly bounded, then "nite-gain ¸
p
-stabilization and

local asymptotic stabilization can always be achieved
simultaneously by linear feedback, no matter where the
poles of the open-loop system are. The uniform bounded-
ness condition of Lin et al. (1995) was later removed by
resorting to nonlinear feedback (Lin, 1997). Some other
works related to the topic are Hou, Saberi and Lin
(1997a), Chitour, Liu and Sontag (1995), Nguyen and
Jabbari (1997), Saberi, Hou and Stoorvogel (1998),
Suarez, Alvarez-Ramirez, Sznaier and Ibarra-Valdez
(1997) and the references therein.

There are also several studies in the discrete-time
setting, showing some of the continuous-time results
carry over to discrete-time (for example, Hou, Saberi, Lin
& Sannuti, 1997b; Yang et al., 1997) and some do not (for
example, Hou et al., 1997a,b). In particular, Hou et al.
(1997a,b) show that the results of Lin (1997) and Lin et al.
(1995) on "nite gain stabilization of continuous-time sys-
tems do not carry over to discrete-time systems. The
objective of this paper is to show that the results of Liu et
al. (1996), however, do carry over to discrete-time sys-
tems. More speci"cally, we show that, for neutrally stable
discrete-time linear systems subject to actuator satura-
tion, "nite gain l

p
stabilization can be achieved by linear

output feedback for all p3(1,R]. An explicit construc-
tion of the corresponding feedback laws is given. The
feedback laws constructed also result in a closed-loop
system that is globally asymptotically stable, and provide
an input-to-state estimate. While many of the arguments
used are conceptually similar to those used in the con-
tinuous-time case Liu et al. (1996), there are technical
aspects that are very di!erent and not totally obvious.
For example, unlike in Liu et al. (1996), the feedback gain
for the discrete-time case needs to be multiplied by
a small factor, say i, which causes the solution of a cer-
tain Lyapunov equation, and the subsequent estimation
of the solution, to be dependent on i (see Lemma 2). As
another example, the di$culties in evaluating the di!er-
ence of the non-quadratic Lyapunov function along the
trajectories of the closed-loop system entail a careful
estimation by Taylor expansion.

The remainder of the paper is organized as follows.
Section 2 states the main results. Section 3 contains the
proof of the results that were stated in Section 2. A brief
concluding remark is given in Section 4.

2. Preliminary and problem statement

We "rst recall some notation. For a vector X3Rl, DXD
denotes the Euclidean norm of X, and for a matrix
X3RmCn, the induced operator norm. For any p3[1,R),
we write ln

p
for the set of all sequences Mx(t)N=

t/0
, where

x3Rn, such that +=
t/0

Dx(t)Dp(R, and the l
p
-norm of

x3ln
p

is de"ned as DDxDD
lp
"(+=

t/0
Dx(t)Dp)1@p. We use ln

=
to

denote the set of all sequences Mx(t)N=
t/0

, where x3Rn,
such that sup

t
Dx(t)D(R, and the l

=
-norm of x3ln

=
is

de"ned as DDxDD
l=
"sup

t
Dx(t)D.

The objective of this paper is to show the following
result concerning the global asymptotic stabilization as
well as l

p
-stabilization of system P, as given by (1), using

linear output feedback.

Theorem 1. Consider a system (1). Let A be neutrally
stable, i.e., all the eigenvalues of A are inside or on the unit
circle, with those on the unit circle having all Jordan blocks
of size one. Also assume that (A,B) is stabilizable and (A,C)
is detectable. Then, there exits a linear observer-based
output feedback law of the form

x( `"Ax(#Bp(Fx( )!¸(y!Cx( ),

u"Fx( (3)

which has the following properties:

1. It is xnite gain l
p
-stable for all p3(1,R], i.e., there

exists a c
p
'0 such that

DDxDD
lp
4c

p
[DDu

1
DD
lp
#DDu

2
DD
lp
], ∀u

1
3lm

p
, u

2
3lr

p

and x(0)"0, x( (0)"0. (4)

2. In the absence of actuator and sensor noises u
1

and u
2
,

the equilibrium (x,x( )"(0, 0) is globally asymptotically
stable.

Remark 1. We will in fact actually obtain the following
stronger ISS-like property (see Sontag, 1998 and refer-
ences there in):

DD(x,x( )DD
lp
4h

p
(Dx(0)D#Dx( (0)D)#c

p
[DDu

1
DD
lp
#DDu

2
DD
lp
], (5)

where h
p

is a class-K function. Observe that the single
estimate (5) encompasses both the gain estimate (4) and
asymptotic stability. Obviously, (4) is the special case of
(5) for zero initial states. On the other hand, when applied
with arbitrary initial states but u

1
"u

2
"0, there follows

that (x, x( ) is in l
p
, which implies, in particular, that

(x(t),x( (t)) must converge to zero as tPR (global attrac-
tion) and that D(x(t),x( (t))D is bounded by h

p
(Dx(0)D#Dx( (0)D)

(stability).
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3. Proof of Theorem 1

The proof of Theorem 1 will follow readily from the
following proposition, which we establish "rst.

Proposition 1. Let A be orthogonal (i.e., A@A"I), and
suppose that the pair (A,B) is controllable. Then, the system

x`"Ax#Bp(!iB@Ax#u), x3Rn, u3Rm (6)

is xnite gain l
p
-stable, p3(1,R], for suzciently small

i'0. Moreover, for each p3(1,R] there exist a real c
p
,

a iH3(0, 1], and a class-K function h
p

such that, for all
i3(0,iH],

DDxDD
lp
4c

p
DDuDD

lp
#h

p
(Dx(0)D) (7)

for all inputs u3lm
p

and all initial states x(0).

To prove this proposition, we need to establish a few
lemmas.

Lemma 1. For any p'l'0, there exist two scalars
M

1
, M

2
'0 such that, for any two positive scalars m and f,

mp~lfl4M
1
mp#M

2
fp (8)

and consequently, for any n'0 and i'0,

mp~lfl4M
1
inmp#in(l~p)@lM

2
fp. (9)

Proof of Lemma 1. Let h :R`PR` be de"ned as
h(x)"xl@(p~l), which is continuous and strictly increasing
with h(0)"0 and h(R)"R, and k(x)"x(p~l)@l be its
pointwise inverse. De"ne

H(x)"P
x

0

h(v) dv"
p!l

p
xp@(p~l) (10)

and

K(x)"P
x

0

k(v) dv"
l

p
xp@l. (11)

Letting a"mp~l and b"fl, it follows from Young's
inequality (Hardy, Littlewood & Polya, 1952),
ab4H(a)#K(b) for all a, b3R`, that

mp~lfl4
p!l

p
mp#

l

p
fp"M

1
mp#M

2
fp, (12)

which also trivially implies (9). h

Lemma 2. Let A and B be as given in Proposition 1. Then,
for any i'0 such that iB@B(2I, AM (i)"A!iBB@A is
asymptotically stable. Moreover, let P(i) be the unique
positive-dexnite solution to the Lyapunov equation,

AM (i)@PAM (i)!P"!I. (13)

Then, there exists a iH'0 such that

s
1
i

I4P(i)4
s
2
i

I, ∀i3(0, iH] (14)

for some positive constants s
1

and s
2

independent of i.

Proof of Lemma 2. The asymptotic stability of AM follows
from a simple Lyapunov/LaSalle argument (Choi, 1999).
Let iH

1
'0 be such that iB@B(2I for all i3(0,iH

1
]. We

recall that the solution to the Lyapunov equation (13) is
given by

P(i)"
=
+
k/0

(AM k(i))@AM k(i)

"

=
+
k/0

[(A!iBB@A)@]k[(A!iBB@A)]k. (15)

Using the fact that AA@"I, we have

(A!iBB@A)@(A!iBB@A)

"I!2iA@BB@A#i2A@BB@BB@A

"I!iA@B(2I!iB@B)B@A. (16)

Using now the fact that iB@B(2I for i3(0,iH
1
], we

know that there exists iH
2
3(0,iH

1
] such that

1
2
I4(A!iBB@A)@(A!iBB@A)4I, ∀i3(0,iH

2
]. (17)

Again using the fact that A@A"I, we verify in a straight-
forward way that

(A!iBB@A)n"An!iC
A, B

C@
A, B

An#i2M
1
(i), (18)

where M
1
(k) is a polynomial matrix in i of order n!2,

n being the order of the system (6), and

C
A, B

"[B AB 2 An~1B]

is the controllability matrix of the pair (A,B) and is of full
rank. It then follows that

((A!iBB@A)n)@(A!iBB@A)n

"((An)@!i(An)@C
A, B

C@
A, B

#i2M@
1
(i))

(An!iC
A, B

C@
A, B

An#i2M
1
(i))

"I!2i(An)@C
A, B

C@
A, B

An#i2M
2
(i), (19)

where M
2
(i) is a symmetric polynomial matrix in i of

order 2n!2. Since C
A, B

is of full rank, and because A is
nonsingular, there exists a iH3(0, iH

2
] such that

04I!iM0
1
I4((A!iBB@A)n)@(A!iBB@A)n

4I!iM0
2
I(I, ∀i3(0,iH] (20)

for some constants M0
1
, M0

2
'0 independent of i.
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Using (17), (20) and the fact that A@A"I in (15), we
have that for all i3(0,iH],

P(i)4
n~1
+
i/0

[(A!iBB@A)i]@(A!iBB@A)i
=
+
k/0

(1!iM0
2
)kI

4n
1

iM0
2

I"
s
2
i

I (21)

and

P(i)5
n~1
+
i/0

[(A!iBB@A)i]@(A!iBB@A)i
=
+
k/0

(1!iM0
1
)kI

5A
1

2B
n~1

n
1

iM0
1

I"
s
1
i

I, (22)

where s
1
"n/2n~1M0

1
and s

2
"n/M0

2
. h

Lemma 3. Let AM (i) be as given in Proposition 1, P(i) as
dexned in Lemma 2, then for any p3(1,R), there exists
a iH'0 such that

[x@AM @(i)P(i)AM (i)x]p@2![x@P(i)x]p@2

4!i(2~p)@2fDxDp, i3(0,iH], (23)

where f'0 is some constant independent of i.

Proof of Lemma 3. Inequality (23) holds trivially for
x"0. Hence, in what follows, we assume, without loss of
generality, that xO0.

For simplicity, we introduce from now the following
notation:

k"x@AM @(i)P(i)AM (i)x (24)

(where x and i will be clear from the context). By the
de"nition of P(i), we have

k!x@P(i)x"!x@x. (25)

From Lemma 2, there exists a iH
1
'0 such that for all

i3(0,iH
1
]

K
x@x

x@P(i)x K4
4

5
, ∀xO0. (26)

With (25) and (26), we can continue the proof using
Taylor expansion with remainder,

[x@AM @(i)P(i)AM (i)x]p@2![x@P(i)x]p@2

"[x@P(i)x!x@x]p@2![x@P(i)x]p@2

4[x@P(i)x]p@2C1!
p

2

x@x
x@P(i)x

#dA
x@x

x@P(i)xB
2

D
![x@P(i)x]p@2

"!

p

2
[x@P(i)x](p~2)@2DxD2#d[x@P(i)x](p~4)@2DxD4,

i3(0,iH
1
], (27)

where d"max
@z@y4@5

Mp
8
D(p!2)(1#z)p@2~2DN is a constant

independent of i.
Again by Lemma 2, there exists a iH3(0,iH

1
] such that

[k]p@2![x@P(i)x]p@24!i(2~p)@2fDxDp, i3(0,iH] (28)

for some f'0 independent of i. h

Lemma 4. Let A and B be as given in Proposition 1. For
any l3[1,R) and any i3(0, 1],

Dp(!iB@Ax#u)Dl42l~1ilDBDlDxDl#2l~1DuDl. (29)

Proof of Lemma 4. Since p is a standard saturation
function and DAD"1, for any l51, we have

Dp(!iB@Ax#u)Dl4(iDBDDxD#DuD)l

42l~1ilDBDlDxDl#2l~1DuDl, (30)

where the last inequality follows from Jensen's inequality
applied to the convex function sl:

(a#b)l41
2
(2a)l#1

2
(2b)l, ∀a, b50. h

Lemma 5. Let A and B be as given in Proposition 1. Pick
any x3Rn and u3Rm, any number g53, and any non-
negative real number l. Denote x8 "!iB@Ax#u. Then,
provided DxD'gDBp(x8 )D, we have

DAx#Bp(x8 )Dl4DxDl#lDxDl~2x@A@Bp(x8 )

#MDxDl~2DBp(x8 )D2 (31)

for some constant M'0 which is independent of i.

Proof of Lemma 5. We "rst note that, since
DxD'gDBp(x8 )D53DBp(x8 )D,

D2x@A@Bp(x8 )#DBp(x8 )D2D
DxD2

4

4

5
. (32)

Hence, using Taylor expansion with remainder, we have

DAx#Bp(x8 )Dl"[DxD2#2x@A@Bp(x8 )#DBp(x8 )D2]l@2

" DxDlA1#
2x@A@Bp(x8 )#DBp(x8 )D2

DxD2 B
l@2

4DxDlC1#
l

2

2x@A@Bp(x8 )#DBp(x8 )D2
DxD2

#dA
2x@A@Bp(x8 )#DBp(x8 )D2

DxD2 B
2

D
4DxDl#lDxDl~2x@A@Bp(x8 )#

l

2
DxDl~2DBp(x8 )D2

#dDxDl~4((2#1/g)DxDDBp(x8 )D)2, (33)

where d"max
@z@y4@5

M1
8
lD(l!2)(1#z)l@2~2DN is a constant

independent of i.
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So we can see that the inequality (31) holds for
M" l

2
#d(2#1/g)2. h

We are now ready to prove Proposition 1.

Proof of Proposition 1. We separate the proof for
p3(1,R) and for p"R.

Proof for p3(1,R): For clarity, let us repeat here the
system equation (6)

x`"Ax#Bp(!iB@Ax#u), x3Rn, u3Rm. (34)

This may also be rewritten as

x`"AM (i)x#B(!x8 #p(x8 )#u), x3Rn, u3Rm, (35)

where AM (i)"A!iBB@A, x8 "!iB@Ax#u.
For this system, de"ne the function <

1
as

<
1
(x)"(x@P(i)x)p@2, (36)

where P(i) is as given in Lemma 2. We next evaluate the
increments<(x`(t))!<(x(t)), which we denote as `*<

1
a

for short, along any given trajectory of (35). It is conve-
nient to treat separately the cases DxD'gDBp(x8 )D and
DxD4gDBp(x8 )D. Here g53 is a number to be speci"ed
soon.

Case 1: DxD'gDBp(x8 )D. Using the de"nition of <
1
, we

now give an upper bound on *<
1

along the trajectories
of the system (35). To simplify the equations, we intro-
duce the following notation:

l"2ix@A@P(i)BB@Ax#2x@A@P(i)Bp(x8 )

#p@(x8 )B@P(i)Bp(x8 ),

in addition to k as de"ned in Eq. (24). Thus,

*<
1
"<`

1
!<

1

"[(x`)@P(i)x`]p@2![x@P(i)x]p@2

"[[AM (i)x#iBB@Ax#Bp(x8 )]@P(i)[AM (i)x

#iBB@Ax#Bp(x8 )]]p@2![x@P(i)x]p@2

"[k#2x@A@P(i)B(iB@Ax#p(x8 ))

!i2x@A@BB@P(i)BB@Ax#p@(x8 )B@P(i)Bp(x8 )]p@2

![x@P(i)x]p@2

4[k#l]p@2![x@P(i)x]p@2

"[k]p@2C1#
l
kD

p@2
![x@P(i)x]p@2. (37)

By Lemma 2, there exist a iH
1
'0 and g53 independent

of i, such that for all DxD'gDBp(x8 )D

K
l
k K4

4

5
, i3(0,iH

1
]. (38)

To see this, let iH
0
'0 be such that (14) of Lemma 2 and

(17) in the proof of Lemma 2 both hold for all i3(0,iH
0
].

Then, for all i3(0,iH
0
], we have

DlD4C2s
2
DBD2#

2s
2

ig
#

s
2

ig2DDxD2 (39)

and

DkD5
s
1

2i
DxD2, (40)

from which it is clear that there exist iH
1

and g'3 such
that (38) holds.

Next, we may use a Taylor expansion with remainder
to continue the bounding of *<

1
as follows:

*<
1
4[k]p@2C1#

p

2

l
k
#dC

l
kD

2

D![x@P(i)x]p@2, (41)

where d"max
@z@y4@5

M1
8
pD(p!2)(1#z)p@2~2DN is a con-

stant independent of i.
By Lemmas 3 and 2, there exists iH

2
3(0,iH

1
] such that

for any i3(0,iH
2
], we have

*<
1
4!i(2~p)@2fDxDp#

p

2
[k](p~2)@2[l]#d[k](p~4)@2[l]2

4!i(2~p)@2fDxDp#t
1
i(2~p)@2DxDp~2

][2DxDDP(i)BDDx8 !p(x8 )D#2DxDDP(i)BDDuD

#DP(i)DDBp(x8 )D2]#t
2
i(4~p)@2DxDp~4

][2DxD2DiP(i)DDBD2#2DP(i)DDxDDBp(x8 ))D

#DP(i)DDBp(x8 )D2]2, (42)

where f'0 is as de"ned in Lemma 3, and t
1
, t

2
'0 are

some constants independent of i.
Before continuing, we digress to observe that

Dx8 !p(x8 )D4x8 @p(x8 ). (43)

Using (43), Lemmas 1 and 4, and the condition
DxD'gDBp(x8 )D, we can show that there exists a iH

3
3(0,iH

2
]

such that for all i3(0,iH
3
] the estimation of *<

1
can be

now concluded as follows:

*<
1
4!i(2~p)@2fDxDp#2t

1
i(2~p)@2DxDp~1DP(i)BDx8 @p(x8 )

#M
1a

i(2~p)@2maxMi,ip~1NDxDp#M
2a

(i)DuDp,

(44)

where M
1a
'0, M

2a
(i)'0 with M

1a
independent of

i are de"ned in an obvious way. In deriving (44), we have
also used the fact that DxDp~2((DBp(x8 )D/g)p~2 for p(2
and Bp(x8 )O0.
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Case 2: DxD4gDBp(x8 )D. By using Lemmas 2}4, *<
1

along the trajectories of (35) is bounded as follows:

*<
1
"[(x`)@P(i)x`]p@2![x@P(i)x]p@2

4DP(i)Dp@2DAx#Bp(x8 )Dp![x@P(i)x]p@2#[k]p@2

4!i(2~p)@2fDxDp#i~p@2sp@2
2

(DxD#DBp(x8 )D)p

4!i(2~p)@2fDxDp#(g#1)pi~p@2sp@2
2

DBp(x8 )Dp

4!i(2~p)@2fDxDp#M
1b

i~(p~2)@2ip~1DxDp

#M
2b

(i)DuDp, i3(0,iH
3
], (45)

where s
2
'0 and f'0 are as de"ned in Lemmas 2 and

3, respectively, and M
1b
'0, M

2b
(i)'0 are constants

with M
1b

being independent of i.
Summarizing, we may combine Case 1 with Case 2, to

obtain

*<
1
4

!i(2~p)@2fDxDp#2t
1
i(2~p)@2 DP(i)BDDxDp~1x8 @p(x8 )

#M
1
i(2~p)@2maxMi,ip~1N DxDp

#M
2
(i)DuDp, if DxD'gDBp(x8 )D,

!i(2~p)@2fDxDp#M
1
i(2~p)@2 ip~1DxDp#M

2
(i)DuDp

if DxD4gDBp(x8 )D, (46)G
where

M
1
"maxMM

1a
, M

1b
N

and

M
2
(i)"maxMM

2a
(i),M

2b
(i)N.

For system (34), we next de"ne another function

<
0
(x)"DxDp`1. (47)

An estimation of its increments along the trajectories of
(34) can also be carried out by separately considering
each of the cases DxD'gDBp(x8 )D and DxD4gDBp(x8 )D.

Case 1: DxD4gDBp(x8 )D. By Lemma 4, for any i3(0,iH
3
],

*<
0
"DAx#Bp(x8 )Dp`1!DxDp`14DAx#Bp(x8 )Dp`1

4(DxD#DBp(x8 )D)p`14((g#1)DBp(x8 )D)p`1

4iN
1a

DxDp#N
2a

DuDp (48)

for some positive constants N
1a

and N
2a

independent
of i. In deriving (48), we have used the fact that both
p and i are bounded.

Case 2: DxD'gDBp(x8 )D. By Lemmas 5, 4 and 1, there
exists iH

4
3(0,iH

3
] such that for any i3(0,iH

4
],

*<
0
"DAx#Bp(x8 )Dp`1!DxDp`1,

4DxDp`1#(p#1)DxDp~1x@A@Bp(x8 )

#N
1b

DBp(x8 )D2DxDp~1!DxDp`1,

4!

p#1

i
DxDp~1x8 Tp(x8 )#iN

1c
DxDp#N

2c
(i)DuDp,

(49)

where N
1c

, N
1b
'0, N

2c
(i)'0 are constants, and

N
1b

, N
1c

are independent of i. In deriving (49), the "rst
inequality by Lemma 5, the second inequality is the con-
sequence of the fact that p is bounded and Lemmas 4
and 1.

Combining Case 1 with Case 2, we have, for any
i3(0,iH

4
],

*<
0
4G

!p`1i DxDp~1x8 @p(x8 )

#iN
1
DxDp#N

2
(i)DuDp, if DxD'gDBp(x8 )D,

iN
1
DxDp#N

2
(i)DuDp, if DxD4gDBp(x8 )D,

(50)

where

N
1
"maxMN

1a
,N

1c
N

and

N
2
(i)"maxMN

2a
, N

2c
(i)N.

Finally, we de"ne the following Lyapunov (or `storagea)
function:

<(x)"<
1
(x)#-<

0
(x), (51)

where

-"

2

p#1
i(4~p)@2t

1
DP(i)BD.

It is straightforward to verify that there exists some
iH3(0,iH

4
] such that

*<(x)4!i(2~p)@2aDxDp#b(i)DuDp, ∀i3(0,iH] (52)

for some a3(0, f) and b(i)'0.
Now consider an arbitrary initial state x(0) and control

u, and the ensuing trajectory x. Summing both sides of
(52) from t"0 to R and using the fact that < is non-
negative, we conclude that

i(2~p)@2aDDxDDp
lp
4b(i)DDuDDp

lp
#h

p0
(Dx(0)D), (53)

where h
p0

(r)"-rp`1#(s
2
r2/i)p@2. This implies that

DDxDD
lp
4c

p
DDuDD

lp
#h

p
(Dx(0)D), (54)

where

c
p
"(i(p~2)@2b(i)/a)1@p,
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and

h
p
(r)"(i(p~2)@2h

p0
(r)/a)1@p.

Proof for p"R. From (52) we get for p"2,

*<(x)4!aDxD2#b(i)DDuDD2
l=

. (55)

Hence, *<(x) is negative outside the ball of radius
(b(i)/a)1@2DDuDD

l=
centered at the origin, from which it fol-

lows that, for any state x(t) in the trajectory:

<(x(t))4A
-b3@2(i)

a3@2
DDuDD

l=
#

s
2
b(i)

ai BDDuDD2
l=

#h
=0

(Dx(0)D), (56)

where h
=0

(r)"(s
2
/i)r2#-r3. If DDuDD

l=
41, we have

s
1
i

Dx(t)D24x(t)@P(i)x(t)4<(x(t)) (57)

and

<(x(t))4A
-b3@2(i)

a3@2
#

s
2
b(i)

ai BDDuDD2
l=
#h

=0
(Dx(0)D) (58)

which implies the following estimate for the entire traject-
ory:

DDxDD
l=
4G

i-b3@2(i)

a3@2s
1

#

s
2
b(i)

as
1
H

1@2
DDuDD

l=
#h

=1
(Dx(0)D),

(59)

where h
=1

(r)"(ih
=0

(r)/s
1
)1@2. If, instead, DDuDD

l=
'1, we

have

-DxD34<(x)4A
-b3@2(i)

a3@2
#

s
2
b(i)

ai BDDuDD3
l=

#h
=1

(Dx(0)D), (60)

from which we get that

DDxDD
l=
4A

b3@2(i)

a3@2-
#

s
2
b(i)

ia- B
1@3

DDuDD
l=
#h

=2
(Dx(0)D), (61)

where h
=2

(r)"(h
=0

(r)/-)1@3. Letting

c
=
"maxGG

i-b3@2(i)

a3@2s
1

#

s
2
b(i)

as
1
H

1
2,

G
b3@2(i)

a3@2-
#

s
2
b(i)

a-i H
1@3

H
and h

=
"maxMh

=1
, h

=2
N, we have, "nally, the required

conclusion:

DDxDD
l=
4c

=
DDuDD

l=
#h

=
(Dx(0)D) (62)

for p"R as well.
We are now ready to prove Theorem 1. h

Proof of Theorem 1. Without loss of generality, making
a change of coordinates if required, we may assume that
the system (1) has the following partitioned form:

x`
1
"A

1
x
1
#B

1
p(u#u

1
),

x`
0
"A

0
x
0
#B

0
p(u#u

1
),

y"Cx#u
2
.

(63)

where A
1

is orthogonal and A
0

is asymptotically stable,
and

A"C
A

1
0

0 A
0
D, B"C

B
1

B
0
D.

We construct the output feedback law in the form of (3)
with F"[!iB@

1
A

1
0], the matrix ¸ being chosen such

that A#¸C is asymptotically stable. Using this feed-
back, the closed-loop system is

G
x`
1
"A

1
x
1
#B

1
p(!iB@

1
A

1
x(
1
#u

1
),

x`
0
"A

0
x
0
#B

0
p(!iB@

1
A

1
x(
1
#u

1
),

x( `"Ax(#Bp(!iB@
1
A

1
x(
1
)!¸(Cx!Cx(#u

2
).

(64)

Let e"[e@
1

e@
0
]@, where e

1
"x

1
!x(

1
and e

0
"x

0
!x(

0
.

Here we have partitioned x("[x( @
1

x( @
0
]@ accordingly. In

the new states (x, e), (64) can be written as follows,

x`
1
"A

1
x
1
#B

1
p(!iB@

1
A

1
x
1
#iB@

1
A

1
e
1
#u

1
),

x`
0
"A

0
x
0
#B

0
p(!iB@

1
A

1
x
1
#iB@

1
A

1
e
1
#u

1
),

e`"(A#¸C)e

#B[p(!iB@
1
A

1
x
1
#iB@

1
A

1
e
1
#u

1
)

!p(!iB@
1
A

1
x
1
#iB@

1
A

1
e
1
)]#¸u

2
. (65)

Since p is global Lipschitz with a Lipschitz constant 1,

Dp(!iB@
1
A

1
x
1
#iB@

1
A

1
e
1
#u

1
)

!p(!iB@
1
A

1
x
1
#iB@

1
A

1
e
1
)D4Du

1
D. (66)

Noting that A#¸C is asymptotically stable and viewing

p(!iB@
1
A

1
x
1
#iB@

1
A

1
e
1
#u

1
)

!p(!iB@
1
A

1
x
1
#iB@

1
A

1
e
1
)#¸u

2

as an l
p

input to the e-subsystem, we have that, for some
constant c

pe
'0,

DDeDD
lp
4c

pe
(DDu

1
DD
lp
#DDu

2
DD
lp
#De(0)D). (67)

Next, applying Proposition 1 to the x
1
-subsystem, and

viewing iB@
1
A

1
e
1
#u

1
as an l

p
input to this subsystem,

we have,

DDx
1
DD
lp
4c

p1
(DDu

1
DD
lp
#DDu

2
DD
lp
#De(0)D)#h

p1
(Dx

1
(0)D)

for some c
p1

'0 and h
p1

of class K.
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On the other hand, viewing p(!iB@
1
A

1
x
1
#

iB@
1
A

1
e
1
#u

1
) as an l

p
input to the x

0
-subsystem, we

have the estimate

DDx
0
DD
lp
4c

p0
(DDx

1
DD
lp
#DDeDD

lp
#DDu

1
DD
lp
#Dx

0
(0)D)

for some c
p0

'0.
In conclusion, we have

DDxDD
lp
4DDx

1
DD
lp
#DDx

0
DD
lp

4c
p
(DDu

1
DD
lp
#DDu

2
DD
lp
)#u

p
(De(0)D#Dx(0)D), (68)

where c
p
'0 is some constant and u

p
is a suitable

class-K function. Together with (67), and changing back
to the original coordinates, we also conclude that an
estimate like the one in (5) holds. h

4. Conclusions

In this paper, we have established that a discrete-time,
neutrally stable, stabilizable, and detectable linear sys-
tem, when subject to actuator saturation, is "nite gain
l
p

stabilizable by linear feedback, for any p3(1,R].
A linear output feedback law which simultaneously
achieves l

p
stabilization and global asymptotic stabiliz-

ation was constructed.
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