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A single mammalian cell includes an order of 104–105 mRNA molecules and

as many as 105–106 ribosomes. Large-scale simultaneous mRNA translation

induces correlations between the mRNA molecules, as they all compete for

the finite pool of available ribosomes. This has important implications

for the cell’s functioning and evolution. Developing a better understanding

of the intricate correlations between these simultaneous processes, rather

than focusing on the translation of a single isolated transcript, should help

in gaining a better understanding of mRNA translation regulation and the

way elongation rates affect organismal fitness. A model of simultaneous trans-

lation is specifically important when dealing with highly expressed genes, as

these consume more resources. In addition, such a model can lead to more

accurate predictions that are needed in the interconnection of translational

modules in synthetic biology. We develop and analyse a general dynamical

model for large-scale simultaneous mRNA translation and competition

for ribosomes. This is based on combining several ribosome flow models

(RFMs) interconnected via a pool of free ribosomes. We use this model to

explore the interactions between the various mRNA molecules and ribosomes

at steady state. We show that the compound system always converges to a

steady state and that it always entrains or phase locks to periodically time-

varying transition rates in any of the mRNA molecules. We then study the

effect of changing the transition rates in one mRNA molecule on the steady-

state translation rates of the other mRNAs that results from the competition

for ribosomes. We show that increasing any of the codon translation rates in

a specific mRNA molecule yields a local effect, an increase in the translation

rate of this mRNA, and also a global effect, the translation rates in the other

mRNA molecules all increase or all decrease. These results suggest that the

effect of codon decoding rates of endogenous and heterologous mRNAs on

protein production is more complicated than previously thought. In addition,

we show that increasing the length of an mRNA molecule decreases the

production rate of all the mRNAs.
1. Introduction
Various processes in the cell use the same finite pool of available resources. This

means that the processes actually compete for these resources, leading to an

indirect coupling between the processes. This is particularly relevant when

many identical intracellular processes, all using the same resources, take

place in parallel. The indirect coupling induced by competition may affect the

cell’s structure and functioning in ways that cannot be understood when

studying each process as a single, isolated process.

Biological evidence suggests that the competition for RNA polymerase

(RNAP) and ribosomes, and various transcription and translation factors, is a

key factor in the cellular economy of gene expression. The limited availability

of these resources is one of the reasons why the levels of genes, mRNA and

proteins produced in the cell do not necessarily correlate [1–7].

It was estimated that in a yeast cell there are approximately 60 000 mRNA

molecules. These can be translated in parallel [8,9], with possibly many
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Figure 1. Simultaneous translation of mRNA chains (right) interconnected via
a pool of free ribosomes (left). If more ribosomes bind to a certain mRNA
molecule then the pool of free ribosomes in the cell is depleted, and this
may lead to lower initiation rates in the other mRNAs.
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ribosomes scanning the same transcript concurrently. The

number of ribosomes is limited (in a yeast cell it is approx.

240 000) and this leads to a competition for ribosomes. For

example, if more ribosomes bind to a certain mRNA molecule

then the pool of free ribosomes in the cell is depleted, and this

may lead to lower initiation rates in the other mRNAs

(figure 1).

There is a growing interest in computational or math-

ematical models that take into account the competition for

available resources in translation and/or transcription (see

e.g. [10–15]). One such model that explicitly considers the

movement of the ribosomes (RNAP) along the mRNA

(DNA) is based on a set of asymmetric simple exclusion
processes (ASEPs) interconnected to a pool of free ribosomes.

ASEP is an important model from non-equilibrium statistical

physics describing particles that hop randomly from one site

to the next along an ordered lattice of sites, but only if the

next site is empty. This form of ‘rough exclusion’ models the

fact that the particles cannot overtake one another. ASEP

has been used to model and analyse numerous multiagent sys-

tems with local interactions including the flow of ribosomes

along the mRNA molecule [16,17]. In this context, the lattice

represents the mRNA molecule, and the particles are the ribo-

somes. For more on mathematical and computational models

of translation, see the survey paper [18].

Ha & den Nijs [19] considered a closed system composed

of a single ASEP connected to a pool (or reservoir) of ‘free’

particles. The total number of particles is conserved. This is

sometimes referred to as the parking garage problem, with

the lattice/particles/pool modelling a road/cars/parking

garage, respectively. Cook & Zia [20] studied a similar

system using domain wall theory. Cook & Zia [21] (see also

[22]) considered a network composed of two ASEPs con-

nected to a finite pool of particles. The analysis in these

papers focuses on the phase diagram of the compound

system with respect to certain parameters, and on how the

phase of one ASEP affects the phase of the other ASEPs.

These studies rely on the phase diagram of a single ASEP

that is well understood only in the case where all the tran-

sition rates inside the chain (the elongation rates) are equal.

Thus, the network is typically composed of homogeneous
ASEPs. Another model [15] combines non-homogeneous

ASEPs in order to study competition between multiple

species of mRNA molecules for a pool of tRNA molecules.

This study was based on the Saccharomyces cerevisiae
genome. However, in this case (and similar models, such as

[14]) analysis seems intractable and one must resort to

simulations only.

Our approach is based on the ribosome flow model (RFM)

[23]. This is a deterministic, continuous-time, synchronous

model for translation that can be derived via the mean-field

approximation of ASEP [24]. The RFM includes n state vari-

ables describing the ribosomal density in n consecutive sites

along the mRNA molecule, and nþ 1 positive parameters:

the translation initiation rate l0, and the translation

elongation rate li from site i to site iþ 1, for i ¼ 1, . . . , n.

The RFM has a unique equilibrium point e ¼ eðl0, . . . , lnÞ,
and any trajectory emanating from a feasible initial condition

converges to e [25] (see also [26]). This means that the system

always converges to a steady-state ribosomal density that

depends on the rates, but not on the initial ribosomal density

profile. In particular, the production rate converges to a

steady-state value denoted by R. The mapping from the

rates to R is a concave function, so maximizing R subject to

a suitable constraint on the rates is a convex optimization

problem [27,28]. Sensitivity analysis of the RFM with respect

to the rates has been studied in Poker et al. [29]. These results

are important in the context of optimizing the protein

production rate in synthetic biology. Margaliot et al. [26]

have shown that when the rates li are time-periodic func-

tions, with a common minimal period T, then every state

variable converges to a periodic solution with period T. In

other words, the ribosomal densities entrain to periodic exci-

tations in the rates (due e.g. to periodically varying

abundances of tRNA molecules).

In ASEP with periodic boundary conditions, a particle that

hops from the last site returns to the first one. The mean-

field approximation of this model is called the ribosome flow
model on a ring (RFMR). The periodic boundary conditions

mean that the total number of ribosomes is conserved.

Raveh et al. [30] analysed the RFMR using the theory of

monotone dynamical systems that admit a first integral.

Both the RFM and the RFMR model mRNA translation on

a single mRNA molecule. In this paper, we introduce a new

model, called the RFM network with a pool (RFMNP), that

includes a network of RFMs, interconnected through a

dynamical pool of free ribosomes, to model and analyse

simultaneous translation and competition for ribosomes

in the cell. To the best of our knowledge, this is the first

study of a network of RFMs. The total number of ribosomes

in the RFMNP is conserved, leading to a first integral of

the dynamics. Applying the theory of monotone dynamical

systems that admit a first integral, we prove several math-

ematical properties of the RFMNP: it admits a continuum

of equilibrium points, every trajectory converges to an

equilibrium point, and any two solutions emanating from

initial conditions corresponding to an equal total number

of ribosomes in the system converge to the same equili-

brium point. These results hold for any set of rates and in

particular when the RFMs in the network are not necessarily

homogeneous. These stability results are important because

they provide a rigorous framework for studying ques-

tions such as how does a change in one RFM affects the

behaviour of all the other RFMs in the network? Indeed,

http://rsif.royalsocietypublishing.org/
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since a steady-state exists, this can be reduced to asking:

how does a change in one RFM in the network affects the

steady-state behaviour of the network?

To analyse competition for ribosomes, we consider the

effect of increasing one of the rates in one RFM, say RFM

#1. This means that the ribosomes traverse RFM #1 more

quickly. We show that this always leads to an increase in

the production rate of RFM #1. All the other RFMs are

always affected in the same manner, that is, either all the

other production rates increase or they all decrease. Our

analysis shows that this can be explained as follows. Increas-

ing the rate li in RFM #1 tends to increase the steady-state

density in sites iþ 1, iþ 2, . . ., and decrease the density in

site i of this RFM. The total density (i.e. the sum of all the den-

sities on the different sites along RFM #1) can either decrease

or increase. In the first case, more ribosomes are freed to the

pool, and this increases the initiation rates in all the other

RFMs leading to higher production rates. The second case

leads to the opposite result. The exact outcome of increasing

one of the rates thus depends on the many parameter values

defining the pool and the set of RFMs in the network.

Our model takes into account the dynamics of the trans-

lation elongation stage, yet is still amenable to analysis.

This allows to develop a rigorous understanding of the

effect of competition for ribosomes. Previous studies on this

topic were either based on simulations (see, for example,

[14,15]) or did not include a dynamical model of translation

elongation (e.g. [11,13]). For example, in an interesting

paper, combining mathematical modelling and biological

experiments, Gyorgy et al. [11] study the expression levels

of two adjacent reporter genes on a plasmid in Escherichia
coli based on measurements of fluorescence levels, that is,

protein levels. These are of course the result of all the gene

expression steps (transcription, translation, mRNA degra-

dation, protein degradation) making it difficult to separately

study the effect of competition for ribosomes or to study

specifically the translation elongation step. Their analysis

yields that the attainable output p1, p2 of the two proteins

satisfies the formula

a p1 þ b p2 ¼ Y, ð1:1Þ

where Y is related to the total number of ribosomes (but also

other translation factors and possibly additional gene

expression factors), and a, b are constants that depend on par-

ameters such as the plasmid copy number, dissociation

constants of the ribosomes binding to the ribosomal binding

site (RBS), etc. This equation implies that increasing the pro-

duction of one protein always leads to a decrease in the

production of the other protein (although more subtle corre-

lations may take place via the effects on the constants a and

b). A similar conclusion also has been derived for other

models ([31], ch. 7).

In our model, improving the translation rate of a codon in

one mRNA may either increase or decrease the translation

rates of all other mRNAs in the cell. Indeed, the effect on

the other genes depends on the change in the total density
of ribosomes on the modified mRNA molecule, highlighting

the importance of modelling the dynamics of the translation

elongation step. We show, however, that when increasing the

initiation rate in an RFM in the network, the total density in

this RFM always increases and, consequently, the production

rate in all the other RFMs decreases. This special case agrees

with the results in [11].
Another recent study [32] showed that the hidden layer

of interactions among genes arising from competition for

shared resources can dramatically change network behav-

iour. For example, a cascade of activators can behave like

an effective repressor, and a repression cascade can become

bistable. This agrees with several previous studies in the

field (e.g. [7,33]).

The remainder of this paper is organized as follows.

Section 2 summarizes the biological implications of our

theoretical results. This includes no equations, and was writ-

ten in order to make this paper more accessible to a wider

audience. Section 3 describes the new model, and demon-

strates using several examples how it can be used to study

translation at the cell level. Section 4 describes our main theor-

etical results, and details their biological implications. To

streamline the presentation, the proofs of the results are

in the electronic supplementary material. The final section

concludes and describes several directions for further

research, including suggestions for biological experiments

inspired from the theoretical results.
2. Biological rationale and summary of the main
results

The goal of our study is to understand the intricate coupling

between the translation rates of different mRNA molecules

induced by the competition for the finite pool of available

resources and, in particular, ribosomes. We develop a new

mathematical model that includes a finite pool of ‘free’ ribo-

somes, and an arbitrary number of mRNA molecules. This

implies that the different mRNA molecules ‘compete’ for

the finite pool of ribosomes (figure 1).

Our model encapsulates the fundamental dynamical

aspects of the translation process: the codon decoding rates

and initiation rates may vary among different genes, and

within a coding region; the movement of ribosomes is

unidirectional from the 50 end to the 30 of the coding

region; when there are multiple ribosomes on the mRNA, a

ribosome cannot overtake another ribosome, etc.

The initiation and codon translation rates in the model are

related to various biophysical mechanisms and transcript

features including adaptation of codons to the tRNA pool

(codons that are recognized by a tRNA with a higher intra-

cellular abundance tend to be translated more quickly [34]);

local folding of the mRNA (stronger folding tends to decrease

elongation ratex [35]); interaction/hybridization between the

ribosomal RNA and the mRNA [36] (there are nucleotide

sub-sequences that tend to interact with the ribosomal RNA);

the interaction between the nascent peptide and the exit

tunnel of the ribosome [37,38]; and more. The initiation rates

may also be related to various mechanisms and transcript

features including ribosome binding sites in prokaryote [39];

mRNA folding near the start codon [2,40] and nucleotide com-

position surrounding the start codon in eukaryotes [41,42].

However, the theoretical results proved here hold for any set

of feasible parameter values covering any possible physiologi-

cal condition. For example, they hold when the initiation rate is

very low (and thus rate limiting), but also when the initiation

rate is high, causing ribosomal ‘traffic jams’ along the mRNA.

Similarly, the results hold if the codon decoding rates are con-

stant along different codons and when they significantly vary

along the codons. Thus, the reported results are relevant for

http://rsif.royalsocietypublishing.org/
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Figure 2. Local and global effects of improving the rate of a site in a specific mRNA. (a) Improving the initiation rate of an mRNA molecule increases its translation
rate and also the number of ribosomes along this mRNA; owing to the increased ribosome density on the modified mRNA the pool is depleted and consequently the
initiation and translation rates in all the other mRNA molecules decrease. Thus, the local and global effects are opposite. (b) A very slow codon in an mRNA molecule
generates a ribosome traffic jam. Improving this codon improves the translation rate of this mRNA. In addition, the traffic jam disappears, so there are more free
ribosomes in the pool, and thus the initiation and the translation rates of all the other mRNA molecules increase.
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various organisms (e.g. bacteria, fungi, mammals) in various

regimes and conditions (e.g. normal conditions, starvation,

viral infection and diseases such as cancer, etc.). In addition,

they are relevant both for endogenous and heterologous/

engineered genes.

We show that the compound system always converges to

a steady state. In other words, the ribosome density profile on

every mRNA molecule and the number of ribosomes in the

pool converge, as time goes to infinity, to some fixed value.

We then analyse how this steady state changes as we

change a transition rate in one of the mRNA molecules.

Note that the change in one mRNA induces a change

throughout the system because of the mutual coupling via

the competition for the available ribosomes.

The first fundamental conclusion of our study describes

the local and global effects of modifying the initiation rate in

one mRNA molecule on the total protein production in the

cell (figure 2a). We show that increasing [decreasing] the

initiation rate in a certain mRNA molecule always increases

[decreases] the ribosome density profile and the translation

rate of that mRNA, and also decreases [increases] the ribo-

some density and translation rate in all the other mRNA

molecules. In other words, the local and global effects are

opposed. This conclusion is important in the context of

biotechnology and synthetic biology, as it implies that

increasing the initiation rate of an engineered (e.g. heter-

ologous) mRNA molecule will lead to a decrease in the

translation rates of all the other mRNA molecules. This is

expected to yield a decrease in the growth rate of the

host, and may eventually decrease the production rate of

the heterologous gene. This conclusion is also relevant in

the context of molecular evolution, as it shows that a

mutation near the 50 end of the coding region in one

mRNA affects the organismal fitness not only locally but

also globally.

The second fundamental conclusion of our study con-

siders increasing [decreasing] a codon elongation rate (but

not the initiation rate) in a specific mRNA molecule. The

local effect is always an increase [decrease] in the translation
rate of the modified mRNA. The global effect is homo-

geneous: either all the translation rates of the other mRNAs

increase or they all decrease (figures 2b and 3b). Which of

these two outcomes will indeed take place depends on all

the rates in the system, and can be predicted using our

model. We can provide an intuitive explanation of the two

possible outcomes as follows. Suppose that the modified

rate is a bottleneck rate, i.e. it leads to ribosomal traffic

jams. Then increasing this rate reduces the traffic jams, thus

freeing more ribosomes to the pool. This increases the

initiation rates in all the other mRNAs leading to a global

increase in translation rates (figure 2b).

On the other hand, suppose that the modified codon is

located close to the beginning of the coding region and that

there is a bottleneck codon, generating a traffic jam, further

away along the coding region. Then an increase in the tran-

sition rate of the modified codon actually worsens the

traffic jam. This depletes the pool, and thus yields a global

decrease in the translation rates of all the other mRNAs

(figure 3b).

This second conclusion is important in the context of

biotechnology and synthetic biology, as it demonstrates that

evaluating the effect of (heterologous or endogenous) gene

engineering on its production rate should take into account

the change in the ribosomal pool in order to estimate the

global, and not only local, effect of the modification. Our

model allows to predict this effect.

Specifically, consider the effect of introducing a ‘ramp’,

i.e. a region with relatively slow codons at the beginning of

the coding region [1,4]. This is expected to reduce the traffic

jams in the modified mRNA because fewer ribosomes can

enter and pile up in the modified mRNA. This then should

increase the number of free ribosomes and thus the global

effect is expected to be an increase in the initiation and trans-

lation rates in all the other mRNAs, leading to an increase in

organismal growth rate and fitness (figure 3a).

This conclusion is also relevant in the context of mole-

cular evolution, as it allows a better understanding of

the trans effect of mutations in the coding region on the

http://rsif.royalsocietypublishing.org/
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Figure 3. Local and global effects of modifying an mRNA molecule. (a) Introducing ramps, i.e. codons at the beginning of the coding sequence that are slower as
(but not much slower than) the slowest codon in the molecule is expected to decrease traffic jams in the modified mRNA, thus increasing the number of free
ribosomes, leading to a global increase in the initiation and translation rates in all other mRNA molecules. (b) Introducing a set of mutations in the coding region
that improves the translation rates of the first codons, when there are slower codons afterward, is expected to increase the ribosome density on the modified mRNA,
thus decreasing the number of free ribosomes, and leading to a global decrease in the initiation and translation rates of all other mRNA molecules.
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Figure 4. Topology of the RFM and comparison with the TASEP model. The RFM (lower part of the figure) is a mean-field approximation of the TASEP model (upper
part of the figure). State variable xiðtÞ [ ½0, 1� describes the normalized ribosome occupancy level in site i at time t. The initiation rate is l0, and li is the
elongation rate between sites i and i þ 1. Production rate at time t is RðtÞ :¼ lnxnðtÞ. (Online version in colour.)
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organismal fitness via the global, and not only local, effect of

the modification.

Our model and its analysis also suggest several novel

biological experiments. Some of these are described in §5.
3. The model and some examples
Since our model is based on a network of interconnected

RFMs, we begin with a brief review of the RFM.
3.1. Ribosome flow model
The RFM models the traffic flow of ribosomes along the

mRNA (figure 4). The mRNA chain is divided into a set of

n compartments or sites, where each site may correspond

to a codon or a group of codons. The state variable xiðtÞ,
i ¼ 1, . . . , n, describes the ribosome occupancy at site i at

time t, normalized such that xiðtÞ ¼ 0 [xiðtÞ ¼ 1] implies

that site i is completely empty [full] at time t. Since xiðtÞ
takes values in [0, 1], one may also view xiðtÞ as the

http://rsif.royalsocietypublishing.org/
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probability that site i is occupied at time t. The dynamical

equations of the RFM are

_x1 ¼ l0ð1� x1Þ � l1x1ð1� x2Þ,
_x2 ¼ l1x1ð1� x2Þ � l2x2ð1� x3Þ,
_x3 ¼ l2x2ð1� x3Þ � l3x3ð1� x4Þ,

..

.

_xn�1 ¼ ln�2xn�2ð1� xn�1Þ � ln�1xn�1ð1� xnÞ
_xn ¼ ln�1xn�1ð1� xnÞ � lnxn:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:1Þ

These equations describe the movement of ribosomes along

the mRNA chain. The transition rates l0, . . . , ln are all positive

numbers (units¼ 1/time). To explain this model, consider

the equation _x2 ¼ l1x1ð1� x2Þ � l2x2ð1� x3Þ. The term

l1x1ð1� x2Þ represents the flow of particles from site 1 to site

2. This is proportional to the occupancy x1 at site 1 and also

to 1� x2, i.e. the flow decreases as site 2 becomes fuller. In par-

ticular, if x2 ¼ 1, i.e. site 2 is completely full, the flow from site 1

to site 2 is zero. This is a ‘soft’ version of the rough exclusion

principle in ASEP. Note that the maximal possible flow rate

from site 1 to site 2 is the transition rate l1. The term

l2x2ð1� x3Þ represents the flow of particles from site 2 to site 3.

The dynamical equations for the other state variables are

similar. Note that l0 controls the initiation rate into the chain,

and that

RðtÞ :¼ lnxnðtÞ

is the rate of flow of ribosomes out of the chain, that is the

translation (or protein production) rate at time t. The RFM

topology is depicted in figure 4.

The RFM encapsulates simple exclusion and uni-

directional movement along the lattice just as in ASEP. This

is not surprising, as the RFM can be derived via a mean-

field approximation of ASEP (e.g. [24], p. R345, and [43],

p. 1919). However, the analysis of these two models is

quite different, as the RFM is a deterministic, continuous-

time, synchronous model, whereas ASEP is a stochastic,

discrete-type, asynchronous one.

In order to study a network of interconnected RFMs,

it is useful to first extend the RFM into a single-input

single-output control system:

_x1 ¼ l0ð1� x1Þu� l1x1ð1� x2Þ,
_x2 ¼ l1x1ð1� x2Þ � l2x2ð1� x3Þ,
_x3 ¼ l2x2ð1� x3Þ � l3x3ð1� x4Þ,

..

.

_xn�1 ¼ ln�2xn�2ð1� xn�1Þ � ln�1xn�1ð1� xnÞ,
_xn ¼ ln�1xn�1ð1� xnÞ � lnxn

and y ¼ lnxn:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:2Þ

Here the translation rate becomes the output y of the system,

and the flow into site 1 is multiplied by a time-varying

control u: Rþ ! Rþ, representing the flow of ribosomes

into the mRNA from the ‘outside world’. The time-varying

function uðtÞ is thus related to the rate ribosomes diffuse to

the 50 end (in eukaryotes) or the RBS (in prokaryotes) of the

mRNA at time t. Of course, mathematically one can absorb

l0 into u, but we do not do this because we think of l0 as

representing some intrinsic local mRNA-specific features
(e.g. the strength of the Kozak sequences in eukaryotes or

the RBS in prokaryote).

The set of admissible controls U is the set of bounded and

measurable functions taking values in Rþ for all time t � 0.

Equation (3.2), referred to as the RFM with input and output

(RFMIO) [44], facilitates the study of RFMs with feedback con-

nections. We note in passing that (3.2) is a monotone control
system as defined in [45]. From now on we write (3.2) as

_x ¼ f ðx, uÞ
and y ¼ lnxn:

)
ð3:3Þ

Let

Cn :¼ fz [ Rn: zi [ ½0, 1�, i ¼ 1, . . . , ng

denote the closed unit cube in Rn. Since the state variables in

the RFM represent normalized occupancy levels, we always

consider initial conditions xð0Þ [ Cn. It is straightforward to

verify that Cn is an invariant set of (3.3), i.e. for any u [ U
and any xð0Þ [ Cn, the trajectory satisfies xðt, uÞ [ Cn for

all t � 0. This means that if the initial density is well defined

then it remains so for all time.

3.2. Ribosome flow model network with a pool
To model competition for ribosomes in the cell, we consider a

set of m � 1 RFMIOs, representing m different mRNA mol-

ecules in the cell (figure 5). The ith RFMIO has length ni,

input function ui [ U, output function yi and rates

li
0, . . . , li

ni
. The dynamics of these RFMIOs is thus given by

_x1 ¼ f ðx1, u1Þ, y1 ¼ l1
n1

xn1
,

..

.

_xm ¼ f ðxm, umÞ, ym ¼ lm
nm

xnm :

9>>>=
>>>;

ð3:4Þ

The m RFMIOs are interconnected through a pool of free

ribosomes (i.e. ribosomes that are not attached to any mRNA

molecule). We use zðtÞ to denote the pool occupancy at time t
(this may also be interpreted as the average number of free ribo-

somes in the pool at time t). The pool feeds the initiation

location in all the mRNAs (figure 5). To model this we can

simply take uiðtÞ ¼ zðtÞ for all i (recall that ui describes the

rate at which ribosomes from the ‘outside world’ feed RFMIO

#i), but we allow a somewhat more general setting modelled by

ujðtÞ ¼ GjðzðtÞÞ, j ¼ 1, . . . , m: ð3:5Þ

We assume that each Gjð�Þ: Rþ ! Rþ satisfies the following

properties: (i) Gjð0Þ ¼ 0; (ii) Gj is continuously differentiable

and G0jðzÞ . 0 for all z � 0 (so Gj is strictly increasing on Rþ)

and (iii) there exists s . 0 such that GjðzÞ � sz for all z . 0

sufficiently small. The first property implies that if the pool is

empty then no ribosomes can bind to the mRNA molecules,

and the second means that as the pool becomes fuller the

initiation rates to the RFMIOs increase. The third property is a

technical assumption that is needed for one of our proofs below.

Typical examples for functions satisfying these properties

include the linear function, say, GjðzÞ ¼ z, and also the func-

tion GjðzÞ ¼ aj tanhðbjzÞ, with aj, bj . 0. In the first case, the

flow of ribosomes into the first site of RFM #i is given by

li
0zð1� xi

1Þ, and the product here can be justified via mass-

action kinetics. The use of tanh may be suitable for modelling

a saturating function. This is in fact a standard function in

ASEP models with a pool [21,46], because it is zero when z

http://rsif.royalsocietypublishing.org/
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is zero, uniformly bounded and strictly increasing for z � 0.

Also, for z � 0 the function tanhðzÞ takes values in ½0, 1Þ so

it can also be interpreted as a probability function [47].

In the context of a shared pool, it is natural to consider the

special case where GjðzÞ ¼ GðzÞ for all j ¼ 1, . . . , m. This

assumption is reasonable since there is no a priori reason

to expect a ‘preference’ between different mRNA species. How-

ever, the differences between the initiation sites in the mRNA

molecules may still be modelled by taking different l
j
0s.

The output of each RFMIO is fed into the pool, and the

pool feeds the initiation locations in the mRNAs (figure 5).

Thus, the pool dynamics is described by

_z ¼
Xm

j¼1

yj �
Xm

j¼1

l
j
0ð1� xj

1ÞGjðzÞ: ð3:6Þ

The above equation means that the flow into the pool is

the sum of all output rates
Pm

j¼1 yj of the RFMIOs minus

the total flow of ribosomes that bind to an mRNA moleculePm
j¼1 l

j
0ð1� xj

1ÞGjðzÞ. Recall that the term ð1� xj
1Þ represents

the exclusion, i.e. as the first site in RFMIO #j becomes fuller,

less ribosomes can bind to it. Summarizing, the RFMNP is

given by equations (3.4), (3.5) and (3.6). This is a dynamical

system with d :¼ 1þ
Pm

i¼1 ni state variables.
Note that combining the properties of the functions Gjð�Þ
with (3.6) implies that if zð0Þ � 0 then zðtÞ � 0 for all t � 0.

Thus, the pool occupancy is always non-negative.

Example 3.1. Consider a network with m ¼ 2 RFMIOs,

the first [second] with dimension n1 ¼ 2 [n2 ¼ 3]. Then the

RFMNP is given by

_x1
1 ¼ l1

0ð1� x1
1ÞG1ðzÞ � l1

1x1
1ð1� x1

2Þ,

_x1
2 ¼ l1

1x1
1ð1� x1

2Þ � l1
2x1

2,

_x2
1 ¼ l2

0ð1� x2
1ÞG2ðzÞ � l2

1x2
1ð1� x2

2Þ,

_x2
2 ¼ l2

1x2
1ð1� x2

2Þ � l2
2x2

2ð1� x2
3Þ,

_x2
3 ¼ l2

2x2
2ð1� x2

3Þ � l2
3x2

3

and _z ¼ l1
2x1

2 þ l2
3x2

3 � l1
0ð1� x1

1ÞG1ðzÞ � l2
0ð1� x2

1ÞG2ðzÞ:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð3:7Þ

Note that this system has d ¼ 6 state variables. B

An important property of the RFMNP is, that being a

closed system, the total occupancy

HðtÞ :¼ zðtÞ þ
Xm

j¼1

Xnj

i¼1

xj
iðtÞ ð3:8Þ
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is conserved (i.e. the total number of ribosomes is conserved),

that is,

HðtÞ ; Hð0Þ, for all t � 0: ð3:9Þ

In other words, H is a first integral of the dynamics.

In particular, this means that zðtÞ � HðtÞ ¼ Hð0Þ for all

t � 0, i.e. the pool occupancy is uniformly bounded by the

constant Hð0Þ.
The RFMNP models mRNAs that compete for ribosomes

because the total number of ribosomes is conserved. As

more ribosomes bind to the RFMIOs, the pool depletes,

GjðzÞ decreases and the effective initiation rate to all the

RFMIOs decreases (figure 5). This allows to systematically

address important biological questions on large-scale simul-

taneous translation under competition for ribosomes. The

following examples demonstrate this. We prove in §4 that

all the state variables in the RFMNP converge to a steady-

state. Let ei
j [ ½0, 1� denote the steady-state occupancy in

site j in RFMIO #i, and let ez [ ½0, 1Þ denote the steady-

state occupancy in the pool. In the examples below

we always consider these steady-state values (obtained

numerically by simulating the differential equations).

Example 3.2. Although we are mainly interested in modelling

large-scale simultaneous translation, it is natural to first con-

sider a model with a single mRNA molecule connected to a

pool of ribosomes. From a biological perspective, this

models the case where there is one gene that is highly

expressed with respect to all other genes (e.g. an extremely

highly expressed heterologous gene).

Consider an RFMNP that includes a single RFMIO (i.e.

m ¼ 1), with dimension n1 ¼ 3, rates l1
i ¼ 1, i ¼ 0, 1, 2, 3,

and a pool with output function GðzÞ ¼ tanhðzÞ. We simu-

lated this system for the initial condition x1
i ð0Þ ¼ 0 for all i,

and zð0Þ ¼ c for various values of c. Note that

HðtÞ ; Hð0Þ ¼ c. Figure 6 depicts the steady-state values

e1, e2, e3 of the state-space variables in the RFMIO, and the

steady-state pool occupancy ez. It may be seen that for

small values of c the steady-state ribosomal densities and

thus the production rates are very low. This is simply because

there are not enough ribosomes in the network. The riboso-

mal densities increase with c. For large values of c, the

output function of the pool saturates, as tanhðzÞ ! 1, and

so does the initiation rate in the RFMIO. Thus, the densities
in the RFMIO saturate to the values corresponding to the

initiation rate l0 ¼ 1, and then all the remaining ribosomes

accumulate in the pool. Using a different pool output func-

tion, for example GðzÞ ¼ z, leads to the same qualitative

behaviour, but with higher saturation values for the riboso-

mal densities in the RFMIO. (Note that the ribosomal

densities in an RFM are finite even when l0 ! 1 [48].) B

This simple example already demonstrates the coupling

between the ribosomal pool, initiation rate and elongation

rates. When the ribosomal pool is small the initiation rate is

low. Thus, the ribosomal densities on the mRNA are low

and there are no interactions between ribosomes (i.e. no ‘traf-

fic jams’) along the mRNA. The initiation rate becomes the

rate limiting step of translation. On the other hand, when

there are many ribosomes in the pool the initiation rate

increases, the elongation rates become rate limiting and ‘traf-

fic jams’ along the mRNA evolve. At some point, a further

increase in the number of ribosomes in the pool will have a

negligible effect on the production rate.

It is known that there can be very large changes in the

number of ribosomes in the cell during, e.g. exponential

growth. For example, Bremer & Dennis [49] report changes in

the range 6800–72 000. The example above demonstrates how

these large changes in the number of ribosomes are expected

to affect the translational regimes; specifically, it may cause a

switch between the different regimes mentioned above.

The next example describes an RFMNP with several

mRNA chains. Let 1n [ Rn denote the vector of n ones.

Example 3.3. Consider an RFMNP with m ¼ 3 RFMIOs of

dimensions n1 ¼ n2 ¼ n3 ¼ 3, and rates

l1
i ¼ c, l2

i ¼ 5 and l3
i ¼ 10, i ¼ 0, . . . , 3:

In other words, every RFMIO has homogeneous rates.

Suppose also that GiðzÞ ¼ tanhðzÞ, for i ¼ 1, 2, 3. We simu-

lated this RFMNP for different values of c with the initial

condition zð0Þ ¼ 0, x1ð0Þ ¼ ð1=2Þ13, x2ð0Þ ¼ ð1=3Þ13 and

x3ð0Þ ¼ ð1=4Þ13. Thus, Hð0Þ ¼ 3:25 in all the simulations.

For each value of c, every state variable in the RFMNP con-

verges to a steady state. Figure 7 depicts the steady-state

value ez and the steady-state output yi in each RFMIO. It

may be seen that increasing c, i.e. increasing all the elongation

http://rsif.royalsocietypublishing.org/
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rates in RFMIO #1 leads to an increase in the steady-state

translation rates in all the RFMIOs in the network. Also, it

leads to an increase in the steady-state occupancy of the

pool. It may seem that this contradicts (3.9) but this is not

so. Increasing c indeed increases all the steady-state trans-

lation rates, but it decreases the steady-state occupancies

inside each RFMIO so that the total HðtÞ ¼ Hð0Þ ¼ 3:25 is

conserved.

Let �ej :¼ ð1=njÞ
Pnj

i¼1 ej
i, i.e. the averaged steady-state occu-

pancy (ASSO) on RFMIO #j. Figure 8 depicts the ASSO in

each RFMIO as a function of c. It may be seen as c increases

the ASSO in RFMIO #1 decreases quickly, yet the ASSOs in

the other two RFMIOs slowly increase. Indeed, since the ribo-

somes spend less time on RFMIO #1 (due to increased c) they

are now available for translating the other RFMIOs, leading

to the increased ASSO in the other mRNAs. B
From a biological point of view this example corresponds

to a situation where accelerating one of the mRNA chains

increases the protein production rates in all the mRNAs and

also increases the number of free ribosomes. Surprisingly,

perhaps, it also suggests that a relatively larger number of

free ribosomes in the cell corresponds to higher protein pro-

duction rates. This agrees with evolutionary, biological and

synthetic biology studies that have suggested that (specifi-

cally) highly expressed genes (that are transcribed into

many mRNA molecules) undergo selection to include

codons with improved elongation rates [1,2,50]. Specifically,

two mechanisms by which improved codons affect

translation efficiency and the organismal fitness are the

following [50]: (i) global mechanism: selection for improved

codons contributes toward improved ribosomal recycling

and global allocation; the increased number of free ribosomes

improves the effective translation initiation rate of all genes,

and thus improves global translation efficiency, and (ii) local
mechanism: the improved translation elongation rate of an

mRNA contributes directly to its protein production rate.

The example above demonstrates both mechanisms, as

improvement of the translation elongation rates of one RFM

increases the translation rate of this mRNA (local translation

efficiency), and also of the other RFMs (global translation effi-

ciency). In addition, as can be seen, the decrease in ASSO in

RFMIO #1 is significantly higher than the increase in ASSO in
the other RFMIO. Thus, the simulation also demonstrates that

increasing the translation rate c may contribute to decreasing

ribosomal collision (and possibly ribosomal abortion).

We prove in §4 that when one of the rates in one of the

RFMIOs increases two outcomes are possible: either all the

production rates in the other RFMs increase (as in this

example) or they all decrease. As discussed below, we believe

that this second case is less likely to occur in endogenous

genes, but may occur in heterologous gene expression.

The next example describes the effect of changing the

length of one RFMIO in the network. Let 0n denote a

vector of n zeros.

Example 3.4. Consider an RFMNP with m ¼ 2 RFMIOs of

dimensions n1 and n2 ¼ 10, rates

l1
i ¼ 1, i ¼ 0, . . . , n1,

l2
j ¼ 1, j ¼ 0, . . . , 10

and GiðzÞ ¼ tanhðz=200Þ, i ¼ 1, 2. In other words, both

RFMIOs have the same homogeneous rates. We simulated

this RFMNP for different values of n1 with the initial con-

dition zð0Þ ¼ 100, x1ð0Þ ¼ 0n1 and x2ð0Þ ¼ 010. Thus,

Hð0Þ ¼ 100 in all the simulations. For each value of n1,

every state variable in the RFMNP converges to a steady

state. Figure 9 depicts the steady-state values of z, and the

steady-state output yi in each RFMIO. It may be seen that

increasing n1, i.e. increasing the length of RFMIO #1 leads

to a decrease in the steady-state production rates and in the

steady-state pool occupancy. This is reasonable, as increasing

n1 means that ribosomes that bind to the first chain remain on

it for a longer period of time. This decreases the production

rate y1 and, by the competition for ribosomes, also decreases

the pool occupancy and thus decreases y2. B

From a biological point of view this suggests that decreas-

ing the length of mRNA molecules contributes locally and

globally to improving translation efficiency. A shorter

coding sequence improves the translation rate of the mRNA

and, by competition, may also improve the translation rates

in all other mRNAs. Thus, we should expect to see selection

http://rsif.royalsocietypublishing.org/
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for shorter coding sequences, specifically in highly expressed

genes and in organisms with large population size. Indeed,

previous studies have reported that in some organisms the

coding regions of highly expressed genes tend to be shorter

[14]; other studies have shown that other (non-coding) parts

of highly expressed genes tend to be shorter [51–54].

Decreasing the length of different parts of the gene should

contribute to organismal fitness via improving the energetic

cost of various gene expression steps. For example, shorter

genes should improve the metabolic cost of synthesizing

mRNA and proteins; it can also reduce the energy spent for

splicing and processing of RNA and proteins. However,

there are of course various functional and regulatory con-

straints that also contribute to shaping the gene length (e.g.

[55]). Our results and these previous studies suggest that in

some cases genes are expected to undergo selection also for

short coding regions, as this reduces the required number of

translating ribosomes.

The next section describes various fundamental proper-

ties related to the RFMNP. All the proofs are placed in the

Appendix (see the electronic supplementary material).
4. Properties of the ribosome flow model
network with a pool

Let

V:¼ ½0, 1�n1 � � � � � ½0, 1�nm � ½0, 1Þ

denote the state space of the RFMNP (recall that every xj
i

takes values in ½0, 1� and z [ ½0, 1Þ). For an initial condition

a [ V, let ½xðt, aÞ zðt, aÞ�0 denote the solution of the

RFMNP at time t. It is straightforward to show that the

solution remains in V for all t � 0.
4.1. Stability
For s � 0, let Ls denote a level set of the first integral H:

Ls :¼ fy [ V: 10dy ¼ sg:

In other words, y [ Ls means that y is a condition corre-

sponding to a total occupancy of s ribosomes in the system.

Theorem 4.1. Every level set Ls, s � 0, contains a unique equili-
brium point eLs of the RFMNP, and for any initial condition
a [ Ls, the solution of the RFMNP converges to eLs . Furthermore,

for any 0 � s , p,

eLs � eLp : ð4:1Þ

In particular, this means that every trajectory converges to

an equilibrium point, representing steady-state ribosomal den-

sities in the RFMIOs and the pool. Equation (4.1) means that the

continuum of equilibrium points, namely, feLs : s [ ½0, 1Þg, are

linearly ordered. In other word, given any two equilibrium

points, eLs and eLp , with p . s, then every entry in eLs is strictly

smaller than the corresponding entry in eLp . In other words, if

the RFMNP is initiated with two initial conditions, with the

first one corresponding to a higher number of ribosomes in

the network than the second then the steady-state correspond-

ing to the first condition will have a higher density than the
steady state corresponding to the second in each site in each

mRNA and in the pool.

It follows from proposition 4.8, stated in §4.3 below,

that for any s . 0, eLs [ IntðVÞ. In other words, the steady

state densities will never include a density that is either

zero or one, and the steady-state pool occupancy is always

strictly positive.

Example 4.2. Consider an RFMNP with m ¼ 2 RFMIOs with

dimensions n1 ¼ n2 ¼ 1, and GiðzÞ ¼ z, i ¼ 1, 2, i.e.

_x1
1 ¼ l1

0ð1� x1
1Þz� l1

1x1
1,

_x2
1 ¼ l2

0ð1� x2
1Þz� l2

1x2
1

and _z ¼ l1
1x1

1 þ l2
1x2

1 � l1
0ð1� x1

1Þz� l2
0ð1� x2

1Þz:

9>>>=
>>>;

ð4:2Þ

Note that even in this simple case the RFMNP is a non-

linear system. Assume that l1
0 ¼ l2

0 ¼ 1, and that l1
1 ¼ l2

1,

and denote this value simply by l. Pick an initial condition

in V, and let s :¼ x1
1ð0Þ þ x2

1ð0Þ þ zð0Þ, so that the trajectory

belong to Ls for all t � 0. Any equilibrium point

e ¼ ½e1 e2 ez�0 [ Ls satisfies

ð1� e1Þez ¼ le1,

ð1� e2Þez ¼ le2

and e1 þ e2 þ ez ¼ s:

This yields two solutions

e1 ¼ e2 ¼
ðsþ 2þ l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2þ lÞ2 � 8s

q
Þ

4

and ez ¼
ðs� 2� lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2þ lÞ2 � 8s

q
Þ

2

9>>>>>=
>>>>>;

ð4:3Þ

and

e1 ¼ e2 ¼
ðsþ 2þ lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2þ lÞ2 � 8s

q
Þ

4

and ez ¼
ðs� 2� l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2þ lÞ2 � 8s

q
Þ

2
:

9>>>>>=
>>>>>;

It is straightforward to verify that in the latter solution ez , 0,

so this is not a feasible solution. The solution (4.3) does belong

to Ls, so the system admits a unique equilibrium in Ls.

Figure 10 depicts trajectories of (4.2) for three initial conditions
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in L1, namely 1 0 0½ �, 0 1 0½ � and 0 1=2 1=2½ �, and the

equilibrium point (4.3) for s ¼ l ¼ 1. It may be seen that every

one of these trajectories converges to e. B

Various possible intracellular mechanisms may affect any

of the transition rates. For example, synonymous mutations/

changes (in endogenous or heterologous) genes inside the

coding region may modify the adaptation of codons to the

tRNA pool (codons that are recognized by tRNAs with

higher intracellular abundance usually tend to be translated

more quickly [34]); the local folding of the mRNA (stronger

folding tends to decrease elongation rates [35]); the inter-

action/hybridization between the ribosomal RNA and the

mRNA [36] (there are nucleotide sub-sequence that tend to

interact with the ribosomal RNA, causing transient pausing

of the ribosome and thus reducing the translation elongation

rate). Non-synonymous mutations or changes inside the

coding region may also affect the elongation rates, for example

via the interaction between the nascent peptide and the exit

tunnel of the ribosome [37,38]. In addition, intracellular

changes in various translation factors (e.g. tRNA levels, trans-

lation elongation factors, concentrations of amino acids,

concentrations of aminoacyl tRNA synthetase) and, as

explained above, the mRNA levels can also affect elongation

rates. Furthermore, various recent studies have demonstrated

that manipulating the codons of a heterologous gene tend to

result in significant changes in the translation rates and protein

levels of the gene [2,40,56]. Because of the competition for the

finite pool of ribosomes a change in one molecule will also

affect the decoding of other mRNA molecules. The next sub-

section describes the main result in the paper, namely, the

local and global effect of mutations in one mRNA on the

others resulting from the competition for the finite resources.
4.2. Competition
A natural question is how will a change in the parameters

(that is, the transition rates) of the RFMNP affect the

equilibrium point of the network (and, in particular,

the steady-state production rates). For example, if we increase

some transition rate l
j
i in RFMIO #j, how will this affect the

steady-state production rate in the other RFMIOs? Of course,

this effect is due to the competition for the finite resources.

Without loss of generality, we assume that the change is in

a transition rate of RFMIO #1.

Theorem 4.3. Consider an RFMNP with m RFMIOs with dimen-
sions n1, . . . , nm. Let l :¼ ½l1

0 � � �lm
nm
�0 denote the set of all

parameters of the RFMNP, and let

e ¼ e1
1 . . . e1

n1
e2

1 . . . e2
n2

. . . em
1 . . . em

nm
ez

� �0
[ ð0, 1Þn1þ...þnm � Rþþ

denote the equilibrium point of the RFMNP on some fixed level set
of H. Pick i [ f0, . . . , n1g. Consider the RFMNP obtained by
modifying l1

i to �l
1
i , with �l

1
i . l1

i . Let �e denote the equilibrium
point in the new RFMNP and let ~e :¼ �e� e. Then

~e1
i , 0, ð4:4Þ

~e1
j . 0, for all j [ fiþ 1, . . . , n1g ð4:5Þ

and signð~ei
jÞ ¼ signð~ezÞ, for all i = 1 and all j: ð4:6Þ

(In the case i ¼ 0, condition (4.4) is vacuous.)
Increasing l1
i means that ribosomes flow ‘more easily’

from site i to site iþ 1 in RFMIO #1. Equation (4.4) means

that the effect on the density in this RFMIO is that the

number of ribosomes in site i decreases, whereas (4.5) implies

that the number of ribosomes in all the sites to the right of site

i increases. Equation (4.6) describes the effect on the steady-

state densities in all the other RFMIOs and the pool: either

all these steady-state values increase or they all decrease.

The first case agrees with the results in example 3.3 above.

Note that the theorem does not provide any information

on the change in e1
j , j , i. Our simulations show that any of

these values may either increase or decrease, with the out-

come depending on the various parameter values. Thus,

the amount of information provided by (4.5) depends on i.
In particular, when l1

n1
is changed to �l

1
n1

. l1
n1

then the

information provided by (4.5) is only that

~e1
n1

, 0:

Much more information is available when i ¼ 0.

Corollary 4.4. Suppose that l1
0 is changed to �l

1
0 . l1

0. Then

~e1
j . 0, for all j [ f1, . . . , n1g ð4:7Þ

and

~ei
j , 0, for all i = 1 and all j, and ~ez , 0: ð4:8Þ

Indeed, for i ¼ 0, (4.5) yields (4.7). Also, we know that the

changes in the densities in all other RFMIOs and the pool

have the same sign. This sign cannot be positive, as combin-

ing this with (4.7) contradicts the conservation of ribosomes,

so (4.8) follows.

In other words, increasing l1
0, the intrinsic initiation rate

in RFMIO #1, yields an increase in all the densities in

RFMIO #1, and a decrease in all the densities in all the

other RFMIOs. This makes sense, as increasing l1
0 means

that it is easier for ribosomes to bind to the mRNA molecule.

This increases the total number of ribosomes along this mol-

ecule and, by competition, decreases all the densities in the

other molecules and the pool. Note that this special case

agrees well with the results described in [11] (see (1.1)).

Thus, our model allows studying fundamental biological

phenomena that are not covered by models that ignore the

elongation dynamics.

Example 4.5. Consider the RFMNP in (3.7) with GiðzÞ ¼ z,

l1
0 ¼ l2

0 ¼ 1, l2
1 ¼ l2

2 ¼ 0:1, l2
3 ¼ 1 and initial condition

ð1=4Þ16. We consider a range of values for l1
2. For each fixed

value, we simulated the dynamics until steady state for two

cases: l1
1 ¼ 1 and �l

1
1 ¼ 10. Figure 11 depicts ~e1

1, ~e1
2 for the var-

ious fixed values of l1
2. It may be seen that we always have

~e1
1 , 0 and ~e1

2 . 0. Figure 12 depicts ~e2
i , i ¼ 1, 2, 3, and ~ez for

the various fixed values of l1
2. It may be seen that for a small

value of l1
2 all the ~e2

i ’s and ~ez are negative, whereas for large

values of l1
2 they all become positive. B

Intuitively, this can be explained as follows. When l1
2 is

small it is the bottleneck rate in RFMIO #1, and increasing

l1
1 only generates more ‘traffic jams’ along RFMIO #1. This

depletes the pool, and thus decreases the production rate in

the second RFMIO. On the other hand, when l1
2 is large l1

1

becomes the bottleneck rate, and increasing it to �l
1
1 allows

ribosomes to traverse RFMIO #1 more quickly. This decreases

http://rsif.royalsocietypublishing.org/
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the number of ribosomes on this RFMIO, increases the pool

occupancy, and this leads to a higher initiation rate in the

second RFMIO.

Theorem 4.3 implies that when the codons of a gene are

modified into ‘faster’ codons (either via synthetic engineering

or during evolution) then the translation rates of the other

genes either all increase or all decrease. However, theorem

4.3 does not provide information on when each of these

two cases actually happens. In order to address this, we

need to calculate derivatives of the equilibrium point coordi-

nates with respect to the rates. The next result shows that

these derivatives are well defined. Denote the mapping

from the parameters to the unique equilibrium point in

IntðVÞ by a, that is, ei
j ¼ ai

jðl, Hð0ÞÞ, i ¼ 1, . . . , m,

j ¼ 1, . . . , ni. (Recall that l is the vector of all the parameters

in the RFMIOs.)

Proposition 4.6. The derivative ð@=@lp
qÞai

jðl, Hð0ÞÞ exists for all
i, j, p, q.

The next example uses these derivatives to obtain infor-

mation on the two cases that can take place as we change

one of the rates.

Example 4.7. Consider an RFMNP with m ¼ 2 RFMIOs with

lengths n and ‘. To simplify the notation, let

e ¼ ½e1, . . . , en�0 ½v ¼ ½v1, . . . , v‘�0� denote the equilibrium

point of RFMIO #1 [RFMIO #2], and let li, i ¼ 0, . . . , n,

denote the rates along RFMIO #1. Suppose that l1 is changed

to �l1. Differentiating the steady-state equations

l0G1ðezÞð1�e1Þ¼l1e1ð1�e2Þ¼ ...¼ln�1en�1ð1�enÞ¼lnen,

Xn

i¼1

eiþ
X‘
j¼1

vjþez¼Hð0Þ,

w.r.t. l1 yields

l0G01ðezÞe0zð1� e1Þ � l0G1ðezÞe01 ¼ lne0n,

e0z þ
X‘
j¼1

v0j ¼ �
Xn

i¼1

e0i,
where we use the notation f 0 :¼ ð@=@l1Þf . These two

equations yield

ðln þ l0G01ðezÞð1� e1ÞÞe0z þ ln

X‘
j¼1

v0j

¼ ðl0G1ðezÞ � lnÞe01 � ln

Xn�1

i¼2

e0i:

Recall that G1ðezÞ . 0, G01ðezÞ . 0, lj . 0 for all j, and

0 , ep , 1 for all p. Also, by theorem 4.3, e01 , 0, e0j . 0, for

all j [ 2, . . . , n, and signðe0zÞ ¼ signðv0kÞ, for all k. Thus,

signðe0zÞ ¼ signðv0jÞ

¼ sign ðl0G1ðezÞ � lnÞe01 � ln

Xn�1

i¼2

e0i

 !
: ð4:9Þ

This means that the sign of the change in the densities in all

the other RFMIOs and the pool depends on several steady-

state quantities including terms related to the initiation rate

l0G1ðezÞ and exit rate ln in RFMIO #1, and also the change

in the total density
Pn�1

i¼1 e0i in this RFMIO.

In the particular case n ¼ 2 (i.e. a very short RFM),

equation (4.9) becomes

signðe0zÞ ¼ signðv0jÞ ¼ signðl2 � l0G1ðezÞÞ: ð4:10Þ

Note that l0G1ðezÞ [l2] is the steady-state initiation [exit]

rate in RFMIO #1. Thus, l2 � l0G1ðezÞ . 0 means that it is

‘easier’ for ribosomes to exit than to enter RFMIO #1, and in

this case (4.10) means that when l1 is increased the change in

all other densities will be positive. This is intuitive, as more ribo-

somes will exit the modified molecule and this will improve the

production rates in the other molecules. On the other hand, if

l2 � l0G1ðezÞ , 0, then it is ‘easier’ for ribosomes to enter

than to exit RFMIO #1, so increasing l1 will lead to an increased

number of ribosomes in RFMIO #1 and, by competition, to a

decrease in the production rate in all the other RFMIOs. B

Note that in the example above, increasing l1 always

increases the steady-state production rate R ¼ l2e2 in RFM

#1 (recall that e02 . 0). One may expect that this will always

lead to an increase in the production rate in the second

http://rsif.royalsocietypublishing.org/
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RFMIO as well. However, the behaviour in the RFMNP

is more complicated because the shared pool generates a

feedback connection between the RFMIOs in the network.

In particular, the effect on the other RFMIOs depends

not only on the modified production rate of RFMIO #1, but

also on other factors including the change in the total
ribosome density in RFMIO #1 (see (4.9)).

This analysis of a very short RFM suggests that the steady-

state initiation rate of the mRNA with the modified codon

plays an important role in determining the effect of modifications

in the network. If this initiation rate is relatively low (so it

becomes the rate limiting factor), as believed to be the case in

most endogenous genes [57], then the increase in the rate of

one codon of the mRNA increases the translation rate in all the

other mRNAs, whereas when this initiation rate is high then

the opposite effect is obtained. This latter case may occur, for

example, when a heterologous gene is highly expressed and

thus ‘consumes’ some of the available elongation/termination

factors making the elongation rates the rate limiting factors.

To recap, figure 13 describes the biological implications of our

analysis. Making a codon ‘faster’ has two possible global out-

comes. Figure 13a depicts the case of increasing the initiation

rate of an mRNA molecule: the translation rate in the modified

mRNA and also the number of ribosomes on the mRNA will

increase; due to the increased ribosome density on the mRNA

there are less free ribosomes in the pool, and thus the initiation

and translation rates of all other mRNA molecules decreases.
Figure 13b describes the second possible outcome. Improving a

slow codon, that is a bottleneck rate in an mRNA, alleviates the

‘traffic jam’ along this mRNA, so the number of free ribosomes

in the pool increases. This improves the translation rate of all

other the mRNAs.

We now describe other mathematical properties of the

RFMNP.

4.3. Persistence
The next result shows that for any initial condition, the fol-

lowing property holds. After an arbitrarily short time all

the densities are larger than zero and smaller than one, and

the pool occupancy is strictly positive.
Proposition 4.8. For any t . 0 there exists 1 ¼ 1ðtÞ . 0, with
1ðtÞ ! 0 when t! 0, such that for all t � t, all j ¼ 1, . . . , m,

all i ¼ 1, . . . , nj and all a [ ðVnf0gÞ,

1 � xj
iðt, aÞ � 1� 1

and

1 � zðt, aÞ:

In other words, after any time t . 0 the solution is

1-separated from the boundary ofV . This result is useful because

on the boundary of V, denoted @V, the RFMNP looses some

desirable properties. For example, its Jacobian matrix may

become reducible on @V. Proposition 4.8 allows us to overcome

this technical difficulty, as it implies that any trajectory is

separated from the boundary after an arbitrarily short time.

4.4. Strong monotonicity
Recall that a cone K # Rn defines a partial order in Rn as fol-

lows. For two vectors a, b [ Rn, we write a � b if ðb� aÞ [ K;

a , b if a � b and a = b; and a� b if ðb� aÞ [ IntðKÞ. A

dynamical system _x ¼ f ðxÞ is called monotone if a � b implies

that xðt, aÞ � xðt, bÞ for all t � 0. In other words, mono-

tonicity means that the flow preserves the partial ordering

[58]. It is called strongly monotone if a , b implies that

xðt, aÞ � xðt, bÞ for all t . 0.

From here on we consider the particular case where the

cone is K ¼ Rn
þ. Then a � b if ai � bi for all i, and a� b if

ai , bi for all i. A system that is monotone with respect to

this partial order is called cooperative.

The next result analyses the cooperativity of the RFMNP.

Let d :¼ 1þ
Pm

i¼1 ni denote the dimension of the RFMNP.

Proposition 4.9. For any a, b [ V with a � b,

xðt, aÞ � xðt, bÞ and zðt, aÞ � zðt, bÞ, for all t � 0: ð4:11Þ

Furthermore, if a , b then

xðt, aÞ � xðt, bÞ and zðt, aÞ , zðt, bÞ, for all t . 0: ð4:12Þ
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This means the following. Consider the RFMNP initiated

with two initial conditions such that the ribosomal densities

in every site and the pool corresponding to the first initial

condition are smaller or equal to the densities in the second

initial condition. Then this correspondence between the

densities remains true for all time t � 0.

4.5. Contraction
Contraction theory is a powerful tool for analysing nonlinear

dynamical systems (e.g. [59]), with applications to many

models from systems biology [60–62]. In a contractive

system, the distance between any two trajectories decreases

at an exponential rate. It is clear that the RFMNP is not a con-

tractive system on V, with respect to any norm, as it admits

more than a single equilibrium point. Nevertheless, the next

result shows that the RFMNP is non-expanding with respect

to the ‘1 norm defined by jqj1 ¼
Pd

i¼1 jqij.

Proposition 4.10. For any a, b [ V,

xðt, aÞ
zðt, aÞ

� �
� xðt, bÞ

zðt, bÞ

� �����
����
1

� ja� bj1, for all t � 0: ð4:13Þ

In other words, the ‘1 distance between trajectories can

never increase.

Pick a [ V, and let s :¼ 10da. Substituting b ¼ eLs in (4.13)

yields

xðt, aÞ
zðt, aÞ

� �
� eLs

����
����
1

� ja� eLs j1, for all t � 0: ð4:14Þ

This means that the convergence to the equilibrium point eLs

is monotone in the sense that the ‘1 distance to eLs can

never increase.
4.6. Entrainment
Many important biological processes are periodic. Examples

include circadian clocks and the cell-cycle division process.

Proper functioning requires certain biological systems to follow

these periodic patterns, i.e. to entrain to the periodic excitation.

In the context of translation, it has been shown that

both the RFM [26] and the RFMR [30] entrain to periodic

translation rates, i.e. if all the transition rates are periodic

time-varying functions, with a common (minimal) period

T . 0 then each state variable converges to a periodic trajec-

tory, with a period T. Here we show that the same property

holds for the RFMNP.

We say that a function f is T-periodic if f ðtþ TÞ ¼ f ðtÞ for

all t. Assume that the l
j
i’s in the RFMNP are time-varying

functions satisfying

— there exist 0 , d1 , d2 such that l
j
iðtÞ [ ½d1, d2� for all

t � 0 and all j [ f1, . . . , mg, i [ f1, . . . , njg.
— there exists a (minimal) T . 0 such that all the l

j
i’s are

T-periodic.

We refer to the model in this case as the periodic ribosome
flow model network with a pool (PRFMNP).

Theorem 4.11. Consider the PRFMNP. Fix an arbitrary s . 0.
There exists a unique function fs: Rþ ! IntðVÞ, that is
T-periodic, and for any a [ Ls the solution of the PRFMNP
converges to fs.
In other words, every level set Ls of H contains a unique

periodic solution, and every solution of the PRFMNP emanat-

ing from Ls converges to this solution. Thus, the PRFMNP

entrains (or phase locks) to the periodic excitation in l
j
i’s.

This implies in particular that all the protein production rates

converge to a periodic pattern with period T.

Note that since a constant function is a periodic function

for any T, theorem 4.11 implies entrainment to a periodic

trajectory in the particular case where one of l
j
i ’s oscillates,

and all the other are constant. Note also that the stability

result in theorem 4.1 follows from theorem 4.11.

Example 4.12. Consider the RFMNP (3.7) with GiðzÞ ¼ tanhðzÞ,
and all rates equal to one except for l2

2ðtÞ ¼ 5þ 4 sinð2ptÞ. In

other words, there is a single time-varying periodic rate in

RFMIO #2. Note that all these rates are periodic with a

common minimal period T ¼ 1. Figure 14 depicts the solution

of this PRFMNP as a function of time t for 16:9 � t � 20. The

initial condition is zð0Þ ¼ xi
jð0Þ ¼ 1=4 for all i, j. It may be

seen that all the state variables converge to a periodic solution.

In particular, all state variables x2
i ðtÞ converge to a periodic sol-

ution with (minimal) period T ¼ 1, and so does the pool

occupancy zðtÞ. x1
j ðtÞ’s also converge to a periodic solution,

but it is not possible to tell from the figure whether there are

small oscillations with period T ¼ 1 or the convergence is to

a constant (of course, in both cases this is a periodic solution

with period T ¼ 1). However, it can be shown using the first

two equations in (3.7) that if zðtÞ converges to a periodic sol-

ution then so do x1
1ðtÞ and x1

2ðtÞ. Note that the peaks in x2
3ðtÞ

are correlated with dips in x2
2ðtÞ, this is because when l2

2ðtÞ is

high on some time interval, i.e. the transition rate from site 2

to site 3 is high, there is a high flow of ribosomes from

site 2 to site 3 during this interval. B

From the biophysical point of view, this means that the

competition for free ribosomes induces a coupling between

the mRNA molecules. This can induce periodic oscillations

in all the protein production rates even when all the transition

rates in the molecules are constant, except for a single rate in a

single molecule that oscillates periodically. The translation

rate of codons is affected among others by the tRNA

supply (i.e. the intracellular abundance of the different

tRNA species) and demand (i.e. total number of codons
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from each type on all the mRNA molecules) [63]. Thus, the

translation rate of a codon(s) is affected by changes in the

demand (e.g. oscillations in mRNA levels) or by changes in

the supply (e.g. oscillations in tRNA levels). The results

reported here may suggest that oscillations in the mRNA

levels of some genes or in the concentration of some tRNA

species (that occur, for example, during the cell cycle

[64,65]), can induce oscillations in the translation rates of

the rest of the genes.
 .org
J.R.Soc.Interface

13:20151062
5. Discussion
We introduced a new model, the RFMNP, for large-scale sim-

ultaneous translation and competition for ribosomes that

combines several RFMIOs interconnected via a dynamic

pool of free ribosomes. To the best of our knowledge, this

is the first model of a network composed of interconnected

RFMIOs. The RFMNP is amenable to analysis because it is

a monotone dynamical system that admits a non-trivial first

integral. The fact that the total number of ribosomes in the

network is conserved means that local properties of any

mRNA molecule (e.g. the abundance of the corresponding

tRNA molecules) affects its own translation rate, and via

competition, also globally affects the translation rates of all

the other mRNAs in the network. We provide several

examples demonstrating the behaviour of the RFMNP, and

rigorously analyse some of its mathematical properties. In

particular, the RFMNP is an irreducible cooperative dynami-

cal system admitting a continuum of linearly ordered

equilibrium points, and every trajectory converges to an

equilibrium point. The RFMNP is also on the ‘verge of con-

traction’ with respect to the ‘1 norm, and it entrains to

periodic transition rates with a common period.

An important implication of our analysis and simulation

results is that there are regimes and parameter values

where there is a strong coupling between the different ‘trans-

lation components’ (ribosomes and mRNAs) in the cell. Such

regimes cannot be studied using models for translation of a

single isolated mRNA molecule. The RFMNP is specifically

important when studying highly expressed genes with

many mRNA molecules and ribosomes translating them

because the dynamics of such genes strongly affects the ribo-

somal pool. For example, changes in the translation dynamics

of a heterologous gene which is expressed with a very strong

promoter, resulting in very high mRNA copy number should

affect the entire tRNA pool, and thus the translation of

other endogenous genes. Highly expressed endogenous

genes ‘consume’ many ribosomes. Thus, a mutation that

affects their (local) translation rate is expected to affect

also the translation dynamics of other mRNA molecules.

Studying the evolution of such genes should be based on

understanding the global effect of such mutations using a

computational model such as the RFMNP.

On the other hand, we can approximate the dynamics of

genes that are not highly expressed (e.g. a gene with mRNA

levels that are 0.01% of the mRNA levels in the cell) using a

single RFM. In this case, the relative effect of the mRNA on

all other mRNAs is expected to be limited.

Our analysis shows that increasing the translation

initiation rate of a heterologous gene will always have a nega-

tive effect on the translation rate of the other genes (i.e. their

translation rates decrease) and vice versa. The effect of
increasing [decreasing] the translation rate of a codon of the

heterologous gene on the translation rate of other genes is

more complicated: while it always increases [decreases] the

translation rate of the heterologous gene it may either

increase or decrease the translation rate of all other genes.

The specific outcome of such a manipulation can be predicted

using the RFMNP with parameter values that are based on

the biophysical properties of the heterologous genes and

the host genome.

Some of our analytical results may be tested experimen-

tally. This can be done by designing and expressing a

library of heterologous reporter genes [2,40,56]. The initiation

rates can be manipulated based on the engineering of the

nucleotides surrounding the START codon (e.g. [40–42]).

The elongation rates of codons (and thus the transition

rates) can be estimated using ribosome profiling [66] in

in vivo experiments [34,40,67]. We can simulate a model

such as the RFM (or TASEP) based on the inferred initiation

and elongation rates (e.g. [23]), and use the models described

here to design and demonstrate examples of heterologous

genes where increasing [decreasing] the rate of a codon

increases [decreases] the initiation (and translation) rate of

all other mRNAs.

The effect of the manipulation of a codon (i.e. increasing

or decreasing its rate) of the heterologous reporter gene on

the ribosomal densities and translation rates of all the

mRNAs (endogenous and heterologous) can be performed

via ribosome profiling [66] in addition to measurements of

mRNA levels, translation rates and protein levels [68]. One

can also measure the fluorescence level of the protein related

to an additional reporter gene following the expression of our

library, as was recently done in [69]. Variants in the library

that decrease/increase the free ribosomal pool are expected

to decrease/increase the fluoresce level of the protein related

to the additional reporter gene. Furthermore, we can measure

the growth rate of the host and examine whether indeed

a global increase [decrease] in the initiation rates yields a

positive [negative] effect on the host growth rate.

Our analysis suggests that the effect of improving the tran-

sition rate of a codon in an mRNA molecule on the production

rate of other genes and the pool of ribosomes depends on the

initiation rate in the modified mRNA. When the initiation rate

is very low the effect is expected to be positive (all other pro-

duction rates increase). However, if the initiation rate is high

the effect may be negative. This may partially explain the selec-

tion for slower codons in highly expressed genes that practically

decrease the initiation rate [1,4]. This relation may also suggest a

new factor that contributes to the evolution of highly expressed

genes towards higher elongation and termination rates (i.e. the

tendency of highly expressed genes to include ‘fast’ codons).

Indeed, lower elongation rates (and thus a relatively high

initiation rate) may decrease the production rates of other

mRNAs that are needed for proper functioning of the organism.

The RFM, and thus also the model described here, does not

capture certain aspects of mRNA translation. For example,

eukaryotic ribosomes may translate mRNAs in multiple cycles

before entering the free ribosomal pool [18,44,70]. This phenom-

enon may perhaps be modelled by adding positive feedback

[44] in the RFMNP. In addition, different genes are transcribed

at different rates, resulting in a different number of (identical)

mRNA copies for different genes. This can be modelled using

a set of identical RFMs for each gene. Such a model can help

in understanding how changes in mRNA levels of one gene
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affect the translation rates of all the mRNAs. The analysis here

suggests that modifying the mRNA levels of a gene will affect

the translation rates of all other genes in the same way. These

and other aspects of biological translation may be integrated

in our model in future studies. Hamadeh & Del Vecchio [71]

develop the notion of the realizable region for steady-state

gene expression under resource limitations, and methods for

mitigating the effects of ribosome competition. Another interest-

ing research direction is studying these topics in the context of

the RFMNP.

We believe that networks of interconnected RFMIOs may

also prove to be powerful modelling and analysis tools for
other natural and artificial systems. These include com-

munication networks, intracellular trafficking in the cell,

coordination of large groups of organisms (e.g. ants), traffic

control and more.
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