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Biology emerges from interactions between molecules, which 
are challenging to elucidate with current techniques. An 
orthogonal approach is to probe for ‘response signatures’ 
that identify specific circuit motifs. For example, bistability, 
hysteresis, or irreversibility are used to detect positive 
feedback loops. For adapting systems, such signatures are 
not known. Only two circuit motifs generate adaptation: 
negative feedback loops (NFLs) and incoherent feed-forward 
loops (IFFLs). On the basis of computational testing and 
mathematical proofs, we propose differential signatures: in 
response to oscillatory stimulation, NFLs but not IFFLs show 
refractory–period stabilization (robustness to changes in 
stimulus duration) or period skipping. Applying this approach 
to yeast, we identified the circuit dominating cell cycle timing. 
In Caenorhabditis elegans AWA neurons, which are crucial for 
chemotaxis, we uncovered a Ca2+ NFL leading to adaptation 
that would be difficult to find by other means. These response 
signatures allow direct access to the outlines of the wiring 
diagrams of adapting systems.

A complementary approach to elucidating biological systems 
by traditional molecular biology techniques is to test for 
response signatures (i.e., characteristic input–output features) 
that are associated with specific circuit motifs. A confirmed 
signature establishes the outlines of a biological network before 
the components are known. The requirements for measuring 
response signatures are minimal: an experimentally controlled  
stimulus and a measurable output. Biochemical or genetic 
manipulations are not inherently necessary. This makes the 
approach attractive for biological systems that are difficult 
to manipulate or have many possible genes to pursue. For 
example, bistability, hysteresis, or irreversibility are signatures 
of positive feedback loops, and their detection has supported 
specific mechanisms1–3.

Oscillatory stimuli differentiate adapting circuit 
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Adaptation is a dynamic feature of biological systems in which 
the output returns to (or nears) baseline after stimulation onset. 
For circuit motifs capable of adaptation, generic response signa-
tures are currently unknown, even though adaptation is ubiqui-
tous and serves important biological functions4.

Two basic types of circuits can exhibit adaptation: IFFLs and 
NFLs5–7 (Fig. 1a–d). In adapting pathways, a stimulus S (for 
example, an odor) causes temporary buildup of the response 
element R (for example, intracellular Ca2+), and the subsequent 
decrease in R, which is the hallmark of adaptation, is either inde-
pendent of R (i.e., direct (IFFL)) or dependent on R (i.e., indirect, 
(NFL)). In IFFLs, S also generates an inhibitor I independently 
of R, and I interrupts the buildup of R or depletes R (Fig. 1a). 
Alternatively, a factor X, which contributes to the buildup of R, is 
depleted independently of R (Fig. 1b). In an NFL, the generation 
of the inhibitor I (or depletion of X) depends on R itself—i.e., I (or 
X) is downstream of R (Fig. 1c,d). The output O of the pathway 
can be R or be downstream of R (Fig. 1a–d). These fundamental 
options for adaptation (inhibition by I or depletion of X; depend-
ence on R (NFL) or independence (IFFL)) are logically exhaustive, 
which is supported by computational exploration6 and rigorous 
mathematical proofs7. Thus, all models describing individual 
adaptation mechanisms, including integral control5,8 and state-
dependent inactivation9,10, are subsumed in these two categories; 
rewriting the models in mathematically equivalent forms can help 
expose their topologies.

Response signatures for IFFLs and NFLs would help elucidate 
a wide spectrum of poorly understood biological systems; for 
example, such measurements ought to resolve contrasting mecha-
nisms that have been proposed for the same system, such as the 
gonadotropin-releasing hormone pathway11,12. The distinction 
between IFFLs and NFLs is itself biologically important, because 
each can lead to different system behavior, such as steady state 
or oscillations13.
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Dynamical stimuli have been used to explore biological path-
ways14 and to uncover interesting biology15–18. Specifically, step-
like and ramp-like inputs have been applied to distinguish specific 
models8,19–23. In an attempt to explore the general applicability of 
these approaches, we simulated simple adapting models and found 
various counterexamples, which show that it is at least unclear how 
previous discriminants can be used generally (Supplementary 
Fig. 1a–h). And varying stimulus strengths (ramps, for example)  
can be problematic: many inducible promoters are ‘all or  
nothing’ and thus threshold the stimuli. Furthermore, at different  
concentrations or strengths, stimuli may activate different  
subnetworks24, confounding the analysis.

RESULTS
We found that a single on–off stimulus pulse does not suffice for 
discrimination of adapting circuit types, as IFFL and NFL models 
fit the same experimental adaptation time course equally well 
(Supplementary Fig. 1i,j).

Refractory period stabilization
The next, more complicated on–off stimulation pattern consists 
of two or more pulses. Considering two simple representations 
of IFFLs and NFLs (Fig. 1e,f and Supplementary Fig. 1k,l), we 
noticed a fundamental difference in their responses to a second 
stimulus pulse. In an IFFL, the inhibitor I grows (or X decreases) 
independently of the response (up to saturation) (Fig. 1a,b); 
therefore, the longer the first stimulus pulse is, the smaller the 
response to a second stimulus pulse should be (Fig. 1e). With 
NFLs (Fig. 1f), in contrast, if the first stimulus is long enough for 
adaptation to ‘kick in’, the entire circuit can be effectively shut off, 
and the inhibition mechanism (I or X) can begin to reset; further 
lengthening the first stimulus pulse matters little for the second 
response (Fig. 1f). So the recovery time or the ‘refractory period’ 
should always be increasing with the stimulus duration in IFFLs 
and should be stabilized (robust) in NFLs.

We needed a general, rigorous definition for the refractory 
period and thus considered repeated on–off stimuli of duration 
d and period T; we defined the refractory period Tmax(d) as the 
period at which the time-averaged output <O(t,d,T)> =: O(d,T) 
is maximal for fixed d (Fig. 1g,h). At Tmax(d), the stimuli pro-
duce maximal output. This generalizes the common understand-
ing of the refractory period, where for T below Tmax, stimulus 
pulses are too fast for the system to recover due to adaptation 
(O(d, T) decreases with decreasing T < Tmax), and above Tmax, 
the responses recover, but their time average decreases (O(d, T) 
~ 1/T for T >> Tmax).

For the IFFL and NFL models in Figure 1e,f, we calculated 
Tmax(d) analytically and found that the slope of Tmax(d) is > 1 
everywhere for the IFFL model, while the NFL model’s Tmax(d) 
is flat (slope = 0) for intermediate d (Fig. 1i,j), which describes 
refractory period stabilization quantitatively. To check more com-
plicated models numerically, we set 1/2 as a practical threshold for 
the slope ∂Tmax/∂d, between the minimum slopes in Figure 1i,j. 
We consider the refractory period ‘stabilized’ if its slope is below 
1/2 in an appropriate range of pulse durations d (to be determined 
by numerical exploration; see below).

There are a number of inherent advantages to defining the 
refractory period by periodic stimuli and the maximum of the 
time-averaged output (Supplementary Note 1), including for 

the mathematical analysis and for the experimental data analysis. 
Crucially, this paradigm allows us to explicitly analyze only the 
refractory periods of small circuits; the same results hold (Tmax(d) 
is invariant) for an infinite number of additions to these circuits 
(Fig. 1k and Supplementary Note 1).

Period skipping
Another response signature can be deduced by considering that 
when an NFL adapts to a stimulus, the entire circuit can be shut 
off from the stimulus until the inhibition resets and the system 
recovers (Fig. 1l). Any stimuli administered while the circuit is 
insulated ought to have little effect. This would result in responses 
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Figure 1 | Discriminating IFFLs and NFLs. (a–d) Four fundamental wiring 
diagrams for adaptation. Arrows can represent multiple intermediate 
nodes. (e,f) IFFL (e) or NFL (f) system receiving two consecutive stimulus 
pulses of different widths but with the same onset times. Stimuli always 
turn on at times 0 and t1. Red arrows indicate when the I begins to decay. 
(g) Periodic stimulus pulses of duration d and period T produce output 
O(t) = O(t, d, T). (h) O(d, T) has a maximum at Tmax(d). Periodic solutions 
shown for stimuli that are faster (left), equal to (middle), or slower 
(right) than Tmax. (i) IFFL model as in e (IFFL 1 in Supplementary Fig. 2 
with n→). Model parameters: λI0 = 0.01, 0.1, 0.5, 0.75 (dark to light). 
(j) NFL model as in f (NFL 1 in Supplementary Fig. 2 with n→). NFL 
parameters: (λ, λI0) = (0.1,0.3), (0.1,0.1), (0.4,0.1), (0.1,0.01) (dark 
to light). Tmax(d) plot terminates when d exceeds the absolute refractory 
time, above which the circuit would be activated twice for each stimulus 
pulse. θ(x), step function (0 for x < 0 and 1 otherwise). (k) Schematic 
showing equivalent classes of circuits with the same Tmax(d). The asterisk 
denotes the specific nature of the nonlinear transformations (nonlin. 
transform.) analyzed (see Supplementary Note 1). (l) Period skipping 
in an NFL circuit. Levels of stimulus, inhibitor, and output are shown in 
arbitrary units as a function of time (e–g,h,l).©
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‘skipping’ stimulus pulses (a simple response pattern might be 
0-1-0-1-0… (Fig. 1l), although more complicated patterns are 
possible (Supplementary Fig. 1m,n)).

IFFLs cannot exhibit such dynamics because of the following 
properties (Supplementary Note 2).

(1)	 Period skipping cannot occur in purely feed-forward 
systems (such as the IFFLs modeled in this work including  
Fig. 1e,i) because these systems entrain to the stimulus period T.

(2)	 Adding positive feedback loops (PFLs) to a (purely feed-
forward) IFFL does not produce period skipping, because a PFL 
system of two species cannot show period skipping.

(3)	 General PFL systems cannot access period skipping 
solutions with on–off stimuli.

These results rule out period skipping in biologically realistic 
IFFL circuits, leaving that possibility generically to NFLs.

Generality and uniqueness of discriminants
To explore how generic or unique these response signatures are 
(uniqueness of period skipping in NFLs is guaranteed), we sys-
tematically analyzed nonlinear IFFL and NFL models numeri-
cally. (We had to go beyond linear models, as they entrain and 
their O(d, T) are monotonic.)

First, we ruled out that the observed differences between IFFLs 
and NFLs were particular to the abrupt nature of the inhibition 
function or to the output functions in Figure 1i,j. We replaced 
the step function θ(I0 − I) by Michaelis–Menten terms with Hill 
coefficients ≥1 and varied parameters and output functions 
(Supplementary Table 1). None of the IFFL models showed 
refractory period stabilization or period skipping, whereas 
71% of the NFL models, which showed sufficient adaptation  
(Online Methods), did. Thus, the two NFL signatures were robust 
to such variations.

For a more comprehensive exploration of model space, we gen-
erated >6 × 105 implementations of IFFLs and NFLs with 86 dif-
fering wiring diagrams, interaction types, and numbers of nodes. 
Specifically, we analyzed systems with (i) inhibitors I or activators 
X (Fig. 1a–d), (ii) inhibitors that block the increase of a target or 
degrade the target, (iii) nonzero baseline activities, (iv) saturation 
due to Michaelis–Menten kinetics, (v) nonlinearities due to coop-
erativity, and (vi) additional dynamical nodes (Supplementary 
Figs. 2–6). We varied parameters in an unbiased manner (0.1, 
1, 10 for most parameters). We focused particularly on finding 
false positives (IFFL loops showing refractory period buffering) 
rather than minimizing false negatives (NFL loops failing to show 
signatures), which underestimates the generality of period skip-
ping in NFLs (Online Methods). For the same reason, we limited 
ourselves to 4 subtypes of NFLs with 3 + 1 nodes (+1 for output 
node) but covered all 82 possible IFFLs with 3 + 1 or 4 + 1 nodes. 
As expected, none of the IFFL circuits showed period skipping.  

A small number of IFFL circuits showed refractory period stabili-
zation when the stimulus duration (d) was small, where our previ-
ous argument based on intermediate d values (Fig. 1e,f) does not 
apply. Requiring that refractory period stabilization occurs when 
d is large enough (1.5× adaptation time), left few false positives, 
and the likelihood of assigning an NFL circuit correctly would be 
150:1 (Table 1 and Supplementary Fig. 7).

We were surprised to find that both signatures occurred with 
or without cooperativity. Also, refractory period stabilization was 
detected about as often as period skipping in our computational 
searches (0.8:1; Table 1 and data not shown), suggesting that nei-
ther is rare.

Published models
We also analyzed two classes of models from the literature that 
are thought to describe a wide spectrum of biological systems 
(Supplementary Note 3). The state-dependent inactivation 
model9,10, which is essentially an IFFL, showed neither period 
skipping nor refractory period stabilization, as expected. Fold-
change detection models25 can be either IFFLs or NFLs. Using 
previously published models26, we detected period skipping in the 
NFLs but neither NFL signature in the IFFLs, as expected.

Application to experimental systems
To demonstrate the experimental application of our findings, 
we began with trial runs to establish the pulse widths and peri-
ods appropriate for the biological system at hand. We chose the 
smallest and largest appropriate pulse durations to find Tmax at 
those durations. We reasoned that by the mean value theorem, 
determining the slope of a straight line through two data points is 
sufficient to infer the slope of any smooth interpolation at a point 
in between, which shows refractory period stabilization. In that 
process, we also detected period skipping around the smallest 
pulse periods we applied, which an analysis of the simple NFL 
models in Figure 1f,j suggested (Supplementary Fig. 8).

Circuits dominating cell cycle timing in S. cerevisiae
The cell cycle control system in budding yeast involves dozens 
of interacting genes and consists at its core of at least the CDK–
APC/C oscillator27 (Fig. 2a–f) and a proposed ‘global transcrip-
tional oscillator’ (GTO)28–31, a cyclical chain of transcription 
factors (Fig. 2g). Given the many different subsystems, it is unclear 
which ones, if any, predominantly set cell cycle dynamics.

We deleted the genes encoding cyclins Cln1, Cln2, and Cln3 
and introduced a construct (MET-CLN2) expressing start cyclin 
Cln2 during methionine withdrawal (–Met) to place cell cycle 
start under exogenous control, resulting in cln1-3∆ MET-CLN2 
(cln∆*) cells32 and eliminating the PFL and the early NFL 1 
(Fig. 2b,d,h–k). With a long –Met pulse activating MET-CLN2, 
which stops short of initiating a second cell cycle, transcription 
of cell cycle periodic genes rises and falls once32, demonstrating  
that the system adapts to Cln2, which rules out the simplest  
version of the GTO lacking IFFLs or NFLs. We also introduced a 
CLN2 promoter–driven YFP construct (CLN2pr-YFP) to report 
start (SBF) cluster gene activity, which turns on roughly with 
budding (Fig. 2h).

We administered five –Met (Cln2 on) pulses of varying dura-
tions d and periods T (Fig. 2i,j). For long periods, cells responded 
to all five pulses (≈60% (n = 102) at d = 50 min, T = 65 min) 

Table 1 | Period skipping and refractory period stabilization are 
generic in NFLs but not in IFFLs

Circuit type Total tested Adapting
Skipping and refractory period 

stabilization

NFL 315,549 22,188 9,712 (44%)
IFFL 307,584 16,502 48 (0.29%)
Ratio 150:1
These results are based on a computational analysis of the set of circuit models in  
Supplementary Figures 2–6.
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(Fig. 2i). In contrast, with short periods, cells commonly skipped 
stimulus pulses (14% (n = 126) performed 5 cell cycles with  
d = 50 min, T = 55 min) (Fig. 2j). Given our mathematical results, 
we concluded that the overall dynamic was governed by NFLs; 
for example, early NFL 2, late NFL, or the GTO NFLs (Fig. 2e–g). 
IFFLs (Fig. 2c,g) had a minor role, if any. Skipping of forced cell 
cycles was observed previously in a different genetic context33.

In the cell cycle system, the refractory period describes the time it 
takes for the cell cycle to reset and is potentially correlated with cell 
cycle completion. It is not known which subcircuits, if any, make 
this timing robust. We defined the output O(d, T) as the fraction  

of consistently responding (non-skipping) cells, multiplied by 
their CLN2pr-YFP signal (Online Methods and Supplementary 
Fig. 9). The peak in O(d, T), defining the refractory period, was 
due to fast pulses lowering the fraction of cells that responded to 
MET-CLN2 pulses and large periods decreasing the time-averaged 
CLN2pr-YFP signal. Tmax was remarkably stable (73–74 min, ≈ cell 
cycle period for mother cells in synthetic complete (SC) medium 
and glucose) as we changed d (30 min, 50 min) (Fig. 2l–n, slope 
Tmax(d) < 1/2 with >99.9% confidence). Thus, in addition to period 
skipping, refractory period stabilization also indicated that cell 
cycle dynamics was set by NFLs, not IFFLs.
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Figure 3 | A Ca2+-NFL leads to adaptation in C. elegans AWA neurons. (a) C. elegans worms expressing GCaMP2.2b in the AWA olfactory sensory neurons 
pulsed with diacetyl. The question mark indicates that the detailed molecular mechanism of Ca2+ adaptation, including circuit type and the adapting 
node R, were unknown. Scale bar, 100 µm. (b,c) Output mean ± s.e.m. vs. stimulus period T for fixed pulse duration d, shown together with smooth 
spline fit used for estimating the peaks. Number of worms underlying each data point (left to right) 28 ,15, 28, 28, 35, 24, 11 (b), 29, 49, 62, 37, 31, 
27, 11 (c). (d) Mean Tmax(d) (circle), central 90% confidence interval (box), and linear interpolation (dashed line). For d = 10 s, mean = 38 s, interval = 
36–40 s; for d = 20 s, mean = 37 s, interval = 35–42 s. (e,f) Recordings without (e) or with (f) detectable period skipping at intermediate (T = 39 s) or 
small (T = 15 s) stimulus periods, respectively. The first 10 preparatory pulses have the same period and duration across all trials. (g) Fraction of worms ± 
s.e.m. showing significant period skipping (Posc< 0.05, Online Methods) at d = 10 s. *, differences between fractions are at least significant with respect 
to the one-tailed P = 0.05 threshold. (h,i) Ca2+ levels before, during, and after thapsigargin (h) or DMSO (i) application. The first pulse shown was the 
last preparatory pulse. For the remaining pulses, d = 20 s, T = 39 s. Data are normalized by the average of the last two prep response pulse peak heights 
(Online Methods). Medium contains 0.3% DMSO throughout. Data are mean over 25 (h) or 13 (i) worms. (j) Time average of the response pulses after 
removal of thapsigargin in h (black), compared to control in i (green), showing continued depression of the responses. Circle, mean; triangles, s.e.m.; 
box boundaries, interquartile range; center line, median. Pulses analyzed are indicated by black or green brackets in h or i, respectively. *P < 0.05,  
**P < 0.01, ***P < 0.001 (one-sided), difference of means.
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We wondered whether refractory period robustness was a con-
sequence of the interlocking NFLs in the system (Fig. 2a,k). We 
therefore deleted cyclin genes CLB1–CLB6, resulting in cln∆*clb1-
6∆ GALL-CLB2 (cln∆*clb∆*) cells, and induced mitotic cyclin 
Clb2 constitutively in these cells in galactose. This eliminated 
the early NFL 2 (Fig. 2e) as well as any transcriptional control 
of mitotic cyclins (Fig. 2o). Again, the refractory period turned 
out to be well stabilized (128–135 min, ≈ cell cycle period in SC 
galactose) when d (50 min or 90 min) changed (Fig. 2p–r, slope 
Tmax(d) < 1/2 with >98% confidence). Thus, the early NFL 2, in 
addition to the early NFL 1 and the IFFLs, is unnecessary for 
normal overall timing and robustness in the cell cycle control 
system, at least in galactose.

To investigate whether the late NFL (Fig. 2f) between B-type 
cyclins and APC was responsible for refractory period stabili-
zation, we constructed a cln∆* GAL1-CLB2kd strain, in which 
a pulse of galactose and –Met simultaneously induces cell cycle 
entry, transcription start, and a pulse of undegradable Clb2kd, 
which blocks mitotic exit34,35. After long waiting periods, these 
cells completed the cell cycle, probably owing to autonomous 
pulses of the Cdc14 phosphatase that ultimately overcomes Clb2kd 
inhibition35. This system constitutes an artificial IFFL (Fig. 2s). 
Here Tmax(d) changed markedly between 132 min at d = 40 min 
and >167 min at d = 75 min (Fig. 2t–v, slope Tmax(d) > 1/2 with 
>99.9% confidence). This was due to longer Clb2kd induction 
blocking transcription start for longer periods, as expected for 
an IFFL (Fig. 1e). Thus, this artificial IFFL revealed the predicted 
Tmax(d) signature for IFFLs. Therefore, our procedure was effec-
tive at detecting IFFLs. Furthermore, breaking or overriding all 
three CDK-APC/C NFLs, including the late Clb1–Clb2–CDK–
APC/C loop, eliminated refractory period stabilization. The late 
Clb1–Clb2–CDK–APC/C NFL dominated the dynamics. The 
other circuits, including the GTO adaptation loops, had a minor 
role in the overall cell cycle dynamics.

Circuit for adaptation in C. elegans AWA neurons
Response adaptation is a core feature of most neurons and has a 
key role in behavior4. We turned to sensory neurons in C. elegans, 
several of which, such as AWA, ADL, and ASH, show a spike and 
subsequent adaptation in intracellular Ca2+ upon step-like odor 
stimulation. Ca2+ adaptation, specifically, is thought to have a key 
role in C. elegans behavior24,36. We focused on the AWA neuron 
pair, which is one of two main chemoattractive olfactory sensory 
neuron pairs in C. elegans37. Although many genes involved in 
C. elegans sensory processing have been discovered, molecular 
circuit-level understanding of adaptation, a key neuronal com-
putation, is currently lacking.

We analyzed odor-evoked Ca2+ responses in intact, wild-type 
worms (Fig. 3a). We stimulated worms expressing an AWA-spe-
cific Ca2+ sensor (GCaMP2.2b)24,38 with periodic on–off pulses 
of diacetyl, an odor known to activate AWA38 (Supplementary 
Fig. 10a–g). For stable responses and for calibration purposes, we 
first administered a series of ten preparatory odor pulses24,38. We 
then measured total AWA Ca2+ output for seven different pulse 
periods T at two pulse durations (10 s and 20 s) (Fig. 3b–e). The 
output peaked at refractory period Tmax = 37–38 s at both pulse 
durations (Fig. 3b–d); thus, the slope of Tmax(d) was close to 0 in 
between (<1/2 with confidence 0.96) and was therefore stabilized, 
indicating an NFL.

Also, with fast odor pulses (T = 15 or 20 s), many of the worms 
showed clearly noticeable period skipping (Fig. 3f). We devised 
a statistical test (Posc) for detecting low-frequency modula-
tions32 (Online Methods) and observed a significant increase 
in the number of worms with low-frequency response modula-
tions in recordings at T = 15 or 20 s, compared to other periods  
(Fig. 3g). According to our mathematical analysis, this was 
another indicator of an NFL.

We wondered whether Ca2+ forms an NFL onto itself. In the 
absence of our measurements, we had no particular reason to 
pursue this hypothesis given that previous results, if anything, 
suggested an IFFL39,40. We tested for a Ca2+ NFL in AWA by 
dynamically manipulating Ca2+ levels using thapsigargin, a widely 
used inhibitor of SERCA pumps, which remove Ca2+ from the 
cytosol41. We added thapsigargin to the medium for ten odor 
pulses (Fig. 3h). Odor-induced Ca2+ responses surged initially, 
as expected for thapsigargin. However, the responses adapted 
again within 5–7 odor pulses, consistent with Ca2+ boosting its 
own inhibition mechanism. Removal of thapsigargin caused a 
depression of Ca2+ levels (hyper-adaptation) compared to the no-
drug control (Fig. 3i,j), which is consistent with the inhibition 
mechanism decaying slowly, reflecting a memory of elevated Ca2+ 
levels. In contrast, elevated Ca2+ would not increase inhibition in 
an IFFL, and after thapsigargin removal, odor responses would be 
at normal levels. Subsequent recovery showed that over-adapta-
tion was not due to (permanent) damage. Furthermore, longer 
thapsigargin treatment excluded Ca2+ depletion or nonspecific 
cell exhaustion as the cause of adaptation (Supplementary 
Fig. 10h). Thapsigargin itself did not act noticeably as an odor 
(Supplementary Fig. 10i). As the changes in Ca2+ were at biologi-
cally relevant timescales and magnitudes, these results provide 
evidence for a physiological Ca2+ NFL causing adaptation in AWA 
neurons in intact C. elegans.

DISCUSSION
The refractory period is a natural way of characterizing adapt-
ing systems, in part because it involves quantities with intuitive  
units (time, for d and Tmax; none for ∂Tmax/∂d). It is also ger-
mane to biology and not derived from other fields of science  
or engineering.

Our approach has inherent limitations: not all IFFLs and NFLs 
can be distinguished by dynamical measurements42, and the 
detection of circuit motifs does not, for example, specify biochem-
ical species. However, our response signatures were reliable and 
useful in practice, and the same limitations apply to bistability, 
hysteresis, and irreversibility, which do not identify all PFLs43 but 
are nevertheless useful. Furthermore, multiple motifs may exist 
in the same biological system; however, we expect and found that 
one circuit is dominant at a specific timescale.

A stabilized refractory period implies that NFLs have robust 
timing, which may confer advantages such as rendering cell cycle 
timing robust to noise. We speculate that this leads to the predom-
inance of NFLs in nature, which may also be why the dependence 
of the refractory period on stimulus duration, a generic property 
of IFFLs, has been overlooked. Skipping in NFLs represents a 
strong high-frequency filter that ignores fast pulses. For the cell 
cycle this may be advantageous, but for other systems, the failure 
to track inputs might represent a trade-off in exchange for other 
NFL properties, such as a stable refractory period.
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Methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Computational exploration of model circuits. The following 
algorithm was implemented in MATLAB R2010b.

1. Ordinary differential equations (ODEs) with parameters 
and interactions described in Supplementary Figures 2–6 and 
Supplementary Table 1 were generated.

2. Steady-state levels were calculated for the dynamic variables 
at S = 0 and S = 1 (only S = 0 for NFLs) by plugging the model 
parameters into formulas for the steady-state solutions, which had 
been derived for each model by hand. If the steady-state levels 
were not defined (i.e., ±), the model was not analyzed further.

3. To quantify how well the model adapted, the ODEs were 
solved numerically for a step stimulus (S = 0 to S = 1). Nine 
output nonlinearities (O = R, O = R2, O = R3, …) correspond-
ing to the output functions in Supplementary Figures 2–6 and 
Supplementary Table 1 were tested. Only those models and 
output functions were pursued further, in which adaptation was 
sufficiently strong (after a transient peak, the output declined by 
more than 80%).

4. The ODEs were then solved with repeated on (S = 1) and 
off (S = 0) stimuli of duration d and period T using MATLAB’s 
ode45 function. We employed various means to speed up the 
calculations, such as interpolating initial conditions based on 
neighboring solutions and extrapolating exponential conver-
gence. The computations were stopped if the solution vector x(t) 
converged ||x(ti)−x(ti−T)||/||x(ti)|| < 10−12, where ti is the time 
point right after the i’th S = 1 stimulus, before 20,000/T repeti-
tions. If the solutions did not converge, a test for period skipping 
was performed and, if positive, the model was counted toward 
the number of adapting models in Table 1 and Supplementary 
Table 1, but otherwise not analyzed further. For period skipping, 
the solutions to the last n = {1,…,5} stimulus pulses were sim-
ply checked for convergence to the n prior solutions (fractional 
error < 10−12). We focused particularly on finding false positives 
(IFFL loops showing refractory period buffering) rather than 
minimizing false negatives (NFL loops failing to show signatures) 
by gearing our computer code primarily to calculating Tmax(d) 
and detecting period skipping only if it occurs in that process. 
Since the search algorithm stopped when period skipping was 
detected, the number of models with period skipping includes 
models which may also stabilize refractory periods.

5. Initially, a fixed set of pulse durations d = {0.05, 0.15…0.55, 
0.75…2.15, 2.65} and a set of periods T ranging from d + 0.005 to 
10 or 30 (depending on d) were studied. If O(d, T) was increasing 
for the largest values of T in this set, T was increased incremen-
tally (up to a maximum value of 1,000) until O(d, T) decreased. If 
O(d, T) had a maximum as a function of T, the intervals around 
the maximum were bisected to identify the maximum more 
accurately. If O(d, T) had multiple maxima as a function of T, 
the largest period corresponding to a maximum was taken for 
Tmax(d). Only those models were pursued further, in which O(d, 
T) showed a maximum for T > d, i.e., where Tmax>d, for some d 
in the initial set. The number of these models was added to the 
number of adapting models from step 4, and the sums are indi-
cated in Table 1 and Supplementary Table 1. Thus, we counted 
as the number of adapting models those that adapted sufficiently 
to a step function and showed either a nontrivial Tmax refractory 
period or period skipping.

6. If O(d, T) had a maximum for T > d for any of the initial 
d values (step 5), d was increased and Tmax(d) calculated until 
the slope of Tmax(d) (∂Tmax(d)/∂d) approached 1 or until Tmax 
exceeded the maximum allowed T. Then, Tmax(d) was smoothed 
everywhere by calculating additional Tmax(d) points on a denser 
set of d where the slope of Tmax(d) changed rapidly.

S. cerevisiae strains. All strains were W303 congenic. Strains 
SJR14a4d and SJR12a5a were used previously32. The CLB2kd muta-
tion and the GAL1-CLB2kd construct have been described34,35 and 
were crossed into SJR14a4d to yield SJR82c10b. Genotypes were 
as follows: SJR14a4d, cln1∆ cln2∆:CLN2pr-Venus:TRP1 cln3∆:
LEU2 trp1∆:TRP1:MET3-CLN2 HTB2-mCherry:HIS5; SJR12a5a, 
SJR14a4d background, clb1∆-clb6∆:KanMX clb2∆:GALL-CLB2:
URA3-clb5∆:KanMX clb3∆:TRP1 clb4∆:his3:KanMX; SJR82c10b, 
SJR14a4d background, ura3∆:GAL1-CLB2kd:URA3.

C. elegans strains. We used the N2-based CX14887 strain with 
integrated gpa-6::GCaMP2.2b (ref. 24). Animals were raised at 
20 °C on nematode growth medium (NGM) plates seeded with 
Escherichia coli OP50 bacteria as a food source. All experiments 
were performed with young adults, age synchronized by picking 
larval stage 4 (L4) animals to fresh food plates 12–24 h before 
the experiment.

Experimental setup. For S. cerevisiae experiments, cells were 
grown overnight and diluted to OD660 ≈ 0.02 about 6 h before 
the experiment to ensure return to log phase. Fluorescence 
microscopy was performed on cells trapped in a microfluidic 
device (CellASIC) while the medium was changed. Initially, 
cells were synchronized by arresting in off (S = 0) medium 
for 120 min. Then, the medium was switched periodically 
between on (S = 1) and off (S = 0) pulse medium. SC medium 
was supplemented as follows: SJR14a4d overnight medium, 
glucose, no methionine (D–Met); on pulse medium, D–Met; 
off pulse medium, glucose + methionine (D+Met); SJR12a5a 
overnight medium, galactose (G), no methionine (G–Met); 
on pulse medium, G–Met; off pulse medium, G+Met; 
SJR82c10b overnight medium, raffinose (R)–Met; on pulse 
medium, R+G–Met; off pulse medium, R+Met. Images were 
taken every 5 min.

For C. elegans experiments, the experimental setup was basically 
as described38 for paralyzed worms. In all pulsing experiments, 
we switched between S basal medium with 1 mM (−)-tetrasimole 
hydrochloride (Sigma-Aldrich) with (odor on) or without (odor 
off) 1.15 µM diacetyl (Sigma-Aldrich).

The time interval between images was 0.1 s. In every experi-
ment, 10 preparatory odor pulses were administered (10 s dura-
tion, 60 s period) before switching to the main measurement 
pulses of duration d and period T. (The eleventh pulse followed 
60 s after the beginning of the tenth pulse.)

For the thapsigargin experiments, we dissolved the drug (Santa 
Cruz Biotech) at 10 mg/ml in DMSO and then dissolved the solu-
tion at 0.3% by volume in S basal. The final concentration of 
thapsigargin was about 46 µM. We spun the thapsigargin–S basal 
solution down in microcentrifuge tubes at 13,200 r.p.m. for 1 min 
and saw no precipitation. For the DMSO-only controls, we added 
DMSO at 0.3% by volume to S basal.
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Image and data analysis for S. cerevisiae experiments. 
Automated image segmentation and fluorescence quantification 
of yeast grown under time-lapse conditions were performed as 
previously described3. To find Tmax(d) for each yeast mutant, we 
needed to measure the time-averaged output O(d, T) for fixed 
pulse duration d as the pulse period T was varied. In brief, we 
defined the system output O(d, T) as the fraction of cells p(d, T) 
that underwent normal cell cycles at least until some time point t, 
multiplied by their time-averaged CLN2pr-YFP fluorescence y(d, 
T) just before t. We estimated Tmax(d) by fitting a spline through 
the means of the O(d, T) data points, and calculated the uncer-
tainty on the basis of the standard errors in O(d, T). All times are 
relative to the onset of the first stimulus pulse at 0 min.

In all experiments, we applied 5 on–off pulses, which allowed 
us to follow and quantify about 100–200 cells for each d and T. 
More than 5 pulses generally led to overgrowth in the imaging 
arena, as each stimulus pulse roughly doubled the number of cells. 
The exact number of cells analyzed for each data point were as 
follows (left to right): 201, 136, 194, 125 (Fig. 2l); 126, 102, 100, 
70 (Fig. 2m); 130, 150, 123, 174, 67 (Fig. 2p); 110, 123, 97, 162, 
62 (Fig. 2q); 69, 273, 287, 129, 61 (Fig. 2t); 389, 346, 212, 95  
(Fig. 2u). The number of cells was determined by the noise in 
each data point; additional cell colonies were analyzed when the 
s.e.m. was too large compared to the mean to allow a reasonable 
comparison with other data points.

To define and compare the output O(d, T) for different T, we 
needed a specific, fixed time point t in our recordings that was 
late enough that a sufficient number of pulses had been admin-
istered but that would also occur in all of the recordings with the 
same strain. With the number of pulses fixed, the experiments 
with shorter periods are overall shorter. We chose the onset of 
the last stimulus pulse t = 4 T2 of the second-shortest stimulus 
period T2 for each strain (T2 = 65 min for cln∆*, T2 = 105 min for 
cln∆*clb∆*, T2 = 120 min for cln∆* GAL1-CLB2kd) because it was 
a late time point, contained in all related recordings, and allowed 
the following quantification: We counted the number of cells n(d, 
T) that replicated in response to every stimulus pulse before t and 
at least budded in response to the first stimulus pulse starting 
after t, if any. These cells skipped no stimulus pulses at least until 
t and the following stimulus pulse. For example, cells pulsed with 
period T2 had to undergo four normal, on-time cell cycles and at 
least bud a fifth time to be counted. Cells pulsed with period 2T2 
had to undergo two normal, on-time cell cycles and at least bud 
in response to the third stimulus pulse. The ratio of these cells 
compared to the initial number of cells N(d, t) defined p(d, T) = 
n(d, T)/N(d, T), and the standard error was ∆P = (P(1 − P) / N)1/2, 
where P = (n + 2) / (N + 4) takes into account the Agresti–Coull 
correction. We suppress the dependence on d and T, i.e., P = P(d, 
T), when the notation becomes too cumbersome otherwise. The 
CLN2pr-YFP fluorescence time courses of these (non-skipping) 
cells (Fi(t)) were averaged (<Fi(t)>i) and the height of the first 
peak in <Fi(t)>i was computed (Fnorm) to normalize each record-
ing. Fnorm was obviously independent of T. The running average 
of Fi(t)/Fnorm was computed over a time window of size T (average 
from t − T/2 to t + T/2 assigned to t). The running average was 
again averaged from 3T2 to 3.5T2 for the cln∆* and cln∆*clb∆* 
experiments and from 2T2 to 3T2 for the cln∆* GAL1-CLB2kd 
experiment to yield yi. Using these running averages ensured that 
mostly only fluorescence measurements from before t were taken 

into consideration, which ensures that these cells are not skipping 
and performing on time and normal cell cycles. The mean (y) and 
standard error (∆y) of all yi values were computed.

The mean of the output was defined as O(d, T) = p(d, T)y(d, T)  
with standard error ∆O(d, T) = [∆p(d, T)2y(d, T)2 + p(d, T)2∆y(d, 
T)2]1/2, where we neglected the small ∆p(d, T)2∆y(d, t)2 term. 
We approximated the distribution of O(d, T) by a Gaussian with 
s.d. ∆O(d, T) and generated 104 random configurations of differ-
ent outputs at each T. Using MATLAB, we fit smoothing splines 
through each one of the configurations. The maximum of the 
spline was taken as the Tmax for each sampled configuration. 
The whole distributions of Tmax(d) generated for the two pulse 
durations d for each strain were compared to each other. The 
confidence values for refractory period stabilization that we 
report are the fraction of Tmax slopes smaller than 0.5. We varied 
the smoothing parameter for the smoothing spline over a wide 
range (0.001, 0.01, 0.1, 0.3) but the confidences for the slope 
of Tmax(d) hardly changed. For the plots, we used smoothing 
parameters 0.1, 0.01, 0.001 for cln∆*, cln∆*clb∆*, cln∆* GAL1-
CLB2kd, respectively, reflecting the different distances between 
data points in T.

Image and data analysis for C. elegans experiments. Tracking 
AWA neurons. The images were processed basically as described38. 
Occasionally, the worms moved despite general paralysis due to 
tetramisole in the medium. To determine the coordinates of the 
AWA neurons in time, we tracked GCaMP2.2b fluorescence in 
each frame computationally (residual fluorescence, sufficient to 
identify AWA, was detectable even when the odor was off); the 
previously described NeuroTracker software suite (ref. 38) was 
used (Supplementary Fig. 10a). We tried to track the AWA neu-
rons of every worm in the arena, for which, in some instances, 
repeated manual readjustments of the brightness threshold to 
identify the AWA neurons were necessary. We gave up tracking 
individual worms if the AWA detection could not be stabilized 
despite repeated manual interventions. This was the case for about 
1 in 15 worms in each experiment, where, usually, another close-
by worm interfered with and diverted the tracker.

Background and baseline subtraction. For each worm i, the aver-
age raw intensity FR,i(t) was read out of a 13 × 13 pixel square 
window (4 µm/pixel) centered on the tracked AWA neurons’ 
coordinates (Supplementary Fig. 10a). In order to correct for 
background, the median intensity FBG,i(t) in a ring around worm 
i’s AWA neurons (ring inner radius, 10 pixels; outer radius, 19 
pixels) was also read out and subtracted to yield FnoBG,i(t) = FR,i(t) 
− FBG,i(t) (Supplementary Fig. 10b).

Next, we corrected for baseline fluorescence, which can drift 
during the course of the recordings; so, we constructed a time-
dependent baseline function (Supplementary Fig. 10c). Here and 
elsewhere, we used a 5−second time window from −7.5 seconds  
to −2.5 seconds before odor pulses reached the microfluidic 
chamber to define the baseline fluorescence preceding each 
odor pulse, and we defined the center of the window (at −5 s) as 
the beginning of each output pulse. We calculated the average of 
FnoBG,i(t) over each such time window preceding each odor pulse. 
A piecewise linear function FBL,i(t) was fit through these base-
line averages, which were assigned to the beginning of each odor 
pulse. Between these points, FBL,i(t) interpolated linearly. Thus, 
FBL,i(t) reflected shifts in the baseline fluorescence in time. Using 
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this time-dependent baseline function, we normalized the signal, 
Fi(t) = (FnoBG,i(t) − FBL,i(t)) / FBL,i(t) (Supplementary Fig. 10d).

Exclusion of poorly responding worms. We tried to record and 
compute the responses of every worm in our experiments, but 
we excluded 10% of the worms from further analysis because 
their responses were obviously problematic. To filter worms in 
an objective fashion, we set up quantitative criteria. We applied 
these tests to FnoBG,i(t), that is, after background correction but 
before baseline correction (Supplementary Fig. 10b). The first 
10 preparatory odor pulses (of 10 s duration and 60 s period), 
which preceded the main measurement pulses in every experi-
ment, allowed the worms to be evaluated before and independ-
ently of their responses to the main odor pulses and in a consistent 
manner across all experiments. The responses to prep pulses 9 and 
10 were especially important because we used them to calibrate 
the rest of the responses.

We filtered out worms whose output pulses 9 and 10 varied too 
much from one another; we eliminated 8 (of 463 total) worms 
because the baseline FBL,i(t) changed by more than 6% before 
and after pulse 9 (or before and after pulse 10) with respect to the 
average of FBL,i(t) before and after pulse 9 (or 10). (Exclusion if 
|FBL,i(tj) − FBL,i(tj+1)| / (FBL,i(tj) / 2 + FBL,i(tj+1) / 2) > 0.06, where 
tj is the start of pulse j, and j is either 9 or 10 (Supplementary 
Fig. 10b).)

Of the remaining, we filtered out 40 worms because the sig-
nal-to-noise ratio was too low; we defined the signal-to-noise 
ratio as the height of pulse 9 or 10 divided by the s.d. of the base-
line (FnoBG,i(t) over the preceding 5-s time window) before or 
after pulses 9 or 10. (Exclusion if σ(FnoBG,i(t))t = {tj-2.5″,…,tj+2.5″} / 
(FnoBG,i(tk) − FBL,i(tj)) > 0.11 for at least two of the four possible 
combinations where tj is the start of pulse 9, 10, or 11, and tk is 
the time of the peak of the closest output pulse 9 or 10.) One such 
trace is plotted in orange in Supplementary Figure 10b.

These thresholds are, of course, ultimately arbitrary, however, 
we think the criteria were reasonable, as (i) they were used in a 
consistent manner across all experiments; (ii) we applied them 
to preparatory pulses before and independently of the responses 
to the main odor pulses; (iii) we only excluded the ‘worst’ 10% of 
all of the worms in our experiments; (iv) we included all of the 
worms that we could track initially, for example, despite weak 
AWA responses; and (v) all of the response traces that were dis-
carded were visibly problematic and unusual.

Calculation of average responses. For the worms that passed 
the two filters, we calculated Fnorm,i, the average of Fi(t) over the 
responses to pulses 9 and 10, i.e., over a time window starting at 
the beginning of odor pulse 9 and extending to the start of odor 
pulse 11. Fnorm,i serves to normalize the AWA responses for each 
worm (Supplementary Fig. 10e). Again, odor pulses 9 and 10 are 
the last prep pulses; beginning with pulse 11, we switched to odor 
pulse duration d and period T. Next, we computed the running 
average of Fi(t) from pulse 11 onward over a time window of size 
T (Supplementary Fig. 10e). We normalized the running aver-
age of each worm by Fnorm,i (Supplementary Fig. 10f). We fit a 
linear least-squares regression through the normalized running 
average, starting 100 s after the start of odor pulse 11 and ending 
700 s thereafter (Supplementary Fig. 10f). For T = 39 s pulses, 
about three full odor pulses had been administered (2 × 39 s + 
10 s or 2 × 39 s + 20 s) before the start of the linear fit. The span 
of 700 s is fairly long (about 18 × 39 s period pulses, for example) 

and it allowed us to include all of our recordings, including some 
experiments that aborted early. For each worm, we took as the 
output Oi(d, T) the estimated response at 100 s by calculating 
the value of the linear fit at 100 s (Supplementary Fig. 10g). 
The mean and the s.e.m. over Oi(d, T) are shown in Figure 3 and 
Supplementary Figure 10g. Taking points later than 100 s from 
the same linear fit as the output Oi(d, T) yielded similar results: 
the confidence that the slope of Tmax between d = 10 s and d = 20 s  
is less than 0.5 is 0.96 at 100 s, 0.96 at 200 s, 0.94 at 300 s, 0.87 
at 400 min. The gradual loss of confidence at later times can be 
due to experimental artifacts, accumulation of random noise with 
time, loss of correlation to the prep pulses, or, potentially, the acti-
vation of pathways with slower time scales, and so on. As shown in 
Supplementary Figure 9a, it is important to compare the output 
at a specific time after the onset of stimulation. Given the high 
confidence of our results up to about 300 s after the onset of the 
main odor pulses, we did not investigate these issues further.

Similarly to the S. cerevisiae measurements, we repeated experi-
ments for a particular pulse period width d and period T with 
about 15 worms per experiment until the s.e.m./mean ratio 
appeared small enough by visual comparison with the neighbor-
ing data points. Upon completion of the experiments we per-
formed our statistical analyses, which were unambiguous, and 
thus we did not go back for more measurements.

Calculation of Tmax, slopes, and confidence intervals. Based 
on the mean and s.e.m. of the output Oi(d, T) over all worms 
i for each T for any fixed d, we approximated the distribution 
by a Gaussian and generated 104 random configurations of  
different outputs at each T. Using MATLAB, we fit a smoothing 
spline with smoothing parameter 0.1 through each one of the  
configurations. With noticeably smoother (smoothing parameter,  
0.01; resulting confidence, 0.94) or more flexible (smoothing 
parameter, 0.3; resulting confidence, 0.96) splines, we arrived 
at essentially the same results (confidences in the slope of Tmax). 
The maximum of the spline was taken as the Tmax for each  
configuration. The whole distribution of Tmax thus generated 
for pulse duration d = 10 s was compared to the distribution 
of Tmax for pulse duration d = 20 s. The confidence values for 
refractory period stabilization that we report are the fraction 
of Tmax slopes smaller than 0.5.

Statistical test for period skipping. The test for period skipping 
used here was developed from a related statistical oscillation 
test32. The basic idea is to (i) find the best fit of an enveloping 
sinusoidal function of period T′ > T for each recording, and (ii) 
compare the goodness of the fit to best fits for random reshuf-
flings of the same recording. The fraction of random reshufflings 
that produce better fits than the original recording defines Posc. 
Specifically, for each recording, we calculated Fourier-type coef-
ficients ci(T′) = Σ′tFi(t) ei2πt/T′, where the Σ′t only includes time 
points t beginning with the first odor pulse at least 100 s after 
the beginning of odor pulse 11. As described above, ignoring  
the first 100 s of the main odor responses served as a rough 
way to allow some of the initial transients to dissipate. c(T′) 
was calculated for skipping periods T′ ranging from 0 s to 600 s  
by 1-s increments. The largest possible skipping period 600 s 
was chosen so as to allow at least two full skipping periods to 
fit into most of our recordings. As the best fit, we chose the  
largest |c(T′)|2 peak after the peak at T′ = T. Then, we cre-
ated 103 reshufflings of the original recording by cutting up 
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each recording in intervals of length T beginning with the 
first odor pulse after 100 s after the beginning of pulse 11 and  
permuting them. For each reshuffled recording we computed the  
largest |c(T′)|2, as before. We finally ranked the largest |c(T′)|2 
for the original recording against the reshuffled data to obtain 
Posc. Because there is no noise in the numerical analysis of circuit 
models, and because we were willing to accept false negatives 
(missing period skipping in some NFLs) for faster computations, 
the periodicity test that we applied in our computational search 
of model space was much simpler.

Comparison of thapsigargin to control. To compare responses 
of worms that were treated with thapsigargin versus DMSO-only 

controls, we averaged the traces in each group and normalization 
by the average of the last two prep response pulse peak heights 
for Figure 3h–j. (Normalization by the mean of the last two prep 
response pulses yielded similar results.)

Data availability. The data that support the findings of this 
study are available from the corresponding author upon reason-
able request. A Life Sciences Reporting Summary for this paper  
is available.

Code availability. The code used for computational exploration 
of model circuits is available as Supplementary Software.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. We recorded and analyzed yeast cells and worms about 30 or 15 at a time, 
respectively. We continued repeating experiments with more cells or worms for a 
specific stimulation period and width until the means and standard errors 
appeared sufficiently clear compared to those of neighboring data points visually. 
When we performed our mathematical analyses, the statistics were sufficiently 
unambiguous so that we did not have to go back and record more.

2.   Data exclusions

Describe any data exclusions. We excluded 10% of the worms, which responded worst BEFORE the onset of the 
pulsing experiments. The reasons were responses that fluctuated too strongly or 
low signal-to-noise ratios, both assessed before the main measurement. See 
Methods for details.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

We pooled the results of multiple repeated measurements, i.e., repeated 
measurements of about 30 yeast cells or about 15 worms for each stimulation 
period and width.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Groups were defined solely by genotypes and pulsing patterns (pulse period and 
width).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Unbiased, computational analysis of data.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

Nature Methods: doi:10.1038/nmeth.4408
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Image analysis software previously published and referenced. Code for exploration 
of model space described in detail in Methods section and supplied.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No mammalian cell lines were used. See Methods for yeast strains.

b.  Describe the method of cell line authentication used. No mammalian cell lines were used. See Methods for yeast strains.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Confirm that all cell lines tested negative for mycoplasma contamination OR 
describe the results of the testing for mycoplasma contamination OR declare that 
the cell lines were not tested for mycoplasma contamination OR state that no 
eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Provide a rationale for the use of commonly misidentified cell lines OR state that no 
commonly misidentified cell lines were used.

Nature Methods: doi:10.1038/nmeth.4408
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N2-based CX14887 C. elegans was used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human research participants were used.

Nature Methods: doi:10.1038/nmeth.4408
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Supplementary Figure 1 

Nature Methods: doi:10.1038/nmeth.4408



Examples showing that IFFLs and NFLs can show qualitatively similar responses to linearly ramping, exponentially ramping, or on-

off stimuli; fits to the same experimental data; model circuits under continuous stimulation; and examples of period skipping for 

NFLs. 

A-H: Examples showing that various response characteristics from the literature can appear in both IFFLs and NFLs. Adapted from 

refs.(8,19-23) θ(t) is a step function, which is zero for t < 0 and equal to one for t > 0. The linear ramp tθ(t) is equal to t for t > 0 and 

equal to zero for t < 0. The exponential ramp (ext - 1)×θ(t) is equal to (ext - 1) for t > 0 and equal to zero for t < 0. A, B: Adaptation to 

step inputs and linear ramps; C, D: adaptation to step inputs but failure to adapt to linear ramps; E, F: adaptation to step inputs but 

failure to adapt to exponential ramps; G, H: overshoot below steady-state when the input is turned off (red dashed line, switch S = 1 to 

S = 0 at t = 0). I, J: Fits to the same experimental data: Black: The 15’th response pulses at odor pulse duration d = 10’’ and period T = 

42’’ were taken from our C. elegans recordings, averaged over all worms, and then normalized to the mean of the 9’th and 10’th 

response pulses. Red: We guessed parameters for each model and then fine-tuned them to the data by a steepest-descent algorithm 

minimizing the root mean square deviation (RMSD). K, L: Examples showing the behavior of the circuits in Fig. 1 E, F (same as Fig. 

1 I, J) under continuous stimulation. With long stimulus (S) pulses (blue), the response R is effectively shut off from the stimulus S 

when I exceeds I0 in the model circuits in Fig. 1 E, F (same as Fig. 1 I, J). In the NFL circuit, I can drop below I0 again while the 

stimulus is on, allowing the stimulus S to cause another spike in R, and repeat. However, softening the step inhibition function (here: 

θ(I0 - I)) easily abolishes sustained oscillations (not shown). For the model calculations in Fig. 1 J, we plot Tmax(d) for pulse durations 

d before there is a second response spike elicited by the same stimulus pulse. M, N: Examples of period skipping with 4T-periodic (M, 

one NFL) or more complicated (N, interlocking NFLs) responses to T-periodic stimuli. Peaks are marked by black circles. Periodic 

stimuli are not shown. K-N: Levels of Stimulus, Inhibitor, and Output (color-coded) indicated in arbitrary units as a function of time. 
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Supplementary Figure 2 

Systematic enumeration of 3+1 NFL and 3+1 IFFL circuit topologies for computational analysis. 

Each circuit topology is associated with a set of equations that are indicated. These models were further diversified by replacing I(t), 

R(t), X(t), Z(t) by other functional forms, e.g., I(t) → I(t)/(1 + I(t)/0.1), as specified. To keep the number of combinations 

computationally tractable, the number of replacements had to be limited as specified. The numbers next to the circuit names indicate 

the number of resulting combinations of parameters and functional forms that were evaluated. 
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Supplementary Figure 3 

Systematic enumeration of 4+1 IFFL circuit topologies with an intervening upstream node. 

Also see Supplementary Figure 2. 
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Supplementary Figure 4 

Systematic enumeration of 4+1 IFFL circuit topologies with a node between the stimulus S and the response node R. 

Also see Supplementary Figure 2. 
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Supplementary Figure 5 

Systematic enumeration of 4+1 IFFL circuit topologies with an adapting node Z, which is depressed by the stimulus and which in turn 

depresses the response node R. 

Also see Supplementary Figure 2. 
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Supplementary Figure 6 

Systematic enumeration of 4+1 IFFL circuit topologies with a node between the stimulus S and the inhibitory node I (or the activating 

node X). 

Also see Supplementary Figure 2. 
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Supplementary Figure 7 

Examples of Tmax(d) plots from the computational search. 

Examples of Tmax(d) plots from the computational search summarized in Table 1. A-C: λ is arbitrary. A: An IFFL model with simple 

(non-cooperative) Michaelis-Menten inhibition. B: An NFL model with simple (non-cooperative) Michaelis-Menten inhibition 

showing that Tmax(d) can even have a negative slope. C: An NFL model in which the inhibitor I degrades the response R. 
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Supplementary Figure 8 

Detailed analysis of NFL circuits. 

Detailed analysis of NFL circuits in Fig. 1 F, J showing that Tmax(d) (grey lines) and pulse periods and widths leading to period 

skipping (magenta-green-blue triangles below magenta lines) are close for a variety of model parameters. Thus, a search for Tmax may 

be expected to lead to observing period skipping as well, if it occurs. Grey lines: Tmax(d) plotted with the same shades of grey as in 

Fig. 1 J. Magenta lines: In the triangles between the green, blue, and magenta lines (below the magenta lines), periodic solutions with 

the same period T as the stimulus period are unstable and period skipping is observed. Blue dashed lines: The regions of interest for 

our analysis are to the left of the blue dashed lines in each panel; to the right of the blue dashed lines, each stimulus pulse is so long 

that the circuits respond at least twice to each stimulus pulse (R goes up at least twice), because each stimulus pulse extends beyond 

the time when the circuit recovers from adaptation, i.e., when I drops below I0 again, and can be activated again. This may be a feature 

of these models that is not observed in many biological NFLs and thus we refrain from analyzing the models in this regime. Green 

dashed lines: To the left of the green dashed lines, the pulse durations d are too short (alternatively, the pulse periods T too long) for 

enough inhibitor I to accumulate during each periodic stimulus pulse to block the stimulus pulses at all and thus for the responses to 

show any adaptation; θ(I0 - I) is always equal to 1. To the right of the green dashed lines, the pulse durations d are long enough 

(alternatively, the pulse periods T short enough) for enough inhibitor to accumulate during each stimulus pulse to block the stimulus 

pulses at some point after the onset of each stimulus pulse. For any fixed pulse period T, making the pulse durations d longer than 

specified at the green boundary has the same effect as stimulus pulses with pulse durations at the green boundary because the inhibitor 

cuts the stimulus off (θ(I0 - I) = 0) for pulse durations to the right of the boundary line. 
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Supplementary Figure 9 

Disentangling multiple circuit motifs. 

A: Tmax(d) for a pathway combining an IFFL circuit (through I1) with slower kinetics and an NFL circuit (through I2) with faster 

kinetics, acting in parallel. After the onset of on-off pulsing, the NFL circuit influences the output quickly whereas the IFFL circuit 

affects the output more slowly. So, we measured the running average of the output (= O(d, T)) at different time points 50, 150, ... after 

the onset of the periodic on-off stimulus. For the NFL-only circuit (I2 set to 0, dashed lines), which is presented for comparison, 

Tmax(d) is strongly stabilized and in fact decreases at intermediate d. In the full circuit, as O(d, T) is defined at later time points, Tmax 

stabilization slowly disappears (black→blue→green→cyan). (dI1/dt = S - λ1I1, dI2/dt = R - λ2I2, dR/dt = S/(1 + (I2/I0)
n) - (1 + κI1)R, 

O(t) = R3(t), λ1 = 1/200, λ2 = 2/10, κ = 1/100, n = 1, I0 = 1/10) 

Nature Methods: doi:10.1038/nmeth.4408



 

Supplementary Figure 10 

Processing of C. elegans experimental data and additional pharmacological experiments. 

For details, see Methods. In all experiments, the main odor pulses (here: d = 20’’, T = 42’’) were preceded by 10 preparatory odor 

pulses of duration 10’’ and period 60’’. A: One imaged frame (cropped, of about 20000 total frames per experiment, recorded at 10 

Hz) showing GCaMP fluorescence from the AWA neuron pair of a single worm. FR,i(t) is the average intensity over the area indicated 

by a green square, centered on the AWA neurons, and FBG,i(t) is the median intensity over the region indicated by a red ring. Scale bar: 

100µm. B: FnoBG,i(t) = FR,i(t) - FBG,i(t) plotted for different worms from the same experiment. The red trace is filtered out because the 

baseline moves too much (6.5%) before and after the preparatory odor pulse 10. The orange trace is discarded because the noise-to-

signal ratio (0.11-0.15) is too high. See Methods for more details. C: A piecewise linear function FBL,i(t) (blue) representing the time-

dependent baseline fluorescence is fit through FnoBG,i(t) before each response pulse. D: Plot of Fi(t) = FnoBG,i(t)/FBL,i(t)-1, which is 

corrected for the baseline fluorescence FBL,i(t). E: Fi(t) is plotted for the preparatory pulses and its running average over a time window 

of size T is plotted for the main pulses. The mean of Fi(t) over the preparatory pulses 9 and 10 (= Fnorm,i, area indicated in red divided 

by 120’’) is shown as a horizontal red bar. F: Fi(t) is normalized by Fnorm,i; then, the normalized running average is fit to a straight line 

between 100’’-800’’ after the beginning of the main odor pulses. G: The value of the linear fit at 100’’ after the beginning of the main 

odor pulses represents the output data point Oi(d, T) for worm i at pulse duration d and period T. H, I: Fig. 3 I underlain for 

comparison. H: Same as Fig. 3 E except thapsigargin applied longer (for additional three odor pulse periods). Mean over 13 worms. I: 

Thapsigargin applied but odor stimulus pulses turned off. Thapsigargin presentation in the absence of odor only caused minor and 

brief increases in Ca2+, potentially, by disrupting baseline Ca2+ maintenance. Mean over 14 worms. 
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Supplementary Note 1:

Advantages to oscillatory stimulation approach

Because of the way we defined Tmax, our results automatically extend to an infinite set of variations of

each explicit circuit model we studied (Fig. 1 K). These variations do not change Tmax. Therefore, by

analyzing representative models (Supplementary Figs. 2-6), we studied all related variants (Fig. 1 K):

i) Each model is trivially equivalent to other models by rescaling the variables, which is why we studied

S = 0 or = 1 only. ii) Nodes that merely delay signals anywhere along the signal transduction pathway

do not change Tmax as long as the final inputs Um and Un in Fig. 1 K are simultaneous. iii) Upstream

nodes (from S to Um and Un in Fig. 1 K) that nonlinearly transform the input do not change the on-off

stimulus except for rescaling. Therefore, our scheme is, in principle, robust to nonlinearities upstream

of the adaptation mechanism. iv) Furthermore, repeated input pulses permit us to take advantage of

a simple trick: The time average of the output O(d, T ) is directly proportional to the time average of

further upstream elements in the signal transduction cascade, if the intervening nodes have first-order

kinetics (Ẇi = ki,+Wi−1 − ki,−Wi implies that �Wi� is proportional to �Wi−1�). This means that we

only needed to analyze explicitly circuits whose output passed through nonlinear filters (up to Vp in

Fig. 1 K) and we could neglect further downstream nodes with first-order dynamics. Also, this means

that in practice, the measured output does not need to be deconvolved mathematically to reconstruct

the underlying responses as long as the intervening processes are first-order, for example, folding and

maturation of reporter fluorescent proteins can be ignored44. v) Lastly, in each numerical calculation, we

explicitly modeled the dynamics of O(t) with Michaelis-Menten and Hill coefficients as a function of R(t),

for example, to represent GCaMP Ca2+ binding cooperativity40. The explicitly modeled nonlinearities

could represent multiple successive output nonlinearities, e.g., V1 = R2 and Ȯ = V1/(1 + V1/V0) − λOO

(Fig. 1 K).

Other advantages to using periodic stimuli and measuring the average of the output are that transients

and the dependence on initial conditions disappear in many dynamical systems with repeated pulsing45;

the mathematical description and the analysis of the system simplify, for example, initial conditions

become irrelevant. Also, the time average of the output is less susceptible to random measurement noise

than any particular point in a recording, e.g., the height of a peak.
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Supplementary Note 2:

Mathematical proofs for no period skipping in IFFLs

Feedforward systems

We begin by considering purely feedforward systems (such as the IFFL in Fig. 1 E, I), where the dynamical

elements {x1, . . . , xn} satisfy the property that if xi influences xj, then xj does not influence xi. This

means that the network nodes can be arranged in a sequence x1 → x2 → . . . → xn (potentially by

relabeling) such that no element influences another to its left. In such a dynamical system where ẋi =

fi({x1, . . . , xi}, t), the Jacobian (Jij = ∂fi/∂xj) is lower triangular. We make the following assumptions,

which are appropriate for biochemical systems: i) The diagonal elements of J are negative, specifically, the

degradation rates have strictly positive lower bounds (i.e., ∂fi({x1, . . . , xi}, t)/∂xi ≤ −c2i < 0), because

every species is degraded in a concentration-dependent manner and the degradation rates do not vanish,

at least, when the system is stimulated periodically. Linear degradation terms ∼ −kixi and Michaelis-

Menten terms ∼ −kixi/(1 + xi/xi0) (assuming xi is bounded from above) fulfill this requirement, as well

as Michaelis-Menten terms with Hill coefficients ∼ −kix
n
i /(1 + xn

i /x
n
i0), where n reflects cooperativity

n > 1 and xi is bounded from below, e.g., due to the periodic stimulation. ii) The off-diagonal elements

of J are bounded, i.e., all |Jij| < pmax.

Theorem 1: A feedforward system satisfying these two conditions has a unique periodic solution

with period T (same as stimulus), to which every other solution converges. (For additional technical

conditions, see Theorem 2 in ref.45.)

Proof: By choosing a diagonal matrix P with Pii = 1/pi, we can make the off-diagonal elements

of PJP−1 arbitrarily close to zero, the larger p � pmax is. Then, the matrix measures µ1, µ2, or µ∞,

associated with the L1, L2, or L∞-norms, respectively, of PJP−1 are all approximately equal to the

largest (i.e. least negative) diagonal element. Thus, the system is infinitesimally contracting with a

positive contraction rate, and by theorem 2 in ref.45, all xi(t) are T -periodic.
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Positive feedback loops

The previous theorem pertains to feedforward systems without any closed loops, i.e., no influence of

downstream nodes on upstream nodes. This leaves open the possibility of period skipping in systems

which contain positive feedback loops (PFLs) as well as IFFLs. Such PFLs would have to be entirely

upstream or downstream of any IFFLs in the signal transduction cascade because a connection from the

adapting node or its downstream nodes back upstream of the adapting node would create a NFL. So, we

consider PFLs feeding into an IFFL feeding into another system of PFLs, and we wish to show that the

composite system cannot show period skipping.

A few definitions and previous results are needed. By a system of PFLs (�̇x(t) = �f(�x(t), �u(t))), we

mean specifically that the two inequalities

∂fi
∂xj

(�x, �u) ≥ 0 ∀i �= j and
∂fi
∂uj

(�x, �u) ≥ 0 ∀i, j

hold for all �x and stimuli �u. The former inequality implies that the elements in the system only influence

each other positively, i.e., lead to each other’s increase, and the latter condition that the stimulus �u(t)

influences the elements of the system only positively as well. Systems satisfying the former condition are

‘cooperative’. Thus, by PFLs we not only mean that the dynamic nodes increase each other but also

that the input, e.g., the applied external stimulus, only increases the nodes that it influences directly.

Such systems are ‘monotone’46:

�x(1)(t0) ≥ �x(2)(t0), �u
(1)(t) ≥ �u(2)(t) ∀t ≥ t0 implies �x(1)(t) ≥ �x(2)(t) ∀t ≥ t0 . (1)

(For simplicity, we abbreviate the component-wise inequality xi ≥ yi for all vector components i by

�x ≥ �y.) Monotonicity is a more general condition on dynamics; here, we study the special cases of

cooperative systems (with inputs).

An important result for periodically forced monotone systems �̇x = �f(�x(t), �u(t)) is given as Theorem

5.26 in [Hirsch2005], which credits the unpublished 1997 Ph.D. thesis by I. Tereščák. This result applies

to systems that are irreducible, meaning that all its Jacobian matrices are irreducible (i.e., every variable

can indirectly affect every other variable, possibly through an arbitrary number of intermediates; see also
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[Hirsch 2003]). The result states that �x(t) converges to a solution with period kT , where k ≥ 1 is an

integer, for almost all initial conditions if the stimulus �u(t) is periodic with period T (�u(t) = �u(t+T )). It

is important to note that, generally, there may be stable periodic solutions with period kT and k > 1, as

shown in [Takac 1992]. Thus, we present additional conditions, appropriate for biological systems, which

insure that k = 1. Since the set of initial conditions which lead to non-kT -periodic solutions has measure

zero, we consider those cases negligible for our purposes.

2D positive feedback loops

First, we show that a PFL, which only contains two dynamical elements and which is stimulated with

period T , if it has a solution with period kT , where k is an integer, then k equals 1; thus, period skipping

with k = 2, 3, . . . is not possible. A related result exists in the literature: All 2D periodic irreducible

cooperative systems approach a T -periodic solution [Hale 1983], which excludes chaotic solutions and

noninteger k as well. Regardless, we present the following lemma and corollary because the proofs are

self-contained and build towards the results in the subsequent section, and also because we do not need

to assume irreducibility:

Lemma 1: Consider a 2D dynamical system, driven by an input of period T , (�̇x(t) = �f(�x(t), �u(t))

where �x(t) ∈ R2
+ and �u(t) = �u(t + T )), and suppose that �x(t0) is a periodic point with some period kT ,

where k is a positive integer. Then there is some time t1 so that �x(t1) ≤ �x(t1 + T ) or some time t2 so

that �x(t2) ≥ �x(t2 + T ).

Proof: Suppose without loss of generality that t0 = 0 and that (otherwise we are done, with t1 = 0)

x1(0) > x1(T ) and x2(0) < x2(T ) (if the opposite inequalities hold, the argument is analogous). There is

some integer s > 1 so that x1((s− 1)T ) ≤ x1(sT ) since, otherwise, x1((s− 1)T ) > x1(sT ) for all s, and

therefore x1(0) = x1(kT ) < x1((k − 1)T ) < . . . < x1(0), which is a contradiction.

Now pick any such s and let S = (s − 1)T . Then, the continuous function p(t) := x1(t) − x1(t + T )

has p(0) > 0 and p(S) ≤ 0, so there is some minimal t1 so that p(t1) = 0.

Similarly, consider q(t) := x2(t) − x2(t + T ), which has q(0) < 0, and conclude that there is some

minimal t2 so that q(t2) = 0. Suppose that min{t1, t2} = t1. Then x1(t1) = x1(t1 + T ) and x2(t1) ≤

x2(t1 + T ). If instead min{t1, t2} = t2, then the other inequality holds.

Before proving the following corollary, we introduce the notation F (�x(s)) = �x(s+T ) for the solution to
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the differential equation �̇x(t) = �f(�x(t), �u(t)) at time s+ T starting with initial condition �x(s) at time s.

Furthermore, we denote by F k(�x(s)) = F ◦ . . . ◦ F (�x(s))� �� �
k times

the k-fold mapping of the initial condition

�x(s). Note that F k(�x(s)) = �x(s + kT ), which we prove by induction: For k = 1, it follows from the

definition. Next, assuming that F n(�x(s)) = �x(s + nT ) holds, we define �z(t) = �x(t + nT ) and note

that �̇z(t) = �̇x(t+ nT ) = �f(�x(t+ nT ), �u(t+ nT )) = �f(�z(t), �u(t)), where the last equality follows from the

definition of �z and the periodicity of �u. So, like �x(s) before, we can map �z(s) forward in time by one period

�z(s+T ) = F (�z(s)) = F (F n(�x(s))) = F n+1(�x(s)), and, also, �z(s+T ) = �x(s+nT +T ) = �x(s+(n+1)T ).

Thus, we have F n+1(�x(s)) = �x(s+ (n+ 1)T ).

Using this notation and the monotonicity property, we prove the following:

Corollary: Suppose the system is monotone, in addition to the conditions in Lemma 1, and �x(t) is

periodic with period kT (�x(t) = �x(t+kT )), then �x(t+T ) = �x(t) for all t, i.e., the orbit of �x has period T .

Proof: The mapping F is monotone by assumption (Eq. (1)). We pick the time t1 as in Lemma 1

(the proof would be analogous with t2), so �x(t1) ≤ F (�x(t1). By monotonicity, the inequality is preserved

under repeated mappings, F n(�x(t1)) ≤ F n+1(�x(t1)). So, iterating, �x(t1) ≤ �x(t1 + T ) ≤ �x(t1 + 2T )... ≤

�x(t + kT ) = �x(t), where the last equality comes from the assumption that �x(t) has period kT . Since

�x(t1) = �x(t1 + T ), we have �x(t) = �x(t+ T ) for all times t.

Positive feedback loops stimulated from rest

Next, we consider systems of PFLs �̇x(t) = �f(�x(t), �u(t)) with �x(t) consisting of any finite number of com-

ponents, i.e., not restricted to two as in the previous section. We show that period skipping trajectories

are inaccessible to the system if it is initially at rest before periodic stimulation, even if the PFL system

could exhibit period skipping in principle.

First, we note that a non-negative stimulus always raises the concentrations of the components of a

PFL system relative to the steady state where the stimulus is off: From the monotonicity property in

Eq. (1), we have that �x(1)(t) ≤ �x(2)(t) for all t ≥ 0 if the systems starts from the same initial state �x(0)

and if the inputs satisfy �u(1)(t) ≤ �u(2)(t) for all t ≥ 0 . So, if we compare the steady state (i.e. with input

�u(1)(t) = 0) to the system after the onset of stimulation, i.e., �u(2)(t) is non-negative for all t ≥ 0, and

�x(0) = xss is the steady state, it follows that �xss = �x(1)(t) ≤ �x(2)(t) for all t ≥ 0.

In the following, we imagine that �x is the state of the system after sufficiently many stimulus pulses,

Nature Methods: doi:10.1038/nmeth.4408



starting from �xss initially, such that the solution has converged to a kT -periodic solution (and we show

that k = 1):

Theorem 2: Let F (introduced in the previous section) be a monotone mapping. Suppose that these

properties hold for two fixed states �x and �xss:

(1) �xss ≤ F (�x)

(2) F k(�x) = �x for some integer k ≥ 1

(3) F l(�xss)− F l(�x) → 0 as l → ∞

Then F (�x) = �x.

Proof: Pick an integer n ≥ 0. Then, for any integer r ≥ 1:

F n(�x) = F rk+n(�x) = F rk+n(�x)− F rk+n(�xss) + F rk+n(�xss) ≤ qr + F rk+n+1(�x) = qr + F n+1(�x)

where qr = F rk+n(�x) − F rk+n(�xss) and where we used (2) to obtain F n(�x) = F rk+n(�x), then (1) to get

F rk+n(�xss) ≤ F rk+n(F (�x)) = F rk+n+1(�x) and finally again (2) to get F rk+n+1(�x) = F n+1(�x). Using (3),

qr → 0 as r → ∞, so we conclude that F n(�x) ≤ F n+1(�x) for all n ≥ 0.

Thus,

�x ≤ F (�x) ≤ F 2(�x) ≤ . . . ≤ F k(�x) = �x ,

and therefore F (�x) = �x.

Theorem 2 ensures that, if a system is monotone and the input is periodic with period T , then the

solution when starting from a steady-state cannot approach a periodic orbit of (minimal) period kT ,

where k > 1 is an integer.

Composite PFL → IFFL → PFL systems

Stitching together our mathematical results for purely feedforward systems and PFLs, we see that period

skipping is impossible in a composite S → PFL→ IFFL→ PFL sytem, where S(t) is the applied periodic

on-off stimulus (= �u(t) in the above proofs for the first PFL in the signaling cascade). This leaves period

skipping generically to NFLs. There are, however, two subtleties:

In the first step of the cascade (S → PFL) the above proofs apply exactly but in the subsequent steps

(PFL → IFFL and IFFL → PFL), the input is no longer exactly periodic but converges to a periodic
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function of time. While this may be a concern in general, here it is not: i) For a contractive system such

as the purely feedforward system described above, if the stimulus approaches the periodic stimulus �u(t),

the solution approaches the periodic solution �x(t) for stimulus �u(t). This follows from the main results in

[Desoer 1972] and more generally the theory developed in [Aminzare 2014]. Thus, for the PFL → IFFL

step, our previous result of no-skipping in purely feedforward systems continues to hold. ii) Similarly, for

monotone systems such as the PFLs, the solution approaches the solution �x(t) for the periodic stimulus

�u(t) if the stimulus approaches �u(t). This property is the analogue, for stable periodic orbits instead of

stable steady states, of the “convergent input convergent state property” for monotone systems which

was treated in ref.46. We omit the proof, which is similar. Thus, for the IFFL → PFL step, our result of

no-skipping in 2D or no-access to skipping in general PFL systems continues to hold as well.

Another issue is that in our definition of PFLs, we assumed that the stimulus only influences the

nodes of the PFL positively. While this is a straightforward assumption for the first step in the cascade

(S → PFL), it also has to hold for the way the IFFL feeds the final PFL (IFFL → PFL). If it does not

hold, the system may contain additional adapting circuits and a further break-down into subcircuits is

necessary for the analysis.
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Supplementary Note 3:

Published models

To decide whether any individual adaptation mechanism is an IFFL or NFL, one has to examine whether

the adaptation mechanism is direct (independent of the response R) (IFFL) or indirect (dependent on

the response R) (NFL).

State-dependent inactivation model

The dynamical system in ref.9,

ẋ = α(u(t))(A− x)− β(u(t))x− γx+Δ

Ȧ = −γx+Δ,

where x is the active species and A the sum of the active species x and the inactive species y(= A− x),

can be rewritten in terms of x and y,

ẋ = α(u(t))y − β(u(t))x− γx+Δ

ẏ = β(u(t))x− α(u(t))y.

This transformation just re-expresses the central reactions in the Friedlander-Brenner scheme,

y
α(u(t))−−−−��−−−−
β(u(t))

x
γ−��−
Δ
unavailable ,

in terms of x and y instead of x and the sum A = x+ y.

For perfect adaptation, Δ is chosen to be constant, as in Fig. 2 E-F in ref.9. There is clearly no NFL

in the system, since x and y influence each other positively (assuming that α(u(t)), β(u(t)) > 0, as in

ref.9). The circuit adapts because α(u(t)) turns on x directly (in a y-dependent manner), but reduces y

directly (independently of x) as well, leading to the subsequent decay of x. This is clearly an IFFL, and

it is the same basic mechanism as in the IFFL circuit B in Fig. 1 or IFFL 4 in Supplementary Fig. 2 with

x → R and y → X roughly analogous. This may be a difficult case for recognizing the IFFL topology
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because the depletion of y and build-up of x are linked molecularly in the same process, but that does

not change the basic mechanism of the IFFL circuit, in which α(u(t)) builds up x and depletes y directly

(independently of x), the latter being responsible for adaptation. Of course, our IFFL models do not

have the additional features of the Friedlander-Brenner model such as a positive feedback loop.

We used the model and parameters in Fig. 2 E-F of ref.9 to verify that this model neither shows

periodic skipping nor refractory period stabilization, as expected for an IFFL. To observe the refractory

period, we chose as output nonlinearities O(d, T ) = �x2� or O(d, T ) = �x3�.

In ref.10, the state-dependent inactivation model was presented in a simpler form:

Ȧon = k1Input (1− Aon − Ain)− k2Aon

Ȧin = k2Aon,

where the input converts protein Aoff = (1 − Aon − Ain) into the ‘on’ form of the protein Aon, which is

slowly converted into the inactive form Ain. This system adapts perfectly to a step input. To analyze

the system further, we rewrite the equations in terms of Aon and Aoff instead of Aon and Ain:

Ȧon = k1InputAoff − k2Aon

Ȧoff = −k1InputAoff.

Both sets of equations of course describe the same reactions, only the transformed (latter) set describes

the dynamics of Aon and Aoff, which are central to the adaptation mechanism:

Aoff
Input∗k1−−−−−� Aon

k2−� Ain .

As in the above case of the Friedlander-Brenner model, this system can be identified as an IFFL because

the input increases Aon directly and at the same time decreases Aoff directly (independently of Aon),

which thus decreases Aon again, leading to adaptation. This too may be a difficult case for recognizing

the IFFL topology because the depletion of Aoff and build-up of Aon are linked molecularly in the same

process, but that does not change the basic mechanism of the IFFL circuit, in which the Input builds

up Aon and depletes Aoff directly (independently of Aon), the latter being responsible for adaptation.
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Using the parameters in ref.10 (k1 = 1 and k2 = 1), a constant influx into Aoff to allow recovery (Ȧoff =

1 − k1InputAoff), an input that jumps from 0.01 (off) to 1 (on), and a nonlinearity O(d, T ) = �A3
on� to

observe a refractory period, we could not detect refractory period stabilization or period skipping in this

system either, as in the above Friedlander-Brenner model and as expected for an IFFL.

We also note here for comparison that a simple phosphorylation/dephosphorylation system,

a
Input−−−��−−−

k
b ,

technically an IFFL, does not produce adaptation. Modifications such as the introduction of a third

species as in the Friedlander-Brenner model are necessary to make this an adapting system.

Fold-change detection models

We used the models in Fig. 1 B, C in ref.26, rewritten in terms of dimensionless parameters as in Eqns.

(5) and (6) of ref.26 with model parameters T = 1 and T = 10 for the IFFL model and the NFL model,

respectively, as in Figs. 3 and 4 of ref.26. We found period skipping for the NFL model with pulse

width d = 0.2 and pulse period 5, but neither period skipping nor refractory period stabilization in the

IFFL model. We also switched the parameters (model parameter T = 1 for the NFL model or model

parameter T = 10 for the IFFL model) and found the same results. Since an off stimulus S = 0 is

difficult to implement computationally with these models, we chose S = 0.001 as our off stimulus (and

S = 1 as usual for the on stimuli). To observe the refractory period, we chose as an output nonlinearity

O(d, T ) = �y2�.
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Supplementary Tables

circuit type total # tested # adapting # skipping + # refrac. period stabilization
NFL 1152 391 279 (71%)
IFFL 1152 382 0 (0%)

Table S1:

Refractory period stabilization and period skipping in NFLs do not require step thresholds. We took

the models in Fig. 1 E, F (same as I, J) and replaced θ(I0 − I), which shuts off the stimulus S when the

inhibitor I(t) exceeds the threshold I0 in an all-or-nothing fashion, by 1/(1+(I/I0)
n) where n ∈ {1, 2, 3, 4}

and I0 ∈ {0.01, 0.1, 1, 10} as well as the output function O = R by Ȯ = Rm/(1+ (R/R0)
m)− λOO where

m ∈ {1, 2} and R0 ∈ {0.1, 1, 10,∞} or m = 3 and R0 = ∞. λO is irrelevant for Tmax. We varied

λ ∈ {0.01, 0.02, 0.03, 0.1, 0.2, 0.3, 1.0, 10}. Overall, we varied parameters over 3 orders of magnitude, and

read out 9 different variations of the output function. For details, see Methods.
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