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Abstract
Background: A computational method (called p53HMM) is presented that utilizes Profile Hidden
Markov Models (PHMMs) to estimate the relative binding affinities of putative p53 response
elements (REs), both p53 single-sites and cluster-sites. These models incorporate a novel
"Corresponded Baum-Welch" training algorithm that provides increased predictive power by
exploiting the redundancy of information found in the repeated, palindromic p53-binding motif. The
predictive accuracy of these new models are compared against other predictive models, including
position specific score matrices (PSSMs, or weight matrices). We also present a new dynamic
acceptance threshold, dependent upon a putative binding site's distance from the Transcription
Start Site (TSS) and its estimated binding affinity. This new criteria for classifying putative p53-
binding sites increases predictive accuracy by reducing the false positive rate.

Results: Training a Profile Hidden Markov Model with corresponding positions matching a
combined-palindromic p53-binding motif creates the best p53-RE predictive model. The p53HMM
algorithm is available on-line: http://tools.csb.ias.edu

Conclusion: Using Profile Hidden Markov Models with training methods that exploit the
redundant information of the homotetramer p53 binding site provides better predictive models
than weight matrices (PSSMs). These methods may also boost performance when applied to other
transcription factor binding sites.

Background
The p53 protein plays a crucial role in cancer suppression
in the human body. In response to cancer-inducing, DNA-
damaging stress conditions, the tetrameric p53 proteins
can activate different pathways that lead to DNA repair,
cell cycle arrest, inhibition of angiogenesis, and apoptosis
[1]. A highly degenerative, palindromic consensus DNA
binding site, consisting of a half-site RRRCWWGYYY, fol-

lowed by a variable length spacer, then followed (almost
always) by a second half-site RRRCWWGYYY sequence,
has been discovered for the protein, where R is a purine, Y
a pyrimidine, W is either A or T (adenine or thymine) and
G is guanine and C is cytosine (see Figure 1) [2,3]. By labe-
ling each quarter-site RRRCW as → and its reverse-com-
plement WGYYY as ←, the first discovered p53 consensus
sequence can be graphically represented by → ← spacer →
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←. This configuration of the four quarter-sites is often
referred to as the head-to-head (HH) orientation, and rep-
resents the vast majority of experimentally-validated p53
binding sites to date.

The degeneracy of the p53-RE
In the influential paper "Definition of a Consensus bind-
ing Site for p53", by El-Deiry et al., 7 of the 20 DNA target
sites (35%) used to form the head-to-head (HH) p53 con-
sensus sequence had at least one nucleotide insertion or
deletion relative to the discovered 20 bp consensus after
proper alignment (see Figure 1) [3]. Alignments of the
roughly 160 experimentally-validated p53 binding sites to
date also show that approximately 30% of presently
known sites have at least one nucleotide insertion or dele-
tion relative to the consensus matrix [4]. Discovery of p53
binding sites with such degeneracy cannot be reliably
made with a PSSM approach, since prevalent insertions
and deletions in the consensus sequence misalign the
PSSM reading frame, and lead to improper scoring. There-

fore, PSSM binding site discovery algorithms inherently
mis-score at least 30% of the known p53 binding sites.

PHMMs can model nucleotide insertions and deletions
Profile Hidden Markov Models provide a coherent theory
for probabilistic modeling of degenerate binding sites
where random nucleotide insertions into and deletions
from the motif are tolerated at certain positions [5,6]. Nat-
ural selection suggests that critical nucleotides are con-
served over evolutionary time, while non-critical
nucleotides (including tolerated insertions in the motif)
are not conserved. The match-state emissions of the
PHMM serve to model the critical positions in the motif
with their observed nucleotide frequencies. The addi-
tional hidden deletion and insertion states at each posi-
tion enable the model to train for (relatively rare)
observed deletions and insertions at different positions in
the motif (see Figure 2). Although the probability of any
particular insertion or deletion of a nucleotide at a certain
position in a functional motif may be rare, the accumu-

Original Data from El-Deiry et al., Used To Define The p53 Consensus Binding SiteFigure 1
Original Data from El-Deiry et al., Used To Define The p53 Consensus Binding Site. The original DNA fragments 
collected from a genome-wide, p53-antibody immunoprecipitation, that were used to define the head-to-head (HH) p53 Con-
sensus Binding Site, are graphically presented [3]. The yellow columns corresponding to the 1st and 2nd half-sites were used to 
define the consensus p53 motif. The p53 binding site is highly degenerative. Within the yellow columns, notice that 7 of the 20 
DNA target sites (35%) had at least one nucleotide insertion (green), deletion (red), or both (magenta) relative to the discov-
ered 10 bp-spacer-10 bp consensus. Since insertions and deletions throw off the reading frame of a weight matrix, any PSSM 
approach will inherently mis-score at least 35% of these 20 sites. Alignments of the 160 experimentally validated p53 binding 
sites also reveal that any PSSM approach would inherently mis-score at least 30% of them as well. Another observation is that 
additional p53 half-sites are immediately adjacent (in yellow) to the ones used to define the consensus in 15 of the 20 target 
sites (75%). Since the genome-wide immunoprecipitation study was designed to pull down the highest affinity sites, the fact that 
75% of the target sites are actually p53 cluster-sites is the first indication that cluster-sites of 3 or more half-sites confer higher 
binding affinity [22].
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The Topologies of p53 Single-site and Cluster-site ModelsFigure 2
The Topologies of p53 Single-site and Cluster-site Models. (a) A Profile Hidden Markov Model (PHMM) contains three 
hidden states for each position in a sequence motif of length n: a match state (green squares), an insertion state (orange dia-
monds), and a delete state (gray circles). The arrows represent allowed transitions between states and have associated proba-
bilities. The match and insertion states also have associated nucleotide emission probabilities. The first and last insertion states 
(I-0 and I-n) and associated transitions (in red) are shown for completeness. However, they are not present in the p53 models 
since they are replaced by FIM and FEM models. (b) The topology of the Finite Emission Module (FEM) of length N allows the 
ability to model any distribution of spacer-lengths between 1 and N. For the p53 models, the model and background probabili-
ties within the FEM modules are identically uniform so that there is no-cost for spacer-lengths between 1 and N, and are 
referred to as "no-cost FEMs". (c) The topology of the Free Insertion Module (FIM) allows for the ability to model an exponen-
tially decaying distribution of spacer-lengths. However, by setting the model and background probabilities to identically uni-
form, the FIM can model any sequence of infinite length with no associated cost to the overall score (hence the word "Free"). 
(d) The main components of the p53 single-site model are the left and right half-site PHMMs, which potentially contain corre-
sponding positions between them. These two half-site models are separated by a no-cost FEM model that limits the length of 
any intervening spacer sequence to 20 bp. The half-site models are also wrapped by two FIMs that allow the Viterbi algorithm 
to find the best matching motifs anywhere in the candidate sequences. (e) The topology of the p53 cluster-site model consists 
of a single PHMM that models a general half-site, and two back-transitions that allow for modeling an infinite number of half-
sites within the cluster-site. The back-transition through the no-cost FEM-14 model limits the spacer-sequence between the 
half-sites to lengths ≤ 14 bp.
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lated probability over all the positions in the motif that an
insertion or deletion event may occur can be significant.
The training set of observed insertions and deletions
serves to fine-tune the model to be properly sensitive to
tolerated deviations from the most prevalent consensus
motif. The main strength of the PHMM is this trained flex-
ibility to properly model variable length motifs. The major
drawback is that more data is required to train the extra
parameters not found in weight matrices (PSSMs).

Using PHMMs to estimate binding affinities
Like weight matrices (PSSMs), Profile Hidden Markov
Models can be used to estimate the relative binding affin-
ity of a protein for a particular binding site sequence [7].
Under ideal conditions, the log-odds scores Gs(x) that a
Profile Hidden Markov Model (trained on training set S)
calculates for any candidate site x is directly proportional
to the free energy -ΔG(x) of the TF-protein binding to that
candidate site [see Additional file 1 for details] [7-9]. The
log-odds scores are given by:

where we define:

With these definitions, and assuming independence of
positions, we have:

The dynamic programming forward and backward algo-
rithms are used to calculate the probabilities Phmm(x) and
Phmm(j, b). These two probabilities are calculated by sum-
ming up the probability of observing the sequence x, and
the base b at position j, for all the paths through the linear
PHMM, respectively. The dynamic programming Viterbi
algorithm is used to find the best alignment of the candi-
date site x to the binding-site motif modeled by the
PHMM. The best (optimal) alignment of the sequence x is
obtained by finding the path through the PHMM that
gives the highest log-odds score for the sequence [8]. In
the case of transcription factor binding sites, the log-odds
score of this optimal path (also called the Viterbi score) is

commonly used to provide adequate approximations to
the probabilities Phmm(x) and Phmm(j, b) [see Additional
file 1 for details]. When using the Viterbi score for the prob-
ability Phmm(x) we are assuming that there is generally
only one major set of binding interactions between spe-
cific nucleotides and amino acids for a given protein-DNA
complex, and that all other possible binding locations in
the response element can be ignored.

Training a PHMM with validated binding sites
Before a PHMM can be used to estimate the relative bind-
ing affinity for any putative binding site, the PHMM must
be trained to properly model a functional binding site of
interest. When training a PHMM for a particular motif, the
goal is to choose the parameters of the model in order to
maximize the likelihood of the sequences in the training
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The Four p53 Correspondence MotifsFigure 3
The Four p53 Correspondence Motifs. The four corre-
spondence motifs for the repeated, palindromic p53 RE are 
graphically represented. In the top three motifs, each line 
corresponds 2 synonymous positions. In the bottom motif, 
the previously independent half-sites are made correspond-
ing (tied) by the yellow connecting lines so that now 4 synon-
ymous positions are corresponded. The completely un-tied 
motif (not shown) has no correspondence, and thus no con-
necting lines, between any of the positions in the motif. (R = 
A or G, W = A or T, and Y = C or T. Position ã has the com-
plement nucleotide emission distribution of a.)
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set, without over-fitting. Again, under ideal conditions the
log-odds score (log-likelihood ratio) Gs(x) to be maximized
for the collection of binding sites in the training set is pro-
portional to the estimated binding free energy -ΔG(x) of
these binding sites. When the state paths for the training
sequences are not known, no known closed form solution
exists for the parameter estimations [8]. The Baum-Welch
algorithm is the most commonly used iterative Expecta-
tion Maximization (EM) method to train the parameters
of the model. The Baum-Welch algorithm always climbs
the gradient (to increase the combined scores of the train-
ing set) and uses the optimized dynamic programming
forward and backward algorithms [8].

Results and discussion
A novel training method that boosts predictive power
To increase the predictive power of our p53-motif
PHMMs, we attempt to exploit the a priori knowledge that
when proteins bind as homodimers or homotetramers,
their corresponding binding sites typically have a palindro-
mic, repeat, and/or reverse complement structure (see Figure
3). This prior knowledge can be used to correspond (fully
or partially tie) the parameters between positions in order
to exploit the inherent redundancy in the information of
the motif. Within a set of corresponding positions, the
updating of emission and transition probabilities can bor-
row strength from each other by sharing information. In
addition, the degree of sharing of information for any set
of corresponding positions can be optimized during train-
ing. The process of corresponding parameters can greatly
reduce the parameter search-space during the training of
the model, and provide the ability to train for rare occur-
rence insertion and deletion events. This general tech-
nique has been effectively used when HMMs have been
applied to speech and handwriting recognition problems,
and has been referred to as parameter tying [10]. We intro-
duce an extension to this method that allows for the set-
ting or training for an optimal level of partial or full
parameter tying. In the domain of protein-DNA binding
sites, even if a palindromic, repeat, or reverse complement
structure of a binding site is not known a priori, all the
known structural motifs can be tested, and the structure
can be discovered (inferred) from the ROC curve that max-
imizes predictive accuracy. For example, of the six struc-
tural models tested for the p53 binding motif, the
combined-palindromic motif that completely corre-
sponds the four quarter-sites is the discovered motif, since
it is the best classifier (see Figure 4).

The Corresponded Baum-Welch algorithm

In order to include the prior knowledge of the structural
motif (or in an attempt to discover it), a novel "Corre-
sponded Baum-Welch" algorithm is proposed to enforce
or learn the optimal correspondence between expecta-
tions of parameters for corresponding positions after each
iteration of the Baum-Welch algorithm (see Methods). For
example, assume that we have prior knowledge that a
transcription factor protein binds to the DNA in
homodimer form, where each monomer interacts with 5
DNA base pairs. Then a corresponding palindromic motif
for the nucleotide positions would be: 1 2 3 4 5 5 4 3 2 1,
while a reverse-complement palindromic motif would be:

1 2 3 4 5  (where ã has the complement nucleotide
emission distribution of a). All the emission distributions
for each of the five sets of synonymous positions would be
made corresponding, as well as all the transition probabil-
ities between synonymous positions. In this example, if

54321

Cross Validation with Receiver Operating Characteristic (ROC) curves reveals increased predictive power over weight matricesFigure 4
Cross Validation with Receiver Operating Character-
istic (ROC) curves reveals increased predictive 
power over weight matrices. 1000 iterations of 10-fold 
random-split cross validation reveal that the most predictive 
models utilize the correspondence structures. The com-
bined-palindromic model is the best model since it contains 
roughly half as many parameters as the other three corre-
spondence models. The positive set contains 160 experimen-
tally validated p53 binding sites, and the negative set contains 
40 bp random samples from the mononucleotide content of 
the training set. The true positive and false positive rates are 
calculated and plotted for all possible threshold values for 
each model. The predictive measure for comparing the 
curves is the AUC (Area Under the Curve). In all the PHMM 
models the insert-state emissions are fixed to the A, G, C, T 
nucleotide distribution of the training set. The best classifier 
uses the combined-palindromic training motif. (Position ã has 
the complement nucleotide emission distribution of a).
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all the parameters between synonymous positions were
fully corresponding (tied), then the parameter search
space would be roughly cut in half. The level of corre-
spondence between the parameters for synonymous posi-
tions can be given a priori, or trained for if the training set
is sufficiently large. One optimal level of correspondence,
c, can be calculated for the whole motif (for all the corre-
sponding positions), or a separate one can be found for
each set of corresponding positions. (See Methods for
details.)

Comparing the different p53 corresponding (structural) 
motifs

Since the 20 bp-tetrameric p53 binding site has a repeated
and nested palindromic structure, different correspond-
ence motifs can be constructed to train the PHMM mod-
els, and cross validation can be used to compare their
predictive properties. The motifs that are compared are:
the repeat or T-coupled motif (1 2 3 4 5 6 7 8 9 10 1 2 3 4
5 6 7 8 9 10), the (reverse-complement) palindromic or

H-coupled motif (1 2 3 4 5 6 7 8 9 10 ),
the independently (reverse-complement) palindromic or

Q-coupled motif (1 2 3 4 5 6 7 8 9 10 ,
the repeated, fully-palindromic or combined-palindromic

motif (1 2 3 4 5 1 2 3 4 5 ), and the com-
pletely un-tied motif with no correspondence between
any positions (see Figure 3) [11]. We perform 1000 itera-
tions of ten-fold random-split cross validation on each
model to gain statistics on their predictive accuracy. The
positive set contains 160 experimentally validated p53
binding sites from [4], and the negative set contains 40 bp
random samples from the mononucleotide content of the
training set. Then we utilize Receiver Operating Character-
istic (ROC) curves in order to compare the predictive
power of the classifiers in an unbiased, threshold-inde-
pendent (non-parametric) manner. This is achieved by
calculating the true positive and false positive rates for all
possible threshold values for each model. The summary
statistic for comparing the ROC curves is the AUC (Area
Under the Curve). AUC values lie somewhere between 1.0
and 0.5 (where an AUC of 1.0 would correspond to a per-
fect classifier, and an AUC of 0.5 would correspond to a
classifier that is no better than random coin flipping.)

Training Insert-State Emissions
A major consideration when training Profile Hidden
Markov Models (PHMMs) is which parameters to train for
at each position, and which parameters to fix at each posi-
tion to the over-all average. The more non-fixed parame-
ters that must be trained for at each position in the motif,

the more data that is needed to properly train the model.
Ideally, a sufficiently large training set is available to be
able to train for all the parameters in the PHMM at each
position. Unfortunately, in the case of transcription factor
binding sites, this is rarely the case. Typically, when using
PHMMs to model DNA binding sites, both the insert
probabilities and insert state nucleotide emissions proba-
bilities are set to the binding site averages, since there are
rarely enough examples of these rare occurrence events at
a particular position to train those parameters for that
position alone [12]. By corresponding (fully or partially
tying) positions and in effect increasing the training data

10 987654321

54321 10 9876
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Cross Validation with Receiver Operating Characteristic (ROC) curves reveals increased predictive power when training insert-state emissionsFigure 5
Cross Validation with Receiver Operating Character-
istic (ROC) curves reveals increased predictive 
power when training insert-state emissions. All the 
PHMM models in this comparison train the insert-state emis-
sion distributions based on positional insertions occurring in 
the training set. Again, 1000 iterations of 10-fold random-
split cross validation reveal that the most predictive models 
utilize the correspondence structures. The positive set con-
tains 160 experimentally validated p53 binding sites, and the 
negative set contains 40 bp random samples from the mono-
nucleotide content of the training set. The true positive and 
false positive rates are calculated and plotted for all possible 
threshold values for each model. The predictive measure for 
comparing the curves is the AUC (Area Under the Curve). 
The AUC values improve for all the PHMM models com-
pared to Figure 4, but not for the weight-matrix model 
(which does not use the insert states). The best classifier 
(with the combined-palindromic training motif) was used for 
the p53HMM algorithm. (Position ã has the complement 
nucleotide emission distribution of a).
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for each position, it may be possible to train the insertion-
state emissions distributions for these corresponding
positions. This could possibly boost predictive power of
the models, if the p53 protein is selective as to which
nucleotides can be inserted into the motif at certain posi-
tions without compromising the binding affinity of the
site. A common example of such selective sequence inser-
tions can be found in functional protein families,
whereby hydrophobic or hydrophilic amino acid inser-
tions may be tolerated at certain positions, provided that
the insertions are present either in the core or at the sur-
face of the protein, respectively, after folding. Notice that
fixing the insertion-state emission distributions at every
position to the amino-acid average for the whole
sequence would be very inappropriate in this example.

The final results

The combined-palindromic motif (1 2 3 4 5 1 2 3

4 5 ) performs on par with or better than all other
structural motifs, although it contains comparably half
the degrees of freedom (see Figures 4 and 5). In addition,
all four of the structural motifs perform on par with each
other. These results suggest that there exist correlations
between the positions in the repeat, independently palin-
dromic, and palindromic motifs, and that the combined-
palindromic motif leverages the correlations found in all
of them. Furthermore, it can be seen that training the
insert-state emissions per corresponding position also
boosts the predictive power of all the models (see Figures
4 and 5). Analysis of the AUC measurements reveals some
interesting features. Adding insert-state emission training
to the base PHMM (with no motif-corresponded posi-
tions) has an AUC improvement of .923 - .919 = .004, but
with motif training has one of .937 - .929 = .008. Adding
motif training (motif-corresponded positions) to the
PHMM when not insert-state emission training has an
AUC improvement of .929 - .919 = .010, but with insert-
state emission training has one of .937 - .923 = .014.
Therefore the improvements are not additive. There is
"positive synergy" when performing both motif training
and insert-state emission training together that further
boosts the predictive accuracy of the model. This observa-
tion confirms our hypothesis that training insert-state
emissions can significantly boost the accuracy of the
model after corresponding positions in the PHMM
according to a binding-site motif.

54321

54321
The p53HMM Match and Insert EmissionsFigure 6
The p53HMM Match and Insert Emissions. (a) The 
match-state sequence logo for the combined-palindromic 

p53 motif: 1 2 3 4 5 1 2 3 4 5 . (Motif position 
ã has the complement nucleotide-emission distribution of a.) 
The height of each letter is made proportional to its fre-
quency at each position, and the letters are sorted in 
descending frequency order. The height of the entire stack at 
each position is then adjusted to signify the information con-
tent (in bits) of that position [25]. The match-state nucle-

otide positions 4, 7, 14, and 17 (motif positions 4, 7, , and 

 respectively) are the most conserved and are the main 
points of contact with the p53 protein. (b) The insert-state 
sequence logo for the same combined-palindromic p53-
model. These nucleotide insertions occur in-between the 
nucleotide positions shown in part a. The specificity motif of 
the insert-state emissions is different from that of the match-
state emissions. (c) The HMM logo that combines parts a 
and b and state transition information into one graph. The 
wide, white-background stacks correspond to the match 
states in part a, while the narrow, red-background stacks 
correspond to the insert states in part b. (A weakness of this 
HMM logo is that the insert-state stacks are so narrow that it 
is difficult to accurately see the stack specificity depicted in 
part b.) The y-axis is the same for all three graphs. However, 
the width of a stack in the HMM Logo is proportional to the 
expected contribution of that match or insert state to an 
emitted sequence of the model [26].

54321 54321
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In addition, the more correspondence placed between the
synonymous positions during each training iteration, the
better the resulting classifier at that point in the training
(results not shown). For this training set, all the com-
bined-palindromic models with fixed correspondence fac-
tors between c = 0.4 and c = 1.0 eventually converged to
the same predictive model, although lower correspond-
ence factors required more iterations to do so. All the
models converged on correspondence factors between c =
.98 and c = .999 when training for optimum correspond-
ence. Therefore the best predictive model completely cor-
responds (ties) the four quarter-sites in a combined-
palindromic structure during each iteration of the train-
ing. Our published p53HMM algorithm is this best pre-
dictive model: trained on the dataset of 160 functional
p53 REs, fully corresponding the data per position based
on the combined-palindromic structural motif, and train-
ing the insert-state emissions (see Figure 6).

Validation of the p53HMM algorithm
The new p53HMM algorithm was used to screen for puta-
tive p53 binding sites in the endosomal compartment
genes, which led to the discovery of a functional p53 site
and a new p53-regulated gene, CHMP4C [13]. The puta-
tive p53RE sequence AAACAAGCCC agtagcagcagctgctcc
GAGCTTGCCC was predicted in the promoter region (-
497 to -460 bp) of the CHMP4C gene. The data from the
chromatin immunoprecipitation and the luciferase
reporter assays showed that p53 protein can bind to this
sequence and induce CHMP4C gene expression. Addi-
tionally, analysis by p53HMM found an alternative puta-
tive p53 binding site in the LIF gene that corresponds to a
6 bp upstream shift of the downstream half-site relative to
the recently published putative site in intron 1 [14]. The
p53HMM algorithm predicted the site GGACATGTCG-
GGACA-GCTC, which matches the consensus RRRCWW-
GYYYRRRCWWGYYY perfectly except for the low-
conserved position 10 and the gap ("-", deletion) at posi-
tion 16. A PSSM approach predicted the shifted site GGA-
CATGTCGggacagCTCCCAGCTC, which is the best "gap-
less" p53 site in the region conferring p53 regulation, but
it still matches the consensus very poorly with five mis-
matches (the putative spacer sequence is in lowercase)
[14]. A few genes in the dataset of 160 functional p53
binding sites have a deletion relative to the consensus
exactly between the well-conserved C and G as seen
above, including the genes: EGFR, TYRP1, EEF1A1,
HSP90AB1, and BAI1. This discovery of an alternative p53
binding site that better matches known functional sites,
by modeling for observed insertions and deletions, high-
lights some of the advantages of the new p53HMM algo-
rithm.

Special considerations for the p53HMM algorithm
Although the spacer within a p53 RE has been shown to
greatly affect the binding affinity for p53 protein, the abil-
ity to properly quantify this effect for all possible spacers
of lengths 0–21 base pairs has been elusive. Therefore like
previous algorithms, we have chosen to initially ignore
the spacers of the training set and putative REs [15]. We
are able to ignore arbitrary-length spacers by inserting a
no-cost Free Insertion Module (FIM) between the two half-
sites of the single-site PHMM [16,17]. Similarly, we can

Comparison of Cluster-site scores and Luciferase ActivityFigure 7
Comparison of Cluster-site scores and Luciferase 
Activity. This graph compares the estimated relative binding 
affinity given by the cluster-site score to the luciferase activ-
ity from four experiments for four different p53 cluster-sites. 
The four cluster-sites regulate the genes DDB2 (blue), CKM 
(red), IGFBP3 (green), and TP53I3 (cyan). In all four experi-
ments the luciferase activity of truncated mutants of the 
respective p53 cluster-site were compared to the luciferase 
activity of the full cluster-site. In the case of the TP53I3 clus-
ter-site, four different mutants of varying lengths were meas-
ured for luciferase activity. All cluster-site scores and activity 
measurements are normalized by the full-site (two half-sites) 
measurement. The cluster-site scores are attained by sum-
ming the estimated binding affinity of all viable full-sites in the 
cluster-site that have an affinity above a lower bound and 
spacer-lengths below an upper bound. The full-site affinity 
lower bound and spacer-length upper bound were chosen to 
best match the experimental data. The best fit was attained 
by enforcing that spacer-lengths not exceed 14 bp and affinity 
scores exceed 27.5.
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ignore spacers with lengths between 1 and N base pairs by
inserting a no-cost Finite Emission Module (FEM-N)
between the two half-sites (see Figure 2). A prior p53 RE
search algorithm (p53MH) was based upon a PSSM
approach and a novel filtering matrix [15]. Unfortunately,
the tables were not symmetric and the filtering table over-
fit the available data at the time. The combined result was
that the p53MH method completely rejects 58 of the 160
experimentally validated sites to date (receiving a score of
0 out of 100, where 100 represented the maximum rela-
tive binding affinity). Additionally, some sites received
very high scores approaching 100, while the reverse-com-
plement received a score of 0, and vice-versa. Due to these
observations, we have purposely designed the p53HMM
algorithm to be symmetric, so as to give identical scores
for putative sites and their reverse complements. Sec-
ondly, we chose to abandon the filtering matrix to avoid
over-fitting the available data. A feature that we preserved
from p53MH is the normalizing of scores by the highest
possible affinity for the motif (×100), so that the highest
possible normalized score is 100.

Modeling dependencies between positions
PSSMs assume that all nucleotide positions within the
motif contribute independently to the binding affinity of
the binding site, which has been shown experimentally to
not always be the case [7]. Recent research has focused on
modeling dependencies between positions in protein-
DNA binding sites [18,19]. Typically Tree Bayesian Net-
works and Mixtures of trees have been used to attempt to

model these dependencies between positions, which have
been shown through cross validation to increase the pre-
dictive power of these models [18]. Our PHMM models
do not attempt to model dependencies between the posi-
tions, however they can be extended to do so by using
higher-order Profile Hidden Markov Models. Unfortu-
nately, the ability to train for positional dependencies,
and boost predictive power, is dependent upon the sam-
pling size of the training set and requires larger training
sets to train the extra parameters.

A novel p53 cluster-site algorithm
Binding affinity measurements have been obtained for
certain p53 cluster-sites of different lengths by mutating
or truncating known p53 cluster-sites in the genes: DDB2,
TP53i3, CKM, IGFBP3, and RGC (see Table 1 and Figure
7) [20-23]. Based on the relative binding affinities of these
p53 cluster-sites, we propose a new p53 cluster-site algo-
rithm that utilizes the trained PHMM to calculate and sum
up the relative estimated binding-affinities, above a cer-
tain threshold, of all viable full-sites in the cluster with a
spacer of ≤ 14 bp or less (see Methods). This model pre-
dicts a linear increase in p53 binding affinity dependent
upon the number of half-sites in the cluster-site and the
length of spacers between them. For example, for p53
cluster-sites with 2, 3, 4, 5, or 6 adjacent p53 half-sites, the
number of possible full-sites with spacer-lengths = 14 bp
would be 1, 3, 5, 7, and 9, respectively. Let N be the
number of half-sites in the cluster-site, then the number of
full-sites (to calculate binding affinities for and sum up) is

Table 1: Normalized Experimental Affinity of Cluster-sites

Number of Half-sites

2 3 4 5 5.5 6 7 7.5 8 8.5 9 10 11 12

Cluster Site Relative Binding Affinity

DDB2 1 5

TP53I3 3 6 10 12 16

Theoretical Affinity Approximations

# of Full-sites with spacers ≤ 14 bp 1 3 5 7 8 9 11 12 13 14 15 17 19 21

# of Full-sites with spacers ≤ 24 bp 1 3 6 9 10.5 12 15 16.5 18 19.5 21 24 27 30

# of Full-sites with any size spacer 1 3 6 10 15 21 28 36 45 55 66

This table contains the normalized experimental affinities of different cluster-sites dependent upon the number of half-sites contained in the RE. 
These affinity measurements were obtained by mutating or truncating p53 cluster-sites in the genes DDB2, and TP53i3 [20,21]. These two p53 
cluster-sites are chosen because they match the assumption of the theoretical models that no spacer sequences are present between the half-sites. 
All affinities are normalized by the 2 half-site (full-site) affinity respective of the RE. The theoretical models assume that all the half-sites in each 
cluster-site are identical, which is not the case for either of the two cluster-sites. Experimental results support a linear affinity growth model based 
upon the number of full-sites with spacers no longer than 14 bp (in italics).
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given by the expression 2N - 3 (N ≥ 2). Although there
exist functional sites with spacers ≥ 15 bp, experiments
suggest that their contribution to the overall binding
affinity within a cluster-site is negligible.

These p53 cluster-site scores are attained through a two
step process. The first step uses the cluster-site model
which contains a generalized p53 half-site PHMM and a
back-transition that limits any spacer between two half-
sites to no more than 14 bp (see part e of Figure 2). The

dynamic programming Viterbi algorithm is used to find
the highest scoring p53 half-sites in the sequence (that are
separated by no more then 14 bp). The second step then
parses the state-path generated from step 1 and generates
viable p53 full-sites with any spacers removed, while con-
serving the property that the half-sites in the cluster-site
were not separated by more than 14 bp. Now we use the
more flexible p53 single-site model to score these viable
full-sites using the Viterbi algorithm (see part d of Figure
2). We maintain a running sum of the log-odds scores of
the candidate full-sites that are above a certain threshold.
The log-odds score threshold and spacer-length limit (14
bp) are chosen so as to best fit the experimental data (see
Figure 7).

Additionally, this p53 cluster-site model follows statistical
mechanics, in that the overall binding affinity for the
complete RE is proportional to the probability of any p53
protein binding to any of the allowed motifs found in the
cluster-site. (See Methods for more details.)

Dynamic acceptance thresholds as a function of the 
distance from the TSS
An interesting finding from the analysis of our dataset of
160 functional p53 binding sites is that the low relative
affinity scores from our model are significantly correlated
with short distances from the Transcription Start Site
(TSS). We find that low affinity sites exist only in a tight
band around the TSS (see part a of Figure 8). Therefore a
dynamic binding-affinity acceptance threshold, depend-
ent upon the putative site's distance from the TSS, can
greatly reduce the false positive rate of our classifier. With
a dynamic acceptance threshold, putative sites will require
higher calculated binding affinities as their distance from
the TSS increases in order to be accepted as potentially
functional. For example, consider the linear dynamic
acceptance threshold .00107·ΔX + 65.16 shown in Figure
8, with the additional restriction that the putative sites
must be within 5,000 bp upstream and 1,000 bp down-
stream of the gene. Let the static acceptance threshold be
all normalized scores above 70 with the same restriction
that the putative sites must be within 5,000 bp upstream
and 1,000 bp downstream of the gene. Even though the
restricted dynamic threshold has a false negative rate of 22
out of 158 validated p53 sites (13.9%), and the restricted
static threshold 32 out of 158 (20.3%), the restricted static
threshold generates over 3.2 times as many positive hits
when scoring all 39,288 isoforms of known genes in the
human genome (hg18). Thus, the dynamic acceptance
threshold has a lower known false negative rate and a con-
siderably lower false positive rate. Different dynamic
acceptance thresholds can be chosen to match desired lev-
els of the known false negative rate and the genome hit
rate (see part b of Figure 8). An important consideration
when choosing an acceptance threshold is that a decrease

Normalized affinity scores versus distances from the TSSFigure 8
Normalized affinity scores versus distances from the 
TSS. (Upper) This plot presents the normalized affinity 
scores returned from the p53 single-site model versus the 
distance from the Transcription Start Site (TSS) for 158 
experimentally validated p53-binding sites. Low affinity sites 
exist in a tight band around the TSS (cyan vertical line). p53 
activation-sites are plotted in green, repression-sites in red, 
and both activation and repression in black. All sites ≥ 11 Kb 
from the TSS have relative affinity scores above the average 
of ≈ 78 (purple horizontal line). (Lower) This plot presents 
the estimated normalized affinity scores versus the positive 
distance (absolute value) from the TSS. Three dynamic 
acceptance thresholds are shown for scoring for putative p53 
binding sites. The blue linear threshold corresponds to the 
formula .00107·ΔX + 65.16 and has a false negative rate of 18 
out of 158 validated p53 sites (11.4%). The orange logarith-
mic threshold corresponds to the formula 9.6854·log(ΔX + 
593.31) - 15.308 and has a false negative rate of 5 out of 158 
validated p53 sites (3.2%). Finally, the black square-root 
threshold corresponds to the formula .23186·sqrt(ΔX + 
7.5231) + 45.6 and has a false negative rate of 1 out of 158 
validated p53 sites (0.63%). (ΔX = distance from TSS)
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in the threshold will in general produce an exponential
increase in the number of positive hits.

Conclusion
Profile Hidden Markov Models (PHMMs) can boost pre-
dictive power over weight matrices (PSSMs) when the
binding motif is highly degenerative and tolerates inser-
tions and/or deletions at various positions. The increase
in predictive power for the p53-binding motif can be seen
in Figures 4 and 5. When the RE has a known repeated
and/or palindromic motif, this prior knowledge can be
used to correspond parameters in the model to exploit the
redundancy in the information in the motif. We propose
a novel "Corresponded Baum-Welch" training algorithm
that significantly boosts the predictive power of the p53-
RE model, as seen in Figures 4 and 5. When the motif is
not known, all possible motifs for the given size can be
sampled and cross-validation techniques leveraged to
infer the correct motif that maximizes predictive power.
For example, Figure 5 reveals that the maximally predic-
tive p53-binding motif corresponds the four quarter-sites
in a combined-palindromic structure.

Our algorithms demonstrate the best predictive capability
to date in classifying putative p53 binding sites. One algo-
rithm uses a novel "Corresponded Baum-Welch" training
method that exploits the repeated, palindromic structure
of the p53 motif to train for allowed insertions and dele-
tions relative to the consensus. The second algorithm
properly models the relative increase in binding affinity
for p53 cluster-sites (REs with ≥ 3 adjacent half-sites) by
using a two step process that scores all viable full-sites in
the cluster-site while restricting the spacer-length to 14 bp.
This new cluster-site algorithm best matches the experi-
mental data (see Figure 7).

Functional low-affinity p53-sites only exist near the TSS.
Therefore the binding affinity threshold for accepting a
putative site should be dependent on the putative site's
distance from the TSS. By this method, putative sites with
relatively low calculated binding affinities that are near
the TSS may be accepted, while those sites with equal
scores but more distant from the TSS will be rejected. A
dynamic threshold, as a function of the distance from the
TSS, can greatly reduce the false positive rate when search-
ing for putative p53-sites in genes.

Methods
The Corresponded Baum-Welch algorithm

In order to exploit the redundancy of information in a
homodimer or homotetramer binding motif, we wish to
share information between corresponding positions. The
level of sharing of information for any set of correspond-
ing positions is given by a correspondence factor c such

that 0 ≤ c ≤ 1. At the end of each round of the iterative
Baum-Welch algorithm we calculate the average values of

each of the newly updated emission probabilities 

and transition probabilities  for all k and l in the set of

corresponding positions, represented as  and 

respectively. Each of these average values represents the
expected probability if the corresponding positions are
fully tied (c = 1), and are referred to as the "corresponding
average". Then we update the new emission and transition
probabilities within the set of corresponding positions,
using the current correspondence factor and correspond-
ing average, according to:

If we wish to train for the optimum correspondence fac-
tor, then we calculate a new c' for each emission and tran-
sition probability at each position in the set of
corresponding positions:

Now, we can calculate a new correspondence factor c' by

averaging over sets of the  and  values. The one

optimum correspondence factor for the whole motif or
separate correspondence factors for sets of corresponding
positions are obtained by averaging over different sets:

The Corresponded Baum-Welch algorithm will converge
at (local) optimum emission and transition probabilities
and correspondence factors that maximize the likelihood
of observing the training set with possible pseudo-counts.
Please see the Additional file 1 for further details.

The p53 cluster-site algorithm
The p53 cluster-site algorithm is a two step process
designed to sum the estimated relative binding affinities
of all viable full-sites within a cluster-site. The first step
uses the cluster-site model that contains a generalized p53
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half-site PHMM and a back-transition through a no-cost
FEM-14 module (see part e of Figure 2). The no-cost Finite
Emission Module (FEM) of length 14 can match any
sequence of length ≤ 14 bp with no contribution to the
over-all score. We score the entire putative cluster-site
using the p53 cluster-site model and the Viterbi algorithm
to find the best-supported path through the cluster-site.
This path provides the strongest affinity half-sites that are
not separated by more than 14 bp. If we use the notation
"14" for any spacer sequence of length 0 to 14 and H for
a half-site sequence, then we can represent the cluster-site
sequence path as:

Step 2 now parses the cluster-site sequence path and gen-
erates a list of all viable full-sites, which are concatena-
tions of any two half-sites such that they are not separated
by more than 14 bp:

Now we use the more flexible (and more accurate) single-
site model with the Viterbi algorithm to estimate the rela-
tive binding affinity of all the viable full-sites in the clus-
ter-site. The cluster-site affinity score is the sum of all
viable full-site scores that exceed a certain threshold. If F
denotes a viable full-site then:

The spacer-length upper bound and the affinity-score
lower bound were fit to best match the experimental
results. In the case for p53-binding sites, the best fit is a
spacer-length of no more than 14 bp and a log-odds score
of at least 27.5 (see Figure 7).

The p53HMM implementation
The p53HMM algorithm is implemented in Java and is
available on-line at http://tools.csb.ias.edu. The imple-
mentation makes extensive use of the BioJava Toolkit
[24].
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Supplementary Material
The Theory of Modeling TF-Binding Sites with Profile Hidden Markov Models

Given a set S of experimentally validated binding sites s for a TF-protein (and a few assumptions) it is

possible to use the set S to estimate the relative binding free energy −∆G(x) of any putative site x

(without having to perform direct experimental measurements of binding constants). This bioinformatic

approach using PHMMs (and PSSMs) is an attractive alternative, if a sufficient set S of experimentally

validated binding sites is available.

The Assumptions:

1. The positions of a binding site contribute independently and additively to the binding free-energy

2. Background DNA sequences are generally random samples from some k-mer distribution

Neither of these assumptions are always true [1]. The first assumption can be relaxed by calculating

di-nucleotide, tri-nucleotide,....,nth-nucleotide frequencies from the training set S, but at some point an

additivity assumption must be applied. Also, genomes are generally not random, but can be closely

approximated by a 3rd or 4th Order Markov Model [2]. For simplicity in the examples here, we will assume

that the background DNA can be modeled by a simple 0th Order Markov Model (i.e. by mononucleotide

content alone). This assumption greatly simplifies the calculation of the partition function [1].
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From the additivity assumption we have that for any putative site x:

−∆G(x) =
length(x)∑
i=1

−∆Gj(b)

where we define . . .

−∆Gj(b) = the independent contribution of base b observed at position j

to the over-all binding free energy (1)

The Profile Hidden Markov Model (PHMM) provides a completely probabilistic model for observing a

sequence x within the modeled motif. The PHMM achieves this by incorporating the probabilities of

different nucleotide insertions, deletions, and motif matches at each position in the motif [3]. In this

application, the PHMM model is used to calculate the probability Phmm(x) of observing the putative site x

in a real transcription factor binding site that is modeled by the PHMM. The probability Phmm(x) is used

to find the site log-odds score of a putative site x. The site log-odds score Gs(x) calculated by a PHMM

trained by S is given by:

Gs(x) = loge

(
Phmm(x)

Pbackground(x)

)
(Site Log-odds Score)

=
length(x)∑

j=1

Gsj(b)

where we define:

Gsj(b) = loge

(
Phmm(j, b)

Pbackground(j, b)

)
(Nucleotide Log-odds Score)

j = position in the sequence x, j ∈ {1 . . . length(x)}

b = observed nucleotide base, b ∈ {A,C,G, T}

Phmm(j, b) = probability of base b at position j in the PHMM model

Pbackground(j, b) = probability of base b at position j in the null (background) model

(2)

With these definitions, and assuming independence of positions, we have:

Phmm(x) = probability of candidate site x in the PHMM model

Pbackground(x) = probability of candidate site x in the null (background) model

The Site Log-odds Score Gs(x) can be considered proportional to the relative binding free energy −∆G(x)

when the Fermi-Dirac Equation for the equilibrium probability of a protein-bound binding site can be
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approximated by the Maxwell-Boltzmann Equation [4]. Another assumption is that the training set S

consists of a proper sampling of functional binding sites that were collected under similar experimental

conditions (like temperature T ). However, this is likely not the case. A last assumption is that we are able

to perfectly train the PHMM from our training set S, so that we can accurately predict the probability

Phmm(x) for all possible putative sites x. However, properly training a PHMM from a limited training set

S is a challenging problem. But with our idealizations and assumptions, the Nucleotide Log-odds Score

Gsj(b) (calculated by our perfectly trained PHMM) is directly proportional to the binding free energy

contribution of each observed base b at each position j in the sequence x.

Thus, under ideal conditions the log-odds scores that a trained Profile Hidden Markov Model calculates for

any candidate site x is directly proportional to the free energy of binding to that candidate site. (Typically,

proper scaling of Gs if not performed to make Gs(x) ≈ −∆G(x). Instead, Gs is only proportional to

−∆G(x).) [5] If the Profile Hidden Markov Model has no insertion or deletion states, then the PHMM is

essentially a PSSM (weight matrix), and the probability Phmm(j, b) is equivalent to the (b, j)th entry in the

(probability) weight matrix.

Three dynamic programming algorithms are used to calculate the probability Phmm(x) of observing the

putative site x in the model. The forward and backward algorithms calculate Phmm(x) by summing up the

probability of observing x for all possible paths π through the model:

forward(x) = backward(x) = Phmm(x) =
all paths∑

π

P (x, π) (3)

The Viterbi algorithm calculates both the optimal alignment of the putative site x which produces the

path π∗(x) with the highest log-odds score, and the probability Pπ
∗

hmm(x) of observing that optimal path in

the model. These two results of the Viterbi algorithm are commonly referred to as the Viterbi path and the

Viterbi score, respectively:

V iterbi path(x) = π∗(x) = argmax
π [P (x, π)]

V iterbi score(x) = Pπ
∗

hmm(x) = Phmm(x, π∗(x))

In the case of modeling transcription factor binding sites, it is commonly assumed that the log-odds score

of the optimal path that best aligns the putative site x to the model is the only significant contributor to

the over-all log-odds score. When this is indeed true, the Viterbi score can be used as a good
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approximation to Phmm(x):

V iterbi score(x) = Phmm(x, π∗(x)) ≈
all paths∑

π

P (x, π) = Phmm(x) = forward(x) (4)

However, we see that this assumption is not true when modeling p53 cluster sites, where experiments

suggest that the p53 protein can bind to overlapping combinations of adjacent half-sites. In this scenario,

the true probability Phmm(x) provided by the forward and backward algorithms is needed to properly

model experimental results.

All three dynamic programming algorithms are highly efficient, and when applied to PHMMs run in

O(NM) time and O(NM) space for a PHMM with M states and a sequence of length N [6]. For further

details about the forward, backward, and Viterbi algorithms please see [5].

The Corresponded Baum-Welch Algorithm

The standard Baum-Welch EM algorithm is used to estimate the expected transition and emission

probabilities from the training set. The Baum-Welch algorithm is an optimized, iterative EM method that

always climbs the gradient and uses the dynamic programming forward and backward algorithms [5].
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Let:

s = binding site The nucleotide sequence of a binding site
si = nucleotide The ith nucleotide in the binding site s
S = training set The training set of binding sites sj
π = path The state sequence of a binding site s
πi = state The ith state in the path π

pskl = pseudocount Prior bias of probability of transition from k to l
psk(b) = pseudocount Prior bias of probability of emitting symbol b in state k

ψ = {pskl, psk(b)} ,∀k, l, b The set of all pseudocounts in the model
akl = P (πi = l|πi−1 = k) The probability of transition from state k to state l

ek(b) = P (si = b|pii = k) The probability of emitting symbol b in state k
θ = {akl, ek(b)} ,∀k, l, b The set of all parameters in the model

abackgroundkl = Pbackground(πi = l|πi−1 = k) The probability of transition from state k to state l
in the null (background) model

ebackgroundk (b) = Pbackground(si = b|pii = k) The probability of emitting symbol b in state k
in the null (background) model

Akl = expected akl counts Number of transitions from k to l in the training set
Ek(b) = expected ek(b) counts Number of emissions of b from state k in the training set
fk(i) = P (s1 . . . si, πi = k) The probability of the sequence up to and including si,

requiring that πi = k

fk(i+ 1) = ek(si+1) ·
∑states
j (fj(i) · ajk) Recursive formula for fk(i+ 1) going forward

bk(i) = P (si . . . sL, πi = k) The probability of the sequence from si to the end,
requiring that πi = k, L = length of the sequence s

bk(i− 1) = ek(si−1) ·
∑states
j (bj(i) · ajk) Recursive formula for bk(i− 1) going backward

The goal is to choose the parameters θ of the model in order to maximize the log-likelihood of the

sequences s in the training set S, without over-fitting. To avoid over-fitting, the goal is to find the

Posterior Mean Estimator (PME), a Bayesian approach that uses the pseudo-counts ψ as a prior from a

Dirichlet family of distributions and all the paths π for all sequences s in the training set S [5]:

θPME =
argmax

θ

[∑
s∈S

logP (s|θ, ψ)

]
=

argmax
θ

[∑
s∈S

∑
π

logP (s, π|θ, ψ)

]
The Baum-Welch algorithm climbs the gradient during each iteration and is guaranteed to converge within

some epsilon to a local maximum, which may or may not be the PME [5]. Theoretically, the Corresponded

Baum-Welch algorithm has the advantage of using prior motif knowledge to greatly reduce the parameter

space and to potentially “flatten” the space. Both of these improvements can increase the probability of

the algorithm converging to the PME.

In each iteration, the Baum-Welch algorithm calculates the expected number of times each transition and

emission is used by the training set sequences (calculates Akl and Ek(b)), given the current model

parameters (akl and ek(b)). Then the model parameters are updated to the new posterior mean estimators
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a′kl and e′k(b), calculated from the new expectation counts (Akl and Ek(b)).

Notice that the probability that akl is used at position i of binding site sequence s with current model

parameters θ is given by:

P (πi = k, πi+1 = l|s, θ) =
fk(i) · akl · el(si+1) · bl(i+ 1)

P (s)

By summing over all training sequences and positions, we can derive Akl and Ek(b), the expected number

of times that akl and ek(b) are used by the training set, given the current model parameters θ:

N = number of training sequences

L = length of the sequence sj

W (sj) = sequence weight of sj

Akl =
N∑

sj∈S

W (sj)
P (sj)

L∑
i=1

f jk(i) · akl · el(sji+1) · bjl (i+ 1)

Ek(b) =
N∑

sj∈S

W (sj)
P (sj)

L∑
i|sji=b

f jk(i) · bjk(i) (5)

The sequence weight W (sj) is used to vary the importance of different sequences in the training set S and

to vary their influence in training the model. A weight W (sj) > 1 increases the expected counts in

sequence sj , and a weight W (sj) < 1 decreases them. Sequence weights are used when we do not fully trust

that the training set S provides a proper distribution of valid binding sites, and we attempt to remedy that

deficiency by weighting the known sequences. Most sequence weighting methods attempt to penalize the

expected counts of similar sequences and to enhance the expected counts of distant sequences [5].

Additionally, the process by which the training set S was ascertained may be biased toward a certain

subset of sites independent of their sequences (ascertainment bias). In the derivation for our approximation

for −∆G(x) in the next section, we relied on the assumption that the probability Pextract(x) of extracting

a TF-bound binding site was independent of the sequence in or around x. This may not always be the

case. For example, if we know that a certain antibody preferentially binds to adjacent binding sites

compared to ones with no neighbors, then after precipitation our training set S would be biased toward

adjacent binding sites that appear in tight clusters in the DNA. We could attempt to compensate for this

inherent bias by penalizing those sequences found adjacent to each other in the genome and promoting the

6



ones with no neighbors. Different sequence weighting schemes can be found in [7–13].

From these new expected counts, we can now calculate new maximum likelihood estimators for each

position:

a′kl =
Akl

states∑
m

Akm

e′k(b) =
Ek(b)

{A,C,G,T}∑
n

Ek(n)

(6)

However, if we believe the training set S to be incomplete and intend to avoid over-fitting the data, we add

pseudocounts as priors to our expected counts. Here, pseudocounts are distributed in proportion to the

null (background) model. The pseudocount weight w represents how many counts from the null

(background) model we want to include in the expected counts of our model. From the expected counts,

we calculate the new posterior mean estimators using pseudocounts for each position:

w = pseudocount weight

pskl = w · abackgroundkl

psk(b) = w · ebackgroundk (b)

a′kl =
pskl +Akl

w +
states∑
m

Akm

e′k(b) =
psk(b) + Ek(b)

w +
{A,C,G,T}∑

n

Ek(n)

(7)

Now we use the prior knowledge (or make a guess) of the repeat and/or palindromic motif and correspond

(partially or fully tie) the new posterior mean estimators based upon corresponding positions. This prior

knowledge can be used to reduce the parameter space and increase the statistical accuracy of the model.

The degree of sharing of information between corresponding positions is controlled by a correspondence

factor c, which can be fixed or trained to an optimum value. One can estimate a correspondence factor
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based on the initial conditions by the following:

dist = a probability distribution in the set of corresponding distributions

var = a variable in the probability distributions

N = number of corresponding distributions

P (var) = average probability of a variable over all corresponding distributions

c0 = initial correspondence factor

= 1 − 1
N − 1

∑
dist

∑
var

∣∣∣P (var)− P (var)
∣∣∣ (8)

We calculate the corresponding posterior mean estimator (PME) after calculating the average emission and

transition probabilities for all the corresponding positions:

c = correspondence factor

a′ = Avg(a′kl) (over all transitions from k to l in the set of corresponding positions)

e′(b) = Avg(e′k(b)) (over all emissions in the set of corresponding positions)

a′′kl = a′kl + c
[
a′ − a′kl

]
e′′k(b) = e′k(b) + c

[
e′(b)− e′k(b)

]
(9)

If we wish to train for the optimum correspondence factor, then we calculate a new c′ for each emission

and transition probability at each position in the set of corresponding positions:

c′kl =
c · a′

a′kl + c
[
a′ − a′kl

] =
c · a′
a′′kl

c′k(b) =
c · e′(b)

e′k(b) + c
[
e′(b)− e′k(b)

] =
c · e′(b)
e′′k(b)

(10)

Now, we can calculate a new correspondence factor c′ by averaging over sets of the c′kl and c′k(b) values.

The one optimum correspondence factor for the whole motif or separate correspondence factors for sets of

corresponding positions are obtained by averaging over different sets:

c′ = c′k(b) (over all bases b and all emissions and transitions k)

or

(over all bases b and corresponding emissions and transitions k) (11)
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We can now update the parameters of the model to the new posterior mean estimators that have been

made corresponding (fully or partially tied) by our prior knowledge (or guess) of the motif:

akl =⇒ a′′kl

ek(b) =⇒ e′′k(b)

c =⇒ c′ (12)

This process is then iterated to obtain new Akl and Ek(b) values from the new model parameters. At each

iteration the log likelihood of the training set increases to a local maximum. Since convergence is in a

continuous-valued space, the maximum is never actually reached. Typically, the iterations are stopped

when the change in the total log likelihood is sufficiently small or after some fixed number of iterations,

whichever comes first [5].

Derivation of finding optimum correspondence. The method of finding the locally optimum degree

of correspondence (sharing of information) between corresponding positions starts by introducing the new

parameter c for each set of corresponding positions. If we interpret the correspondence factor c as the

probability P (identical) that the positions are completely synonymous, then we can interpret that every

emission and transition probability P (x) for each corresponding position in the model can now be replaced

by a new probability P ′(x):

P ′(x) = P (identical) · P (x) + (1− P (identical)) · P (x)

= P (x) + c
[
P (x)− P (x)

]
(13)

where P (x) is the average of the corresponding emission and transition probabilities. Now we can calculate

new correspondence factors c′ for each corresponding emission and transition probability in the set of

corresponding positions:

c′ =
P (identical) · P (x)

P (identical) · P (x) + (1− P (identical)) · P (x)

=
c · P (x)

P (x) + c
[
P (x)− P (x)

]
=

c · P (x)
P ′(x)

(14)
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Now we can calculate a new correspondence factor c′′ for the set of corresponding parameters by averaging

over the new c′ for all the corresponding emission and transition probabilities:

c′′ = c′ (over all c′ in the set of corresponding positions) (15)

Example. Assume that we have prior knowledge (or we guess that) the binding motif of a 10-bp binding

site is singly palindromic: 1 2 3 4 5 5 4 3 2 1. Then the positions that have been made corresponding are:

1 and 10, 2 and 9, 3 and 8, 4 and 7, 5 and 6. (There are five sets of corresponding positions in this

example.) First, each of the 10 distributions of the posterior mean emission probabilities for each of the 10

positions in the motif are now corresponding and sharing data with its partner position. Then the posterior

mean transition distributions between positions are similarly made corresponding (for example 1-2 and

2-1 ). Separate correspondence calculations are performed for each of the sets of corresponding positions. A

correspondence factor of c = 1 would fully correspond (tie) the parameters between synonymous positions

to the average over all corresponding parameters. (In this case, the parameter space would roughly be cut

in half, and the training data per parameter would roughly double.) A correspondence factor of c = 0

would not change the initial distributions of emission and transition probabilities at a position at all, thus

creating no correspondence between the positions. The correspondence factor c can be regarded as our

known prior belief in the level of correspondence between synonymous positions in a palindromic, repeat,

and/or reverse-complement binding-site motif. Alternatively, the correspondence factor c can be regarded

as the unknown probability of correspondence between synonymous positions that needs to be determined.

In the latter case, the Corresponded Baum-Welch algorithm will converge on the (locally) optimum c that

maximizes the total log likelihood of the training set.

The Proof that the Log-odds Score Gs(x) is proportional to −∆G(x)

It has been shown experimentally that in general, transcription factor proteins have a weak affinity for

background DNA (any non-consensus sequence) and a strong affinity for consensus sites. Within the

nucleus (or general cell in prokaryotes) the DNA concentration is high enough that an activated TF-protein

is bound somewhere on the DNA essentially all the time (to a 1st approximation) [14]. Therefore, the

binding specificity (the ability of the TF protein to distinguish a functional site from background DNA)

must be adequately high for proper regulation to occur [14]. The goal is to quantify the free energy of

binding to a candidate site x through statistical mechanics, thermodynamics and Information Theory. We
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start with the mass action kinetics of a TF-protein binding to a site:

p = transcription factor protein

x = a candidate DNA binding site

px = Bound Protein-Binding Site Complex

k+ = forward equilibrium binding constant

k− = backward equilibrium binding constant

p+ x
k+



k−

px

Kx
eq =

k+

k−
= equilibrium association constant for site x (16)

We normalize Kx
eq in order to obtain the specific association constant Kx

s that quantifies specificity:

1. Kavg
eq = Average Keq for all sites x

2. Kx
s = Kx

eq

Kavg
eq

, (avg(Kx
s ) = 1)

3. Specificity of Valid Site: Kvalid site
s ≈ 106

4. Specificity of Background: Kbackground
s < 1

In experiments performed in E. Coli cells, with about 5× 106bp of DNA, a single TF-protein and a single

binding site with a specificity of 106 will be bound together only about 20% of the time. During the other

80% of the time, the protein will be transiently bound to other random places along the genome. However,

with 20 copies of the protein the binding site will be occupied about 99% of the time [15].

The specific association constant Kx
s is related to the binding free energy −∆G(x) by the following:

−∆G(x) = − kβ · T · ln(Kx
s )

and

−Kx
s =

k+

k− ·Kavg
eq

= e−∆G(x)/kβT (17)

Now lets estimate the probability that a putative binding site x is bound by a TF-protein in a well-mixed

solution at equilibrium. Let P (x bound) be the probability that the binding site x is bound by a
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TF-protein. Then we have:

P (x bound) =
binding rate

binding rate + unbinding rate

=
[p] · k+

[p] · k+ + k−

=
[p] ·Kavg

eq · e−∆G(x)/kβT

[p] ·Kavg
eq · e−∆G(x)/kβT + 1

(18)

which can be re-written into the form known as the Fermi-Dirac Equation, where µ = kβT ln(Kavg
eq · [p]) is

the chemical potential dependent on the protein concentration [p]:

P (x bound) =
1

e(∆G(x)−µ)/kβT + 1
(Fermi−Dirac)

In the low concentration limit the Fermi-Dirac Equation for the probability P (x bound) can be

approximated by the Maxwell-Boltzmann Equation:

P (x bound) ≈ 1
e(∆G(x)−µ)/kβT

when ∆G(x)� µ

≈ eµ/kβT · e−∆G(x)/kβT (Maxwell −Boltzmann)

≈ ze−∆G(x)/kβT (z = eµ/kβT = fugacity) (19)

Now we are ready to analyze a sampling set S of known transcription factor binding sites for a given

TF-protein. A version of this proof exists for weight matrices (PSSMs) in [4,16]. Here we provide a general

proof that it is applicable for any fully probabilistic model that calculates Pbackground(x) and PsetS(x).

Assume that we attain the set S from a single experiment so that all the sites are collected under identical

conditions. Assume that we have a very large number of DNA sequences of roughly similar length from a

given genome mixed in solution with a certain concentration of TF-proteins. At equilibrium some of the

DNA sequences with bound TF-protein are extracted (precipitated) and sequenced to create our sampling

set S.

The probability of observing exactly the set S is given by:

P (observing the set S) =
∏
x∈S

(Pexist(x) · Pbound(x) · Pextract(x)) ·
∏
x 6∈S

(1− Pexist(x) · Pbound(x) · Pextract(x))

≈
∏
x∈S

(Pexist(x) · Pbound(x) · Pextract(x)) · e
∑
x 6∈S(Pexist(x)·Pbound(x)·Pextract(x))

(20)
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The likelihood function L for the P (observing the set S) can now be approximated:

L = ln [P (observing the set S)]

≈ ln

[∏
x∈S

(Pexist(x) · Pbound(x) · Pextract(x)) · e
∑
x 6∈S(Pexist(x)·Pbound(x)·Pextract(x))

]
≈

∑
x∈S

ln (Pexist(x) · Pbound(x) · Pextract(x))−
∑
x 6∈S

(Pexist(x) · Pbound(x) · Pextract(x)) (21)

Now plug-in the Maxwell-Boltzmann approximation ze−∆G(x)/kβT for P (x bound), and for simplicity

assume that Pextract(x) = Pextract is identical for all x:

L ≈
∑
x∈S

ln
(
Pexist(x) · ze−∆G(x)/kβT · Pextract

)
−
∑
x 6∈S

(
Pexist(x) · ze−∆G(x)/kβT · Pextract

)
≈ Ns · ln(z · Pextract) +

∑
x∈S

(
ln(Pexist(x)) · −∆G(x)

kβT

)
− z · Pextract

∑
x6∈S

(
Pexist(x) · e−∆G(x)/kβT

)
(22)

Where Ns is the size of the sampling set S. We are now ready to maximize the likelihood function L by

taking the partial derivatives with respect to zPextract and ∆Gi(b) and setting them equal to 0. We have

From the additivity assumption that for any putative site x:

−∆G(x) =
length(x)∑
i=1

−∆Gi(b)

where we define . . .

−∆Gi(b) = the independent contribution of base b observed at position i

−∆Gi(x, b) = −∆Gi(b) · x(i, b)

x(i, b) = 1 if xi = b, and 0 if xi 6= b (23)

After taking the partial derivatives we have:

∂L

∂(zPextract)
=

Ns
z · Pextract

−
∑
x 6∈S

(
Pexist(x) · e−∆G(x)/kβT

)
= 0

∂L

∂(∆Gi(b))
=

∑
x∈S

x(i, b)

kβT
−

z · Pextract
kβT

· Pexists(i, b) · e−∆Gi(b)/kβT ·
∏
j 6=i

∑
b′

Pexists(j, b′) · e−∆Gj(b
′)/kβT

 = 0

(24)

We can combine the results from the partial derivatives to obtain:

1
Ns

∑
x∈S

x(i, b) =

Pexists(i, b) · e−∆Gi(b)/kβT ·
∏
j 6=i

∑
b′

Pexists(j, b′) · e−∆Gj(b
′)/kβT

∑
x6∈S

(
Pexist(x) · e−∆G(x)/kβT

) (25)
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If we make the observation that:

∑
x 6∈S

(
Pexist(x) · e−∆G(x)/kβT

)
=

∑
b′

Pexists(i, b′) · e−∆Gi(b
′)/kβT ·

∏
j 6=i

∑
b′

Pexists(j, b′) · e−∆Gj(b
′)/kβT

then we have that:

1
Ns

∑
x∈S

x(i, b) =

Pexists(i, b) · e−∆Gi(b)/kβT ·
∏
j 6=i

∑
b′

Pexists(j, b′) · e−∆Gj(b
′)/kβT

∑
b′

Pexists(i, b′) · e−∆Gi(b
′)/kβT ·

∏
j 6=i

∑
b′

Pexists(j, b′) · e−∆Gj(b
′)/kβT

=
Pexists(i, b) · e−∆Gi(b)/kβT∑

b′

Pexists(i, b′) · e−∆Gi(b
′)/kβT

=
Pexists(i, b) · e−∆Gi(b)/kβT

C
1
Ns

∑
x∈S

x(i, b)

Pexists(i, b)
· C = e−∆Gi(b)/kβT

ln

[
1
Ns

∑
x∈S x(i, b)

Pexists(i, b)

]
+ lnC = − ∆Gi(b)

kβT

ln

[
1
Ns

∑
x∈S x(i, b)

Pexists(i, b)

]
≈∝ −∆Gi(b) (26)

Now we make the following observations:

1
Ns

∑
x∈S

x(i, b) = probability of observing base b at position i in our set S

= PsetS(xi(b))

Pexists(i, b) = Pbackground(i, b) (27)

So now we have:

Gsi (b) = ln
[

PsetS(xi(b))
Pbackground(i,b)

]
≈∝ −∆Gi(b)

Gs(x) = ln
[

PsetS(x)
Pbackground(x)

]
≈∝ −∆G(x) (by the additivity assumption)

�
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