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Some resul ts  are given in the  theory  of  rational power  series over a broad class of  
semir ings .  In  part icular,  it is shown  tha t  for u n a m b i g u o u s  sets  the  not ion  of  rationali ty 
is i ndependen t  of  the  semir ing  over which  representa t ions  are defined. T h e  u n d e -  
cidability of  the  rationali ty of  probabil is t ic  word  funct ions  is also established. 

INTRODUCTION 

In this note we begin by resolving (in the negative) a question posed by Paz [6, Open 
Problem 1, p. 65] concerning the existence of an effective procedure for determining 
whether a recursively specified "probabilistie input-output relation" is of finite rank. 
To show that such an algorithm does not exist, it is enough to prove the undecidability 
of the corresponding problem for "probabilistic word functions" (take an input 
alphabet of one letter). 

The undecidability of rationality for general word functions is used in the proof 
of the above. This was proved by Paz [7, Corollary E3]. This problem, however, 
can be posed in much more generality: One might ask about the rationality of power 
series with coefficients in more general semirings. We give in Part 2 a completely 
new proof of the undeeidability result of Paz. This proof extends readily to the more 
general situation. For this we note that over a large class of semirings R (namely, 
those embeddable in commutative rings), unambiguous R-rational power series are 
recognizable languages. Particular cases of this latter result were already known. For 
example, the one-letter ease with coefficients in a field of characteristic zero follows 
from results on supports as in [2, Proposition I. 4.1.1]. The case of arbitrary alphabets 
and positive semirings is treated in [1, Corollary VIII. 4.3]. For the real numbers the 
result depends on the theory of isolated cutpoints as in [6, Theorem III. 13. 2.3]. 

The proof of the recognizability of R-rational series rests upon some new facts 
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about Hankel matrices, extending the results of [3]. A short example shows that 
in the case R is not commutative the problem is not even well posed. 

The author wishes to thank Dr. P. Turakainen, who suggested looking at the first 
of the problems discussed here. 

PRELIMINARIES 

X will always denote a finite alphabet, while X*  is the free monoid generated by X. 
The  empty word is denoted by A; X'-  is XX*.  We write I w ! for the length of w 
in X*. A semiring will always have an identity 1 4: 0, and (except otherwise stated) 
will be commutative. Given a semiring R and a set I, the set of all functions I ~ R is 
R 1, which can be also thought of as "sequences" of elements of R or as "R-subsets" 
of L The ith coordinate (i in I )  of an f in R I will be written f( i) .  By R" we denote 
the free R-module on n generators, and will not distinguish between its endomor- 
phisms and n by n matrices (expressed with respect to a canonical basis). In  general, 
an R I is naturally an R-module under coordinatewise operations (see [1]). 

The main objects of study are the R-subsets of X*  for an arbitrary semiring R; 
these objects are also called power series [2] and word functions [6]. We say an R-subse t f  
is R-recognizable--equivalently, rational, for our monoids are free--iff there is an 
integer n and matrices g in R ~xl, F(x) in R ~x~ for each x in X, and h in R ix", with 
f (w)  -- hF(w)g for each w = x~l -" x i ,  where F(w) is the product F(xi, ) ""F(xi, ). 
I f f  is an R-subset such that f (w)  is always 0 or 1, it is unambiguous; we identify it 
with the subset of X* (i.e., language) of which it is the characteristic function. When 
R is the 2-element Boolean semiring, R-recognizable R-subsets are called simply 
recognizable, and they are of course the languages accepted by finite automata. This 
approach began with Schfitzenberger [9]. 

Given the R-subset f, we denote by H ( f )  the (generalized) Hankel matrix of f 
(see [2]), i.e., the infinite matrix with rows and columns indexed by X*  and f (uv)  
in position (u, v). The uth column is denoted by Hu --=- H(f) , ,  ; it can also be seen as 
an R-subset of X*  and its vth coordinate II,,.v is clearly f(vu). The R-submodule 
of R x* generated by the Hu ,  i.e., the set of all their finite R-linear combinations, is 
denoted by l l ( f ) .  

If  R --= R, the real numbers, f is a probabilistic word function when (i) f ( X * )  is 
included in [0, I], (ii) f(A) = 1 and (iii) Y'x~xf(vx) = f (v)  for each v E X * (see 
[6, p. I 19]). An f as above is also called a (finite) stochastic process. When such an f is 
also R-recognizable it is of finite rank. 

1. PROBABILISTIC WORD FUNCTIONS 

We shall use the following result: There is no algorithm which decides R-recogniza- 
bility of a recursively specified R-subset taking values in [0, 1]. This follows from 
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[7, Corollary E. 3] or more generally from Part 2 below. Without loss of generality 
we shall in this section take X to be a two-letter alphabet {x 1 , x2}. We prove Theorem 
(1.2) by showing that a decision procedure for probabilistic word functions would imply 
one for more arbitrary R-subsets; the key is the following fact, also interesting in itself: 

PROPOSITION 1.1. There is an algorithm which, when given a recursive R-subset f 
with values in [0, 1], constructs a pair of recursive probabilistic word functions Pi with 
the property that f is R-recognizable iff both Pi are. 

Proof. We proceed in several steps: 

Step 1. Define f~ ,f2 as follows, fi(A) = 0; for each w ~ X+ let fi(w) be f (w) if w 
is in X*xi and 0 otherwise. Observe that for each w in X + either H(fi)w = H(f)w 
or H(fi)~ = 0 and conversely, at least one of H(fa)~ or H(f2) w is equal to H(f)w.  
So H(f )  is finite-dimensional iff both H(fi) are, and by Proposition 2.1 below, or by 
well-known results for the case of fields, f is R-recognizable iff both fi  are. We shall 
work with f~ and construct pl ; the construction of p~ will be similar. So now assume 
that f (w)  = 0 for all w ending in x~. 

Step 2. Observe that f is R-recognizable iff X*x 1 + f is (where X*x 1 stands for 
the corresponding characteristic function), because R-recognizable subsets form 
a subring. So we will suppose f (X*xl )  C [1, 2]. 

Step 3. Given any a > 0, if we define the R-subset fa by fa(w) : =  alWlf(w), 
then f~ is R-recognizable i f f f  is. (Given g, h, F(xl), F(x~) representing f, by replacing 
aF(xi) for F(x~) we have a representation for fa') Therefore, taking in particular 
a : =  ~-, we may assume without loss of generality that 

3-1vt ~ f ( v )  ~2.3-1~1 foral l  v i n X * x ~ .  (*) 

Step 4. Definition of p. Let p(A) : =  1 and assume by induction on k that p(v) 
is already defined, satisfying 3-1~1 ~ p(v) ~ 1 for all v with ] v ] ~ h. Given w such 
that ] w[ = k -[- 1, it is either in X*x I or X*x 2 . In  the first case, let p(w) : ~  f (w);  
p(w) again satisfies the inductive hypothesis because of (.). If, instead, w = vx 2 
with I v I = k, let p(w) : =  p(v) -- f (vxl);  by hypothesis and because of (.) ,  

p(w) ~ 3 -I~1 - -  2.3 -[~x~l ~ 3 -I~1 - -  2.3 -I~l-a = 3-1~1(1 - -  ~) = 3 - I v l - 1  = 3 -Iwl. 

Step 5. Proof that p is probabilistic. By construction p satisfies 

p(vx2) = p(v) -- f(vxl) = p(v) -- p(vxl) 

p(A) = 1, p(v) in [0, 13 

for all v in X*, 

for all v. 
(**) 
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Step 6. f is R-recognizable iff p is. Observe that (**) says that for all u, v in X* 
we have p(uvx2) = p(uv) --  f (uvx l )  , i.e., 

H ( p ) . ~  = H(p)v - -  H(f) .x~ for all v. (***) 

Assume now by induction on ]v r  that H(p)v  is in the submodule generated by 
H(p)a and H ( f ) .  I f  w = vx 1 , by definition p(uvxl) ~ f (uvxx)  for all u, so H(p)vxl 
H(f)~xl  �9 I f  w_ ~ vx2,  apply the_ induction hypothesis for v and (***). We have then 
proved that H(p)  C_ H(p)a + H ( f ) .  

Conversely, H ( f ) ~ 2  ~- 0 and H(f) ,x~ = H ( p ) ~  1 for all v, so H ( f )  C_ H(p) .  Thus  
H(p)  is exactly / / ( f )  plus a one-dimensional subspace, and Proposition 2.1 applies 
again. 1 | 

THEOREM 1.2. There is no effective procedure for determining whether recursive 
probabilistic word functions are of finite rank. 

2. UNAMBIGUOUS R-REcOGNIZABLE SETS 

The  following proposition generalizes a result well known for fields and certain 
integral domains (in a much stronger form, see, e.g., [2, Section I. 2.10]). I t  has been 
proved before in the simpler one-letter case for arbitrary commutative rings [8, p. 34]. 
The  sufficiency part of the proof below is similar to the latter. As a side remark, 
note that the result does not remain valid for noncommutative rings (see [10, Part C]). 

PROPOSITIOn 2.1. Assume R is a commutative ring and f is an R-subset. Then f 
is R-recognizable if  and only i f  H ( f )  is a finitely generated R-module. 

Proof. ["Only if"]. Assume f ( w ) =  hF(w)g for all w in X*, and consider the 
R-subalgebra of R ~• generated by all matrices F(x) with x in X. As the alphabet is 
finite, this algebra is also finitely generated as an R-module (see the Appendix). So 
there is some integer k such that {F(u), ] u [ < k} generates it as a module. In  particular, 

I Notes added in proof (October 1975). (a) Using a variant of Lemma 1.1, one may also reduce 
to Theorem 2.5 (and hence prove unsolvable) the problem of deciding if a given function is the 
growth function of some Lindenmayer (DOL) system; (b) M. Flless has pointed out to the 
author that a recent paper of S. Rao Kosaraju (Information and Control 26, p. 194) approaches 
Theorem 1.2 independently of Theorem 2.5. Lemma 1.1 shows that both decision problems 
are in fact equivalent. 
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for any w in X*, there are scalars r u in R with F(w) = ~lul<k r,,F(u). So for each v 
in X* (using R is commutative): 

Hw.~ = f ( v w )  = hF(vw)g  = hF(v) F(w)g  = hF(v) ( E r~F(u)) g 
\ l u l < ~  / 

= y 

lul<k 

Hence Hw ---- ~t~l<k r~H~.  Therefore the finite set {H~, I u ] < k} generates H ( f ) .  
["If"] .  In  general, given any matrix of the type H ( f ) ,  we can define for each x 

in X an R-endomorphism F~ of H ( f )  which extends linearly the map that sends 
each H~ into H~w. We only need to see that it is well defined ( H ( f )  is not freely 
generated by the columns), all the other properties being obvious. So assume there is 
a relation ~ r~H~ ~ O. We claim ~ r u H ~  = 0 for all x in X. Indeed, for any v in X*, 
the vth coordinate (E  r~Hz~)~ = E r~f (v(xu))  = 7~ ru f ( (vx)u)  ---- (S: r~Hu)vx = O. 
Denote ff : =  Ha �9 Let h: 17( f )  --* R be the projection on the first component 
7Z r~H~ ~ ~. r J ( u ) .  Then for any w = x 1 "" xn , 

h o F,x . . . . .  F , , ( g )  = Ii(H~,...,,) = f ( w ) .  

Now suppose that H ( f )  is finitely generated. Let p: R"---~/7(f)  (surjective) be 
a free presentation. There exist matrices h, g, and F(x)  for each x such that h = / ;  o p, 
p(g) = g, andp  o F(x)  = F~ o p.  Then for each w = x 1 "" x ,  , f (w) = hF(xl)  "" F(xn)g.  

So f is R-recognizable. | 

The  following, although quite trivial, is crucial. 

LEMMA 2.2. Let  R be an arbitrary semiring and S a finite subset of  R.  Let  I be 

any set. Assume that w 1 ,..., w~ are elements of  S 1C R 1 and call M the R-submodule 
they generate. Then M c3 S l is also a finite set. 

Proof. I f  the coordinates can only assume finitely many values, the possible 
number of vectors (wl. i ,..., w~.i) is also finite. So there is a finite subset J of I 
representing them, i.e., such that for each i in L there is a j = j ( i )  in J with 
(wl.i .... , w~.i) ~ (wl,j ,..., w,,j) .  Now, given arbitrary u and v in M ,  u = ~ r~w~, 

v ~- ~ skwk, assume u s = vj for all j in J. Take any i in I. Choosing j = j ( i )  as 
before, ui ~ ~ r~wk,i ~- ~ rkwk.j ~- US = V~ -~ vi �9 So coinciding on the indexes 
in J is enough for equality. The lemma then follows immediately from the observation 
that S J is finite. | 

We then have 

THEOREM 2.3. Let  R be a semiring which can be embedded in a commutative ring and f 

an unambiguous R-subset. Then f is R-recognizable i f f  it is recognizable. 

57x/xI/3-7 
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Proof. Sufficiency is well known (see, e.g., [1 Proposition VI. 7.14]). Assume now 
that f is R-recognizable. Without loss of generality, suppose that R is a ring. By 
Proposition 2.1, H ( f )  is finitely generated, and the generators can be chosen out of 
the columns H~,  which have all coordinates either 0 or 1. Applying Lemma 2.2, 
the set {H~,, u ~ X*} is finite. But as observed by Fliess, this means that f is recog- 
nizable, because the classes of the left congruence in X* given by "u ~-~ v i f f f (wu)  = 
f(urv) for all w in X*"  are represented by the different columns H~.  | 

Remark 2.4. I t  is worth observing that to drop the commutativity assumption 
in Theorem 2.3 changes the situation completely. In fact, assume that we are given 
any subset f of X*, recognizable or not. Then there exists a ring R (constructed 
using f )  such that f is R-recognizable as an (unambiguous) R-subset. 

One way of obtaining R is as follows. Consider the free Z-algebra (i.e., the set of 
noncommutative polynomials) Z ( X ' ) ,  where X '  : =  X k) {y} for some y r X. Let I 
be the ideal generated by both all the ( ywy  - -  1) for whichf(w) = 1 and all the y w y  
for which f ( w )  = 0. Let R : =  ( Z ( X ' ) ) / I ;  this is a ring with 1 =/= 0. Denote by f 
the image in R of r ~ Z ( X ' ) .  Define for each i, F(xi)  : =  xi e R lxl  -~ R,  g : =  h : =  
y e R. Then for every w in X* ,  hF(w)g = ywy ,  which is 0 or 1 according to f. | 

THEOREM 2.5. Fix a semiring R as in Theorem2.3. The problem of  deciding whether 
a recursive R-subset is R-recognizable is unsolvable. Moreover, the same conclusion holds 
with respect to unambiguous ones. 

Proof. I f  solvable, one would have a decision procedure for recognizability of 
recursive sets, which gives a contradiction (take for example the language generated 
by a context-free grammar and apply [4, p. 230]). | 

APPENDIX 

The following result from commutative algebra is used in the proof of Proposition 
2.1. I t  is clearly valid for more general algebras than matrix rings. 

PaOPOSITION. I f  R is a commutative ring and B is the R-subalgebra of  R '~xn generated 
by the matrices Yl 1 ,..., A,~ , then B is finitely generated as an R-module. 

Proof. Let S be the smallest subring of R containing the identity and all the 
entries of the matrices A~. Being a finitely generated Z-algebra, it i s  a Noetherian 
[5, p. 145] ring. In particular, S ~xn is a Noetherian S-module. Now observe that, by 
definition of S, all Ai  are in S '~x'~. So let B s  be the S-algebra generated by all Ai  �9 

B s  is also an S-submodule of S "x'~, generated as such by all products A q  "" Ai ,  
with 1 ~< ij ~< m for all j, and with s arbitrary. But by the Noetherian property for 
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S ~xn, there  exists some r such that,  as before, all products  wi th  s > r are an S- l inear  

combina t ion  of  the products  wi th  s ~ r. I n  part icular ,  as S _C R, they  are an R- l inear  

combinat ion,  and so {e/q " . . / / ~ ,  s ~ r} generate  B.  | 

REFERENCES 

1. S. EILENBERG, "Automata, Languages, and Machines," Vol. A, Academic Press, New 
York, 1974. 

2. M. FLIF.SS, Sur certaines familles de s~ries formelles, Th~se de Doctorat d'l~tat, University 
of Paris VII, 1972. 

3. M. FLIESS, Matrices de Hankel, J. Math. Pures AppL 53 (1974). 
4. J. E. HOPCROET AND J. D. ULLMAN, "Formal Languages and Their relation to Automata," 

Addison-Wesley, Reading, Mass., 1969. 
5. S. LANG, "Algebra," Addison-Wesley, Reading, Mass., 1965. 
6. A. PAz, "Introduction to Probabilistic Automata," Academic Press, New York, 1971. 
7. A. PAZ, Forrnal series, finiteness properties and decision problems, ~4nn. Acad. Sci. Fenn., 

Set. A 1 (1971), 493. 
8. Y. ROUCHAL~U, Linear, discrete-time, finite-dimensional dynamical systems over some 

classes of commutative rings, Ph.D. Dissertation, Stanford University, 1972. 
9. M. P. SCH~TZENBERGEa, On the definition of a family of automata, Information Control 

4 (1961), 245-270. 
10. E. SONTAG, On linear systems and noncommutative rings, Math. System Theory 9 (1975). 


