
Information Processing Letters 20 (1985) 115-120 8 April 1985 
North-Holland 

REAL ADDITION AND THE POLYNOMIAL HIERARCHY 

Eduardo D. SONTAG * 

Department of Mathematics, Rutgers University, Hill Center, Busch Campus, New Brunswick, NJ 08903, U.S.A. 

Communicated by David Gries 
Received 19 July 1984 
Revised 15 September 1984 

The kth alternation level of the theory of real numbers under addition and order is log-complete for the kth level of the 
polynomial hierarchy. 

Keywords: Computational complexity, non-numerical mathematics 

1. Introduction 

There has been some interest in the literature 
on decision methods for Th(R, +,  <), the theory 
of real numbers with addition (and order). See, for 
instance, [6], [3], and [2], as well as [4] and [1] in 
the more general context of reals with multiplica- 
tion. This theory is of interest also from the point 
of view of piecewise linear algebra and its poten- 
tial applications in control system theory [9,10]. If 
n is the length of a formula in the language L 
associated to this theory, it is known that the 
decision problem has deterministic time complex- 
ity at least exponential and at most doubly ex- 
ponential. Here we remark that the kth level of 
this problem (i.e., deciding the truth of a sentence 
given in prenex form with k - 1 quantifier alterna- 
tions) is complete for E p. In particular, the satisfi- 
ability problem (k---1) is NP-complete, and for 
each f ixed level k we have a deterministic single 
exponential time bound. 

The proof proceeds roughly as follows. In the 
next section we establish some facts on polyhedra, 
in particular, that a nonempty polyhedron defined 
by equations with 'small' coefficients must contain 
'small' points, and, more importantly, that every 
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projection of such a polyhedron can also be de- 
fined by equations with small coefficients. This 
gives rise to a theoretical procedure for quantifier 
elimination in the last section. The procedure re- 
suits in exponentially large formulas, but the 
lengths of the numbers appearing in these for- 
mulas remain small, so an alternating algorithm 
can be deduced which only checks rational points 
of size polynomial in the size of the input data 

2. Some polyhedral geometry 

We need a few facts regarding the geometry of 
polyhedra. We use [8] and [7] as our main refer- 
ences, but much of the terminology is standard. A 
flat in R a is an affine submanifold (= translate of 
a subspace) of R d. A polyhedron P c_ R a is by 
definition an intersection of finitely many hyper- 
planes and closed half spaces, 

a l x  1 + - . .  + adX d ~< a 0. (2 .1)  

(It is of course redundant to include hyperplanes 
explicitly.) The affine hull of P is aff(P) = smallest 
flat containing P. The relative interior ri(P) is the 
interior of P relative to aff(P); its dimension is the 
dimension of aff(P). A line-free polyhedron is one 
that does not contain any lines ( -- one-dimensional 
flats). If P is the intersection of the hyperplanes 
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Ha,. . . ,  Hr and the half spaces K 1 , . . . ,  K s, and if 
H r + l , . . . , H r +  s are the bounding hyperplanes of 
the K i (obtained by replacing ~< by = in (2.1)), 
we call F := {H1,.. . ,  Hr+s} a supporting family (of 
hyperplanes) for P. Let ( K] , . . . ,Ku} ,  u~<s, be 
the set of those half spaces among the above for 
which P is in fact included in the corresponding 
Hr+ i. If we replace K i by the corresponding Hr+i,  
for i = 1 . . . .  , u, we obtain a ne%representation as 
an intersection, giving rise to the same supporting 
family, but with the property that ri(P) and aff(P) 
can be represented as follows: 

aff(P) = intersection of the {H i, i = 1, . . .  ,r + u}, 

(2.2) 

ri(P) = aff(P) intersected with the open 

halfspaces int(Ki) ,  i =  u + 1 . . . .  ,s. (2.3) 

A vertex (or extreme point) of the polyhedron P 
is a point not in the relative interior of any seg- 
ment contained in P; equivalently [7, result 2.6.3], 
a zero-dimensional face of P. If F as above is a 
supporting family for P and v is a vertex of P, then 
v is the intersection of those H i containing it; thus, 
by a trivial dimensionality argument, v is the inter- 
section of precisely d such hyperplanes. The 
Minkovski-Weil theorem [8, Theorem 2.12l says 
that P is a polyhedron iff it is generated by finitely 
many points and rays. More precisely, there exist 
two sets of points V =  {V],...,Vr} and D =  
(Ya . . . .  , Ys } such that 

P = conv(V; D)---- { E k i V i  "at- £ ~ j y j ,  £ ) k i =  1, 

all )k i >i 0, ~j ~ 0 ) .  (2.4) 

We call V U D an extreme family for P. With such 
a representation, ri(P) is the set of points as in 
(2.4) but such that all k i and lSj are strictly 
positive. Appropriate sets V and D can be ob- 
tained as follows. First write P as the union of 
finitely many line-free polyhedra Pi; this can be 
done, for instance, through intersection with 
the various orthants of R d. Each such Pi = 
conv(Vi; Di)  , where V i is the set of vertices of Pi 
and D i is a set of representatives for the directions 
of recession of Pi- A direction of recession (or 
vertex at infinity) is a ray R + y; where y is a vector 

in R d such that, for some v 0 ~ P, the line v 0 + R + y 
= (v0 + ~y, ~ > 0} is a one-dimensional face of P. 
If y is of this form and F i is a supporting family 
for Pi, then there are d -  1 hyperplanes in 1" i, 
having equations Ejqijxj = b i ,  i - 1 , . . . , d - 1 ,  
which intersect precisely at a line containing v 0 + 
R+y. Thus EjqijYj = 0  for each i. These d - 1  
equations determine R + y uniquely except for sign. 
The sets V, D can be obtained now as the union of 
the V i and Di respectively. Note that one can 
always obtain rational Yi, and that the x i are 
necessarily rational, if P admits a supporting family 
with rational-coefficient equations. Rationality will 
be implicitly assumed in all that follows. 

Denote by # ( q )  the length of the rational q: if 
q = a / b  with a, b relatively prime, then # ( q )  is 
the sum of the number of bits in the binary 
representations of a and b (disregarding signs). If 
v ~ R d, then #(v)  denotes the sum of the lengths 
of the entries of v. If H is a hyperplane (definable 
by rational equations), consider the possible equa- 
tions 

qlXa + " '" +qdXd ----- q0 (2.5) 

for H. For any such equation, we sum the lengths 
of the rationals q i- We denote the smallest such 
possible sum, over all representations of H, by 
#(H) .  If F is a finite family (Hi ,  i = 1, . . . ,k} of 
hyperplanes, we let 

# ( r )  = max{ # H i ,  i =  1 . . . .  ,k}.  

If V u D is an extreme family for P, we write 

# ( V U  D):= 

max{ # (v i )  , # (y j ) ,  i = 1 , . . . , r , j  = 1 , . . . , s} .  

The main point of the following series of lemmas 
is that these dual kinds of representations (extreme 
family, supporting family) are equivalent in a 
polynomial-space sense. 

Lemma 2.1. There is a polynomial Pl such that for 
every polyhedron P c R d and each supporting family 
F for P, there is an extreme family V U D for P 
such that 

# ( V  u D) ,< p a ( d ) #  ( r ) .  
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Proof. Without loss (see above construction) we 
may assume that P is line-free; notice that # ( F )  
does not increase when adding constraints for 
intersections with orthants (x~ >~ 0, x2 ~< 0 . . . .  ). Let 
v be any vertex of P. As remarked above, v is the 
intersection of d elements of F, say H ~ , . . . , H  d. 
Let A and b be the following matrix and vector 
respectively: 

A := 

q l l  

qdl  

qld ) ,  

qdd 

b ..= 

qlo 

qd0 

(2.6) 

obtained from a representation of the hyperplanes 
in F that achieves # ( F ) ,  with H i having equa- 
tions 

qi lXl  + " " " 4- qidXd ----- qi0- 

Thus v is the solution of the system Ax = b. In 
general, let # ( C )  be the sum of the #(cij ), for any 
matrix C; here, the composite matrix (A, b) has 
# (A ,  b) ~< (d 2 + d ) # ( F ) .  For any d × d matrix C, 
#(det(C))  is bounded by a polynomial in d and 
#(C) :  this follows by Hadamard 's  inequality; in 
fact, the following very nice bound is given in [5]: 

# (det(C)) ..< (d2 + 2 ) #  (C) + ½(d log d). (2.7) 

By Cramer's rule, the coordinates v i are quotients 
of determinants of submatrices of (A, b). So #(v)  
~< 5d4#(F) .  To obtain directions of recession the 
argument is similar: we must find small vectors y 
in any one-dimensional intersection L of d -  1 
hyperplanes Y'.jqijxj = 0, i = 1 , . . . ,  d - 1 (see dis- 
cussion preceding the statement of the lemma). 
But this can be reduced to finding the unique 
solution of a nonsingular system of d equations, as 
follows. Introduce A, b as in (2.6) (but with d - 1 
rows). Since rank A = d -  1, some row vector of 
the form (0 , . . . ,  0, 1, 0 , . . . ,  0) can be adjoined to A 
in order to obtain a matrix A' of full rank. Adjoin- 
ing the entry qd0 ---- 0 to b, there results a nonsin- 
gular system A'x = b'. Let z be the unique solution 
of this system. Then, z has a small size (same 
argument as above), and either y-----z or - z  has 
the property that R+ y = L and can hence be used 
to represent the direction of recession L. [] 

Lemma 2.2. There is a polynomial P2 such that for 
every nonempty polyhedron P c R d and each ex- 
treme family V U D for P there is a point z in ri(P) 
such that # (z) ~< P2 (d) # (V U D). 

Proof. Assume that P has dimension e ~< d. Thus 
there are e + 1 affinely independent dements in 
V U D ,  say Vl , . . . ,v  r, Yr+l,'.-,Ye+l- Let o be the 
(generalized) simplex 

o '= c o n v ( { v l , .  • . , v r )  ; {Yr+l,-  • • , Y e + l ) ) .  

Thus dim o = e, so ri(t~) c ri(P). Pick now the point 

z : = ( 1 / r ) ( v l +  " ' "  + V r ) + Y r + l +  " ' "  +Ye+l"  

Then z ~ ri(o), and # (z )  ~< 6d3#(V U D). [] 

Coronary 2.3. There is a polynomial Pa such that for 
every nonempty polyhedron P c_ R d and each sup- 
porting family F for P there is a point z in ri(P) 
such that 

#(z) ~< pa(d)#(F). 

Proof. The proof clearly follows from the two 
previous lemmas, taking P3 --'~ PIP2. [] 

Lemma 2.4. There is a polynomial P4 such that for 
every polyhedron P ~ R d and each extreme family 
V U D for P there is a supporting family F for P 
such that 

# ( r )  ~ p , ( d ) #  ( v  u D).  

Proof. We claim first that it is sufficient to con- 
sider the case in which P contains the origin 0. 
Indeed, assume that case is established, and pick 
an arbitrary P. If P is empty, the problem is trivial, 
so assume P is nonempty. Thus, by Lemma 2.2 
there is a z with small size in P. Translating 
coordinates x --* x - z, P is transformed into a 
polyhedron P0 containing 0, and P0 = conv(Vo ; D), 
with V 0 corresponding to translates by z. So V 0 u D 
increases at most polynomially from V u D. If the 
family F 0 obtained for P0 is small, a new transla- 
tion of coordinates x --* x + z results in a family F 
for P with # ( F )  again small. Thus we may assume 
that P contains 0. 

Let P°_cR d be the polar of P. This is the 
polyhedron consisting of all the vectors q = 
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(ql ,--- ,  qd)' such that 

q'v i~<l and q'yj~<0 

for all v i in V and all yj in D (prime indicates 
transpose). Thus p0 admits the supporting family 
F ° consisting of all hyperplanes v;x = 1 and y;x = 
0; this family has # ( F  ° ) ~ < # ( V L ) D ) + I .  By 
Lemma 2.1 applied to p0 there is an extreme 
family V ° u D O for pO with # ( V  ° U D °) small. 
Since P is a closed convex set and contains the 
origin, it is reflexive in the sense that (p0)0 = p [8]. 
Again applying the above argument, the extreme 
family V ° U  D O gives rise to a small length sup- 
port family F = (F°)  °, as desired. [] 

Corollary 2.5. There is a polynomial P5 such that 
for every polyhedron P c Rd, each projection 
"n(Xl,. . . ,Xd)= (Xl,. . . ,Xe), e < d, and each sup- 
porting family F for P, P1 := or(P) is a polyhedron 
admitting a supporting family F 1 such that 

# ( r , )  ~< p s ( d ) # ( r ) .  

Proof. By Lemma 2.1 there exists an extreme 
family V u D with # ( V  u D) ~< p~(d)#(F) .  Let 
V 1 ..= or(V), D 1 ~= or(D). Thus P1 = cony(V1 ; D1) 
and #(V~ u D1) ~< # ( V  w D). By Lemma 2.4 ap- 
plied to P~ with extreme family $1 U D 1 there is a 
supporting family r I as  desired, with P5 := PiP4- 
[] 

3. Complexity results 

We consider prenex-form formulas 

= Q i x i . . . Q i x i F ( X l  . . . . .  x d) (3.1) 

formed by propositional combinations of terms 'r 
of the form 

qlxl  + "'" +qrX~ O q0, (3.2) 

where p is one of the relational symbols < ,  ~<, 
= ,  and #: ; the q i are rational constants, repre- 
sented as quotients of integers written in binary, 
and the variables x i are those in the list x 1, x01,... 
with binary subscripts. Let L be the set of closed 
such formulas for which there exist real values for 
the variables in ~ such that • is a true sentence, 
when the rational and relational symbols, and + ,  
are interpreted over the reals. 

Let x~ . . . . .  x d be all the variables appearing in 
F. Without loss of generality we assume that these 
are the first d variables in the language. We shall 
assume that all terms "r in F are as in (3.2) but 
with r = d, adding zero coefficients qi if necessary; 
padding equations of F with zeroes at most squares 
its length. 

The kth level L k of L is formed from all for- 
mulas • in L beginning with an existential quanti- 
fier and having k - 1 alternations (thus, L 0 corre- 
sponds to the quantifier-free formulas); more pre- 
cisely, a formula tI, of L is in L k if there is 
grouping of its variables x l , . . . ,  x d into subsets 

{ x ,  . . . .  , x i , } ,  z2---- 

• . . , z k  = } 

such that ~ has the form 

3ZlVZ2... QkZkF, (3.3) 

where 3z 1 stands for the group of quantifications 
::IX1... :lXil , etc., and Qk is existential if k is odd 
and universal if k is even. Let L~, denote the 
corresponding ,rr-hierarchy, obtained from for- 
mulas that start with universal quantification; we 
phrase results in terms of Lk, but the analogous 
ones apply to L~. 

We denote quantification over finite ranges by 
3az and Vaz, meaning that, for each variable in 
the group z = {x l , . . . ,x j} ,  only (rational) values 
with # ( x  i ) <  a are considered in checking truth 
over R. Let 2~ be the kth level set of the poly- 
nomial hierarchy [11]. Thus, for any fixed k, L k is 
in 2P if and only if there exists a polynomial p(n) 
such that a formula • as in (3.3) is in Lk iff 

3 p(U* I)zl,. "Q~t* I)Zk F 

is true. Here, I O] denotes the length of ~.  The 
main result is as follows. 

Theorem 3.1. L k is in E p. 

Before proving the theorem, we establish a cou- 
ple of technical results. To each term (3.2) in 
formula ~ (with r = d = number  of variables) we 
associate the hyperplane H in R d obtained when p 
is replaced by equality, if this is a nontrivial hyper- 
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plane. Let F = F(~)  be the set of hyperplanes of  
c}. We denote # ( ~ ) =  #(I ' ) .  Of course, # ( ~ )  
< [ ~  [. If c} = tb(z) is a formula as above, with free 
variables z = (xl , . . .  ,x:},  we let 

S (~) ,=  (z ~ R z s.t. tb(z) is true}. 

We first establish the case k = 0 of the theorem, 
i.e., that L~ is in NP. 

of all the hyperplanes (Or i = ai) and (13j = bj) is a 
supporting family for P and 

:~(F) ~< #(dp). (3.6) 

This last inequality is due to the fact that all these 
hyperplanes arise from terms in the original for- 
mula F, i.e., F G F(~). By Corollary 2.3, Q--and 
hence 5:(F)--contains a point z as desired. [] 

Lemma 3.2. There exists a polynomial ql such that, 
i f  F is quantifier-free, with variables z = {xa,..., 
x d }, then F is satisfiable, i.e., dp = 3zF(z) holds, if  
and only if  3q1(d)~:(F)zF(z) holds. 

Proof. Let ql be the polynomial P3 obtained in 
Corollary 2.3. We consider the extended form F * 
of F obtained by the following procedure. First 
bring F to disjunctive normal form. Then replace 
each negation by the corresponding positive term, 
e.g., 

< c) ( - s . <  - c ) ,  

c) (s = c). 

Next replace the ~< and 4= signs: 

(s.< c)-* (s < c) v ( s = c ) ,  

( s .  c) - .  (s < c) v ( - s  < - c ) ,  

and bring the expression again into DNF; this is 
FL Thus, F ~ is a disjunction of formulas G of type 

(oq = a , ) A  .--A(~xs=as) 
A(I3, < b , ) A  . . -  A([3t<bt).  (3.4) 

The above construction is such that 5a(F) = 5:(F¢). 
Further, this set is the union of the sets 5:(G) 
corresponding to the formulas G appearing in 
(3.4) above. If F is satisfiable, then at least one 
such G is satisfiable. Assume then that Q = 5:(G) 
is nonempty, for some G. Consider the polyhedron 
P =Sa(G ') corresponding to the non-strict for- 
mula G': 

(oq = a x ) A  " ' "  A(Ots= as) 

A(~a ~<bl)A ' ' '  A(13t~bt) .  (3.5) 

Since Q is nonempty, Q--ri(P). Further, and this 
is the critical observation, the family F consisting 

Lemma 3.3. There exists a polynomial q2 such that, 
for any r~ = 3uF(z, u) with free variables z = 
{ x l , . . . , x , }  and with bound variables u = 
( X e +  1 . . . .  , x d }, there is a quantifier-free formula 
W(z) such that 5 # ( ¢ ) = 5 a ( ~ )  and #(¢~)<~ 

q2(d)#(~) .  

Proof. Let q 2 be the polynomial P5 from Corollary 
2.5. Consider again the expanded form F e of F. 
Note that, with the notations of Corollary 2.5, 
5 : (~ )  = ¢r(Sa(F))= ~r(Sa(Fe)). Since 5a(F e) is the 
union of the S(G) in the proof of Lernma 3.2, it is 
enough to consider the projections of such sets: if 
quantifier-free formulas qG are found with 5"(g,o) 
=5#(G) for each of these such that # (q 'G)<  
q2(d)#(G)~< q2(d)#(~) ,  the disjunction xI, of 
such ff'G will be as desired. So consider any G. 
Without loss of generality, Q----Sa(G) is non- 
empty. Again with the notations of the previous 
proof, consider G' and P-.=5"(G'), so that Q = 
ri(P). Let P1 be the projection ,rr(P) and Q1 = ~r(Q); 
thus Q1 = ri(P1). Let F = F(G') be the set of hy- 
perplanes of formula G'. By Corollary 2.5, applied 
to P and I', P1 can be written as an intersection of 
halfspaces and hyperplanes giving rise to a sup- 
porting family F 1 with #(F1) ~< q2(d)#(F).  Thus, 
P1 =Sa(xlq), where xI, 1 is some formula as in (3.5) 
whose hyperplanes are in F'. We need then a 
formula ,I, such that 5a(ff,)= d(p1). By (2.3), g' 
can be obtained from xI" 1 through changing some 
of the inequalities ~< to equalities and others to 
strict inequalities. This preserves the hyperplanes, 
and hence # O t ' ) =  #(F1). [] 

Proof of Theorem 3.1. We may now prove the 
theorem, by induction on the number k of alterna- 
tions. Specifically, we shall prove by induction 
that all formulas ~ in L k (and L~) can be decided 

119 



Volume 20, Number 3 INFORMATION PROCESSING LETlrERS 8 April 1985 

by checking points  whose coordinates  have length 
less than  Pk(d)#( t I ) ) ,  where 

p k ( d )  := ( 8 q l ( d ) q 2 ( d ) k - 1 )  k. 

N o t e  that  the case k -- 1 follows f rom L e m m a  3.2. 
Since # ( ¢ ) <  n .'= 14[, it will then follow that  
p(n)  = n p k ( n  ) satisfies the requirements .  

Let  then  • be as in (3.3) ( the case of or-formulas 
is analogous) .  Using L e m m a  3.3 repeatedly,  we 
el iminate  k - 1 quantifiers,  s tart ing with Qk- Thus, 
there exists a quantifier-free formula  ~(Zl )  such 
that  

6a (Vz2 . . .  QkZkF(Z,  . . . .  ,Zk))  = ~ ( ' ~ ' ) ,  

and  # ( q )  ~< q 2 ( d ) k - l # ( ~ ) .  It follows f rom 
L e m m a  3.2 that • is true iff B xZlq(Zl)  holds,  
where X =  q l ( d ) q z ( d ) k - l # ( ~ ) .  For  any fixed 
wi th  # (~)~< X, consider  the formula  

~ := V Z 2 . . . Q k Z k F ( ~ ,  Z2 . . . .  ,Zk) -  

Bk, with variables x l , . . . , x  d, replace each occur- 
rence of x i by the term (x i = 1) and  each occur- 
rence of  its nega t ion  (~x i )  by the term (x i = 0), for 
each i = 1 , . . . , d .  A d d i n g  the conjuncts  (xi = 0 ) v  
(xi = 1) for all i, such a fo rmula  is log-space re- 
duced  to a formula  in Lk, preserving truth.  F r o m  
this, the above theorem,  and the comple teness  of 
B k (~ 3 D N F  or Bk N 3 C N F  (see, e.g., [11]) we have 
the following. 

Corollary 3.4. L k is log-complete in Y.[. 
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