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AN INFINITE-TIME RELAXATION THEOREM
FOR DIFFERENTIAL INCLUSIONS

BRIAN INGALLS, EDUARDO D. SONTAG, AND YUAN WANG

(Communicated by Carmen C. Chicone)

Abstract. The fundamental relaxation result for Lipschitz differential inclu-
sions is the Filippov-Wažewski Relaxation Theorem, which provides approxi-
mations of trajectories of a relaxed inclusion on finite intervals. A complemen-
tary result is presented, which provides approximations on infinite intervals,
but does not guarantee that the approximation and the reference trajectory
satisfy the same initial condition.

1. Introduction

This note studies the approximation of solutions of the relaxation of a differential
inclusion of the type:

ẋ(t) ∈ F (t, x(t))(1)

where the set-valued function F is locally Lipschitz and takes values which are
nonempty and closed. The relaxation considered is the inclusion

ẋ(t) ∈ clco F (t, x(t))(2)

where clco stands for closed convex hull.
The fundamental result on approximations of solutions of (2) by solutions of (1)

is the Filippov-Wažewski Relaxation Theorem (cf. [2, 3, 5, 6, 7]). This result says
that the solution set of (1) is dense in the solution set of (2) in the topology of
uniform convergence on compact intervals. (The paper [7] provides a continuous
version of the Theorem which is closely related to the tools used in this note.)

In particular, the Filippov-Wažewski Theorem says that given a trajectory of the
relaxed system (2) defined on a finite interval, there exists a trajectory of (1) with
the same initial condition which approximates the trajectory of the relaxed system
on that finite interval. A complementary result is presented in this note. Roughly
speaking, it is shown that the solution set of initial value problems of the type

ẋ(t) ∈ F (t, x(t)), x(0) = ξ1,(3)

is dense in the solution set of initial value problems of the type

ẋ(t) ∈ clco F (t, x(t)), x(0) = ξ2,(4)
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in the “C0 Whitney topology” on the infinite interval [0,∞). This is not a gen-
eralization of the Filippov-Wažewski Theorem, as, given a trajectory of (4), this
result does not guarantee the existence of an approximating trajectory of (3) with
ξ1 = ξ2, but rather only with ξ1 arbitrarily close to ξ2.

The result in this note provides the existence of trajectories which are approx-
imations in weighted norms on [0,∞), for example |f | := supt≥0{|f(t)| et}. In-
deed, given any r : R≥0 → R>0, there is an approximation in the norm |f | :=
supt≥0{|f(t)| r(t)}. This is achieved by demanding that the approximation lie in
a tube around the reference trajectory which has possibly vanishing radius. An
immediate corollary is that the relaxation (2) is forward complete if and only if the
inclusion (1) is forward complete.

Included also is a counterexample which shows that one cannot achieve an ap-
proximation on the infinite interval if one insists that the approximation satisfy the
same initial condition as the reference trajectory.

The motivation for this work was a question in the stability of differential in-
clusions. It was shown in [8] that a differential inclusion ẋ ∈ F (x) is globally
asymptotically stable if and only if it is uniformly globally asymptotically sta-
ble, provided that the set-valued map F admits a parameterization of the form
F (x) = {f(x, u) : u ∈ U} where f(·, ·) is locally Lipschitz and U is compact.
(See [1] for a more general result.) The proof in this note combines the tools used
in [8] with the main result in the excellent paper [4] which provides continuous
selections of solutions of (1).

1.1. Basic definitions and notation. For each T > 0, let L[0, T ] be the σ-field of
Lebesgue measurable subsets of [0, T ]. Let X be a separable Banach space, whose
norm is denoted simply by |·|. Let P(X) denote the family of all nonempty closed
subsets of X . We use B(X) for the family of Borel subsets of X .

For each interval I ⊆ [0,∞), let L1(I, X) be the Banach space of Bochner
integrable functions u : I → X with norm ‖u‖ =

∫
I |u(t)| dt, and let L1

loc (I, X)
be the corresponding space of locally integrable functions. Let AC(I, X) be the
Banach space of absolutely continuous functions u : I → X with the norm ‖u‖AC =
|u(0)|+ ‖u̇‖.

We define the distance from a point ξ ∈ X to a set K ∈ P(X) as

d(ξ,K) := inf{|ξ − η| : η ∈ K}.

For a set A ∈ P(X), let B(A, r) denote the set {ξ ∈ X : d(ξ, A) ≤ r}. For singleton
A = {ξ} we write B(ξ, r). For each set A and each constant c ∈ R, we denote
cA = {cξ : ξ ∈ A}.

Definition 1.1. The Hausdorff distance between two sets K,L ∈ P(X) is defined
as

dH(K,L) := max

{
sup
ξ∈K

d(ξ, L), sup
η∈L

d(η,K)

}
.

Definition 1.2. Let O be an open subset of X . Let I ⊆ R≥0 be an interval. The
set-valued map F : I ×X → P(X) is said to be locally Lipschitz on O if, for each
ξ ∈ O, there exists a neighbourhood U ⊂ O of ξ and a kU ∈ L1(I,R) so that for



AN INFINITE-TIME RELAXATION THEOREM 489

any η, ζ in U ,

dH(F (t, η), F (t, ζ)) ≤ kU (t) |η − ζ| a.e. t ∈ I.

Definition 1.3. Let I ⊆ [0,∞) be an interval. A function x : I → X is said to be
a solution of the differential inclusion

ẋ(t) ∈ F (t, x(t))(5)

if it is absolutely continuous and satisfies (5) for almost every t ∈ I.
For T > 0, a function x : [0, T )→ X is called a maximal solution of the differ-

ential inclusion if it does not have an extension which is a solution in X . That is,
either T = ∞ or there does not exist a solution y : [0, T+] → X with T+ > T so
that y(t) = x(t) for all t ∈ [0, T ).

Definition 1.4. A differential inclusion is called forward complete if every maximal
solution is defined on the interval [0,∞).

2. Continuous selections of trajectories

We begin by presenting a particular case of the main theorem in [4]. In the
spirit of keeping this work self-contained, the full statement of the theorem in [4] is
included in the appendix.

Lemma 2.1. Let T > 0 and a set-valued map F : [0, T ] × X → P(X) be given,
and consider the initial value problems for η ∈ X,

ẋ ∈ F (t, x), x(0) = η, for t ∈ [0, T ].(6)

Fix ξ0 ∈ X, and suppose y : [0, T ]→ X is a solution of (6) with η = ξ0. Then, if
F satisfies

(H1) F is L[0, T ]⊗ B(X) measurable,
(H2) there exists k ∈ L1([0, T ],R) such that for any ξ, η ∈ X,

dH(F (t, ξ), F (t, η)) ≤ k(t) |ξ − η| a.e. t ∈ [0, T ],

(H3) there exists a point x0 ∈ X and a β0 ∈ L1([0, T ],R) such that

d(x0, F (t, x0)) ≤ β0(t) a.e. t ∈ [0, T ],

it follows that for each ε0 > 0 there exists a function x : [0, T ]×X → X such that
(a) for every η ∈ X, the function t 7→ x(t, η) is a solution of (6);
(b) the map η 7→ x(·, η) is continuous from X into AC([0, T ], X);
(c) for each η ∈ X, and each t ∈ [0, T ],

|y(t)− x(t, η)| ≤ (ε0 + |ξ0 − η|) e
∫
t
0 k(s) ds.

Proof. We apply Theorem 3.1 of [4] (which is included in the appendix) with S = X .
Define a continuous map η 7→ y(·, η) from X into AC([0, T ], X) by the constant as-
signment η 7→ y(·). The Theorem requires a continuous map βy : X → L1([0, T ],R)
so that for each η ∈ X ,

d(ẏ(t, η), F (t, y(t, η))) ≤ βy(η)(t) a.e. t ∈ [0, T ].

Since we have y(t, η) ≡ y(t) for each η, and y(·) is a solution of (6), it follows that
we may choose βy(η) = 0. We note also that our hypothesis (H3) is equivalent to
the hypothesis (H40) in [4], as the global Lipschitz condition (H2) gives

d(0, F (t, 0)) ≤ |x0|+ k(t) |x0|+ d(x0, F (t, x0)) a.e. t ∈ [0, T ]
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for any x0 ∈ X . Then, for any given ε0 > 0, the Theorem provides the existence of
a function x : [0, T ]×X → X which satisfies (a) and (b) above, as well as

|(y(t)− x(t, η)) − (ξ0 − η)| ≤ (ε0 + |ξ0 − η|)e
∫ t
0 k(s) ds − |ξ0 − η| ,

for each η ∈ X and each t ∈ [0, T ], from which (c) follows easily.

3. Approximations of trajectories of relaxed inclusions

We next state a lemma on continuous selections of approximations of a trajectory
of a relaxed inclusion on a finite interval.

Lemma 3.1. Let T > 0, ξ0 ∈ X, and a set-valued map F : [0, T ]×X → P(X) be
given, and consider the initial value problems for t ∈ [0, T ]

ẋ ∈ F (t, x), x(0) = ξ0,(7)

and

ẋ ∈ clco F (t, x), x(0) = ξ0.(8)

Suppose z : [0, T ]→ X is a solution of (8), and let ε > 0 be given. Let

T := {ξ ∈ X : |ξ − z(t)| ≤ ε for some t ∈ [0, T ]},
the ε-tube around the image of z. Then, if F satisfies

(H1 ) F is L[0, T ]⊗ B(X) measurable,
(H2′) there exists k0 ∈ L1([0, T ],R) such that for any ξ, η ∈ B(T , 1)

dH(F (t, ξ), F (t, η)) ≤ k0(t) |ξ − η| a.e. t ∈ [0, T ],

(H3′) there exists α ∈ L1([0, T ],R) such that for each ξ ∈ B(T , 1)

sup{|ζ| : ζ ∈ F (t, ξ)} ≤ α(t) a.e. t ∈ [0, T ],

it follows that there exists a δ > 0 and a function x : [0, T ] × V → X, where
V := B(ξ0, δ) such that

(a) for every η ∈ V , the function t 7→ x(t, η) is a solution of the initial value
problem

ẋ ∈ F (t, x), x(0) = η, for t ∈ [0, T ];(9)

(b) the map η 7→ x(·, η) is continuous from V into AC([0, T ], X);
(c) for each η ∈ V ,

|z(t)− x(t, η)| ≤ ε ∀t ∈ [0, T ].

Proof. We combine Lemma 2.1 with the Filippov-Wažewski Relaxation Theorem
(for the statement of the Relaxation Theorem in the full generality used here, see
e.g. [7]). Let T , F , ξ0 and z be as above, and let ε > 0 be given. By the Relaxation
Theorem, there exists a solution y of (7) which satisfies

|z(t)− y(t)| < ε

2
∀t ∈ [0, T ].

Next we turn to Lemma 2.1. To apply the Lemma, we need to modify the
function F to ensure the Lipschitz and boundedness properties hold over the whole
space X .

We define Φ : X → [0, 1] by

Φ(x) := max{1− d(x, T ), 0}.
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Set F̃ (t, x) := Φ(x)F (t, x). Since F̃ (t, x) and F (t, x) agree for any (t, x) ∈
[0, T ]× T , it follows that the trajectories of (7), (8), and (9) which stay inside T
are the same as those of the differential inclusions with F̃ (t, x) in the place of F (t, x).
Moreover, F̃ satisfies the hypotheses (H1)–(H3) of Lemma 2.1 as follows: (H1) is
immediate. (H3) follows by taking any x0 ∈ T and choosing β0(t) = |x0| + α(t).
For (H2), we find, for any t ∈ [0, T ], for each pair x, y ∈ X ,

i) if x, y ∈ B(T , 1),

dH(F̃ (t, x), F̃ (t, y)) = dH(Φ(x)F (t, x),Φ(y)F (t, y))

≤ dH(Φ(x)F (t, x),Φ(y)F (t, x)) + dH(Φ(y)F (t, x),Φ(y)F (t, y))

≤ |Φ(x) − Φ(y)| sup{|ζ| : ζ ∈ F (t, x)} + |Φ(y)| dH(F (t, x), F (t, y))

≤ |x− y|α(t) + dH(F (t, x), F (t, y))

≤ (α(t) + k0(t)) |x− y| ;
ii) if x ∈ B(T , 1), y /∈ B(T , 1),

dH(F̃ (t, x), F̃ (t, y)) = dH(Φ(x)F (t, x), {0})
= sup{|ζ| : ζ ∈ Φ(x)F (t, x)}
= |Φ(x)| sup{|ζ| : ζ ∈ F (t, x)}
≤ |Φ(x)|α(t)
= |Φ(x) − Φ(y)|α(t)
≤ |x− y|α(t);

iii) if x, y /∈ B(T , 1), dH(F̃ (t, x), F̃ (t, y)) = dH({0}, {0}) = 0.
Hence the global Lipschitz condition (H2) holds with k(t) = α(t) + k0(t).
We apply the Lemma with y and ε0 := ε

4m , where m := exp(
∫ T

0
k(s) ds). Since

its image lies in T , y is a trajectory of (7) with F̃ (t, x) in the place of F (t, x). The
Lemma gives the existence of a function x : [0, T ]×X → X so that

(a) for every η ∈ X , the function t 7→ x(t, η) is a solution of

ẋ ∈ F̃ (t, x), x(0) = η;(10)

(b) the map η 7→ x(·, η) is continuous from X into AC([0, T ], X);
(c) for each η ∈ X ,

|y(t)− x(t, η)| ≤ (ε0 + |ξ0 − η|) e
∫ t
0 k(s) ds ∀t ∈ [0, T ].

Choosing δ = ε
4m , we have from (c) that for each η ∈ V := B(ξ0, δ),

|y(t)− x(t, η)| ≤ ε

2
∀t ∈ [0, T ].

Thus for each η ∈ V ,

|z(t)− x(t, η)| ≤ |z(t)− y(t)|+ |y(t)− x(t, η)| < ε ∀t ∈ [0, T ].

This implies that for each η ∈ V , the trajectory x(·, η) lies in the tube T in which F̃
and F coincide, so these are in fact trajectories of the original system. We conclude
that the restriction of x to [0, T ]× V satisfies the required conditions.

Our main result will be an immediate corollary of the following technical lemma.
Given 0 < T ≤ ∞ and a trajectory z : [0, T ) → X of the relaxed system (2),
this lemma will show the existence of, for any strictly increasing sequence of times
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Tk → T and for each nonnegative integer k, a sequence {ηkj }∞j=1, whose elements
are close to z(Tk) and which satisfy a continuous reachability property.

Lemma 3.2. Let 0 < T ≤ ∞, and suppose the set-valued map F : [0, T ) ×X →
P(X) satisfies the following properties:
(H1′′) F is L[0, T )⊗ B(X) measurable;
(H2′′) for each R > 0, there exists kR ∈ L1

loc ([0, T ),R) such that for any ξ,
η ∈ B(0, R)

dH(F (t, ξ), F (t, η)) ≤ kR(t) |ξ − η| a.e. t ∈ [0, T );

(H3′′) for each R > 0, there exists αR ∈ L1
loc ([0, T ),R) such that for each ξ ∈

B(0, R)

sup{|ζ| : ζ ∈ F (t, ξ)} ≤ αR(t) a.e. t ∈ [0, T ).

Fix ξ ∈ X and let z : [0, T )→ X be a solution of

ẋ ∈ clco F (t, x), x(0) = ξ.

Let r : [0, T )→ R be a continuous function satisfying r(t) > 0 for all t ∈ [0, T ). Let
{Tk}∞k=0 be any strictly increasing sequence of times so that T0 = 0 and Tk → T
as k →∞. Then there exists a sequence {δk}∞k=0 of positive numbers and, for each
nonnegative integer k, a sequence of points {ηkj }∞j=1 which satisfy the following:

• for each k ≥ 0, δk ≤ min{r(t) : t ∈ [Tk, Tk+1]};
• for each k ≥ 0, ηkj ∈ Vk := B(z(Tk), δk) for all j ≥ 1;
• for any k ≥ 1, if a subsequence {ηkjl}

∞
l=1 converges, say to ηk, then the

subsequence {ηk−1
jl
}∞l=1 also converges, say to ηk−1, and there is a solution

x : [0, Tk − Tk−1]→ X of the initial value problem

ẋ ∈ F (Tk−1 + t, x), x(0) = ηk−1 for t ∈ [0, Tk − Tk−1],(11)

which satisfies

|x(t)− z(Tk−1 + t)| ≤ r(Tk−1 + t) ∀t ∈ [0, Tk − Tk−1],(12)

and has x(Tk − Tk−1) = ηk.

Proof. For each positive integer k, let

rk := min{r(t) : t ∈ [Tk−1, Tk]}.
For each positive integer k we will build a family of trajectories which approximate
z on the time interval [Tk−1, Tk]. On each such interval, we will consider the
differential inclusions in backward time.

We will apply Lemma 3.1 to the problems

ẋ ∈ −F (Tk − t, x), for t ∈ [0, Tk − Tk−1],(13)

and

ẋ ∈ clco −F (Tk − t, x), for t ∈ [0, Tk − Tk−1],(14)

for each k ≥ 1 with appropriate initial conditions.
Set δ0 = r1 and V0 := B(z(0), r1). We will construct, by induction, for each

positive integer k,
• a δk > 0 which satisfies δk ≤ rk+1,
• a set Vk := B(z(Tk), δk), and
• a function xk : [0, Tk − Tk−1]× Vk which satisfies the following:
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(a) for every η ∈ Vk, the function t 7→ xk(t, η) is a solution of (13) with
initial condition x(0) = η;

(b) the map η 7→ xk(·, η) is continuous from Vk into AC([0, Tk−Tk−1], X);
(c) for each η ∈ Vk,

|z(Tk − t)− xk(t, η)| ≤ rk ∀t ∈ [0, Tk − Tk−1];

(d) for every η ∈ Vk,

xk(Tk − Tk−1, η) ∈ Vk−1.

We first make the construction for k = 1. Note that, by definition, z(T1 − t) is
a solution of (14) with initial value z(T1). Further, the hypotheses of Lemma 3.1
are satisfied by the function F , and hence −F , since there exists R large enough so
that B(0, R) contains the image of z(T1 − t) over t ∈ [0, T1]. Applying the Lemma
with ε = r1, it follows that there exists a δ1 > 0 and a function x1 : [0, T1] × V1,
where V1 := B(z(T1), δ1), which satisfies

(a) for every η ∈ V1, the function t 7→ x1(t, η) is a solution of

ẋ ∈ −F (T1 − t, x), x(0) = η,

(b) the map η 7→ x1(·, η) is continuous from V1 into AC([0, T1], X),
(c) for each η ∈ V1,

|z(T1 − t)− x1(t, η)| ≤ r1 ∀t ∈ [0, T1],

(d) for each η ∈ V1,

x1(T1, η) ∈ V0,

where (c) follows from the choice of ε = r1, and (d) follows from evaluating (c) at
t = T1.

Now, supposing that for some k ≥ 1 there exist δk and xk as above, we produce
δk+1 and xk+1 as follows.

Consider the function z(Tk+1 − t) on the interval t ∈ [0, Tk+1 − Tk]. This
solves (14) (for k + 1) with initial value z(Tk+1). We apply Lemma 3.1, with
ε = min{δk, rk+1}, to find a δk+1 > 0 and a function xk+1 : [0, Tk+1 − Tk]× Vk+1,
where Vk+1 := B(z(Tk+1), δk+1), which satisfies

(a) for every η ∈ Vk+1, the function t 7→ xk+1(t, η) is a solution of (13) (for
k + 1) with initial condition x(0) = η,

(b) the map η 7→ xk+1(·, η) is continuous from Vk+1 into AC([0, Tk+1−Tk], X),
(c) for each η ∈ Vk+1,

|z(Tk+1 − t)− xk+1(t, η)| ≤ ε ≤ rk+1 ∀t ∈ [0, Tk+1 − Tk],

(d) for each η ∈ Vk+1,

xk+1(Tk+1 − Tk, η) ∈ Vk,

where (d) follows from ε ≤ δk. Then, by induction, we conclude that there exist
such δk and xk for each k ≥ 1.
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Figure 1. Construction of ηkj

Next, for each positive integer k we consider the concatenated trajectory yk :
[0, Tk]→ X defined by

yk(t) :=



xk(t, z(Tk)), t ∈ [0, Tk − Tk−1],
xk−1(t− (Tk − Tk−1), xk(Tk − Tk−1, z(Tk))),

t ∈ [Tk − Tk−1, Tk − Tk−2],
...
x1(t− (Tk − T1), x2(T2 − T1, . . . xk(Tk − Tk−1, z(Tk)))),

t ∈ [Tk − T1, Tk].

We set

η0
0 = z(T0),
η0

1 = y1(T1), η1
1 = z(T1),

η0
2 = y2(T2), η1

2 = y2(T2 − T1), η2
2 = z(T2),

η0
3 = y3(T3), η1

3 = y3(T3 − T1), η2
3 = y3(T3 − T2), η3

3 = z(T3),
...
η0
j = yj(Tj), . . . , ηkj = yj(Tj − Tk), . . . , ηjj = z(Tj),

...

By construction, each ηkj ∈ Vk (see Figure 1).
It remains to verify that this construction satisfies the final condition. Suppose

that for some k ≥ 1, the subsequence {ηkjl}
∞
l=1 converges to a limit ηk. Recall that

by definition,

ηk−1
j = xk(Tk − Tk−1, η

k
j )

for each j ≥ 0. Then, by continuity of xk(Tk − Tk−1, ·), we find that {ηk−1
jl
}∞l=1 is

convergent, since

lim
l→∞

ηk−1
jl

= lim
l→∞

xk(Tk − Tk−1, η
k
jl

) = xk(Tk − Tk−1, η
k).
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Denote ηk−1 = xk(Tk − Tk−1, η
k). Finally, we note that x(t) : [0, Tk − Tk−1] → X

defined by x(t) := xk(Tk −Tk−1− t, ηk) is a solution of (11), satisfies (12), and has
x(Tk −Tk−1) = ηk. All that remains is to re-number the sequences ηkj so they each
begin at j = 1.

We now turn to our main result. To apply Lemma 3.2, we restrict to a setting in
which the constructed sequences are guaranteed to have convergent subsequences;
we suppose X is finite dimensional. For a given 0 < T ≤ ∞ and a reference
trajectory z : [0, T )→ X of the relaxed system (2), we will construct a trajectory
of the original system which stays within a given tube (with possibly vanishing
radius) around the trajectory z.

Theorem 1. Suppose the space X is finite dimensional. Let 0 < T ≤ ∞. Suppose
the set-valued map F : [0, T )×X → P(X) satisfies the hypotheses (H1 ′′)-(H3 ′′) of
Lemma 3.2. Fix ξ ∈ X and let z : [0, T )→ X be a solution of

ẋ ∈ clco F (t, x), x(0) = ξ.

Let r : [0, T ) → R be a continuous function satisfying r(t) > 0 for all t ∈ [0, T ).
Then there exists an η0 ∈ B(ξ, r(0)) and a solution x : [0, T )→ X of

ẋ ∈ F (t, x), x(0) = η0,(15)

which satisfies

|z(t)− x(t)| ≤ r(t) ∀t ∈ [0, T ).

Proof. Choose a strictly increasing sequence of times Tk so that T0 = 0 and Tk → T .
Let the sequence {δk}∞k=0 and, for each nonnegative integer k, the sequence {ηkj }∞j=0

be as in Lemma 3.2 for F , z, and r(·). For each k ≥ 0, set Vk = B(z(Tk), δk) and
rk+1 = min{r(t) : t ∈ [Tk, Tk+1]}.

Since the sequence {η0
j }∞j=1 lies in V0, which is compact, there is a convergent

subsequence {η0
jl0
}∞l0=1 which converges to some η0 ∈ V0. Likewise, the sequence

{η1
jl0
}∞l0=1 lies in the compact set V1, so it has a subsequence {η1

jl1
}∞l1=1 converging

to some η1 ∈ V1. Continuing with this diagonalization, we find, for each k ≥ 1, a
subsequence {ηkjlk}

∞
lk=1 which converges to some ηk ∈ Vk and which is a subsequence

of {ηk−1
jl(k−1)

}∞l(k−1)=1.
Now, for each k ≥ 1, since {ηkjlk}

∞
lk=1 converges to ηk, it follows from Lemma 3.2

that there is a trajectory xk : [0, Tk − Tk−1] → X which solves (11), satisfies (12),
and has xk(Tk − Tk−1) = ηk.

We construct a trajectory x : [0, T )→ X by

x(t) := xk(t) when t ∈ [Tk−1, Tk).

By construction, this trajectory is a solution of (15) on the interval [0, T ) and
satisfies x(0) = η0. It follows from property (12) that

|z(t)− x(t)| ≤ rk ∀t ∈ [Tk−1, Tk],

from which we conclude

|z(t)− x(t)| ≤ r(t) ∀t ∈ [0, T ).

Before stating a corollary, we quote a standard existence result for compact
valued differential inclusions which follows from, e.g., [2], Theorem 2.3.1.
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Lemma 3.3. Let Ω ⊂ R × Rn be an open set containing (0, x0), and let F be a
locally Lipschitz set-valued map from Ω to the nonempty compact subsets of Rn.
Then there exists τ > 0 and a solution x of

ẋ ∈ F (t, x), x(0) = x0

defined on the interval [0, τ).

Corollary 3.4. Suppose X = Rn and the set-valued map F : [0,∞)×Rn → P(Rn)
has compact values and satisfies the hypotheses (H1 ′′)-(H3 ′′) of Lemma 3.2. Then
the inclusion (1) is forward complete if and only if its relaxation (2) is forward
complete.

Proof. One implication is immediate. Suppose now that the inclusion (1) is forward
complete but its relaxation (2) is not. Choose a maximal solution z of (2) which
has a bounded interval of definition [0, T ). Applying Theorem 1 with r(t) = T − t,
we choose a solution y of (1) on [0, T ) which satisfies

|y(t)− z(t)| ≤ T − t ∀t ∈ [0, T ).(16)

Now, since the inclusion (1) is forward complete, the solution y has an extension
to the interval [0,∞), which we also call y. Since y is continuous at T , we have,
from (16),

lim
t→T−

z(t) = y(T ).

By Lemma 3.3, there exists τ > 0 so that

ẋ ∈ clco F (T + t, x), x(0) = y(T )

has a solution ẑ defined on [0, τ). The concatenation of z with ẑ is an extension of z
to the interval [0, T+τ) which contradicts the definition of T . We conclude that each
maximal solution of (2) is defined on [0,∞), that is, (2) is forward complete.

4. Counterexample

Considering that the Theorem in this note provides a complementary result to
the classical Filippov-Wažewski Theorem, it is natural to ask whether one can
achieve the results of both theorems simultaneously, that is, whether there exists
an infinite-time approximation which satisfies the same initial condition as a given
reference trajectory. The following example shows that in general this is not possi-
ble.

Consider the following differential inclusion evolving on R2:

ẋ(t) = y2(t),
ẏ(t) ∈ {−1, 1},

and the relaxation to convex values:

ẋ(t) = y2(t),
ẏ(t) ∈ [−1, 1].

Note that x(t) ≡ y(t) ≡ 0 is a solution of the relaxed inclusion with x(0) = y(0) = 0.
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Clearly, the set-valued function F (x, y) = ({y2}, {−1, 1}) is measurable, locally
bounded, locally Lipschitz, and has closed, nonempty values. Then, by Theorem 1,
the original inclusion admits solutions which approximate the zero solution for
t ≥ 0. For example, there exists a solution (x(t), y(t)) which satisfies

x2(t) + y2(t) ≤ e−t ∀t ≥ 0,(17)

with |x(0)| ≤ 1, |y(0)| ≤ 1.
However, the inclusion cannot admit a solution satisfying (17) and also satisfying

x(0) = y(0) = 0. We note that any solution with x(0) = y(0) = 0 satisfies

x(1) =
∫ 1

0

y2(t) dt = ε > 0,

for some ε > 0, as
∫ 1

0 y
2(t) dt = 0 implies y(t) = 0 almost everywhere on [0, 1],

which is not allowed. Then as ẋ(t) ≥ 0 for all t ≥ 0, it follows that x(t) ≥ ε for all
t ≥ 1, so (17) cannot be achieved.

Appendix A.

For completeness, we state the main result in [4], which is the primary tool used
in the proof of Theorem 1.

Definition A.1. A set-valued map F from a metric space Z to subsets of a metric
space Y is called lower semicontinuous at z ∈ Z if F (z) 6= ∅ and for any y ∈ F (z)
and any neighbourhood N(y) of y, there exists a neighbourhood N(z) of z so that

F (ζ) ∩N(y) 6= ∅ ∀ζ ∈ N(z).

The map F is called lower semicontinuous if it is lower semicontinuous at each
z ∈ Z.

Let S be a separable metric space. Let F : [0, 1]×X × S → P(X) and consider
the following initial value problems

ẋ ∈ F (t, x, s), x(0) = ξ(s),(18)

where ξ : S → X is a continuous function.

Theorem 2. Suppose the set-valued map F satisfies

(H1) F is L[0, 1]⊗ B(X × S) measurable;
(H2) for any (t, x), the map s 7→ F (t, x, s) is lower semicontinuous;
(H3) there exists a map s 7→ k(·, s) continuous from S into L1([0, 1],R) such that

for any s ∈ S and ξ, η ∈ X,

dH(F (t, ξ, s), F (t, η, s)) ≤ k(t, s) |ξ − η| a.e. t ∈ [0, 1];

(H4) for any continuous map s 7→ y(·, s) from S into AC([0, 1], X), there exists
a continuous map βy : S → L1([0, 1],R) such that for any s ∈ S,

d(ẏ(t, s), F (t, y(t, s), s)) ≤ βy(s)(t) a.e. t ∈ [0, 1].(19)
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Then for any continuous map s 7→ y(·, s) from S into AC([0, 1], X), any map
s 7→ β(s) = βy(s) from S into L1([0, 1],R) satisfying (19), and any ε > 0, there
exists a function x : [0, 1]× S → X such that

(a) for every s ∈ S, the function t 7→ x(t, s) is a solution of (18);
(b) the map s 7→ x(·, s) is continuous from S into AC([0, 1], X);
(c) for every s ∈ S, and almost every t ∈ [0, 1],

|ẏ(t, s)− ẋ(t, s)| ≤ ε+ εk(t, s)em(t,s) + k(t, s) |y(0, s)− ξ(s)| em(t,s)

+ k(t, s)
∫ t

0

β(s)(τ)em(t,s)−m(τ,s) dτ + β(s)(t);

(d) for every s ∈ S and every t ∈ [0, 1],

|[y(t, s)− x(t, s)] − [y(0, s)− ξ(s)]| ≤ εem(t,s) + |y(0, s)− ξ(s)| (em(t,s) − 1)

+
∫ t

0

β(s)(τ)em(t,s)−m(τ,s) dτ,

where m(t, s) :=
∫ t

0
k(τ, s) dτ .

Remark A.2. By assumption (H3), the assumption (H4) can be replaced by the
equivalent condition:

(H40) there exists a continuous map β0 : S → L1([0, 1],R) such that for any
s ∈ S

d(0, F (t, 0, s)) ≤ β0(s)(t) a.e. t ∈ [0, 1].

Remark A.3. The dependence of F on the parameter s is dropped for the purposes
of this note, since the proof of Theorem 1 will not hold for this more general case. In
that proof, the approximating trajectory is constructed by concatenating solutions
which correspond to different values of s.

The authors would like to thank Héctor Sussmann for bringing the crucial ref-
erences to our attention and also David Angeli for helpful discussions.

References

[1] D. Angeli, B. Ingalls, E. D. Sontag, and Y. Wang, A Relaxation Theorem for Asymptotically
Stable Differential Inclusions, in preparation.

[2] J.-P. Aubin and A. Cellina, Differential Inclusions, Spring-Verlag, Berlin, 1984. MR
85j:49010

[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990. MR
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