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A polynomially parametrized family of continuous-time 
controllable linear systems is always stabilizable by polynomi- 

ally parametrized feedback. 
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1. Results 

Theorem 1. Let (A,, B,) be a pair of matrices, all 
whose entries are real polynomial functions of the 
parameter X E R’. Assume that A, is n x n, B, is 
n x m, and that the pair (A,, Bh) is controllable for 
each X E R’. Then, there exists an m x n matrix K, 
whose entries are also real polynomials in A, such 
that, for every X, each eigenvalue of the matrix 
A + BK has a negative real part. 

This result will be a consequence of the follow- 
ing much more general fact. 

Theorem 2. Let n, m be integers, and A = (aij), 
B = ( bjj) two matrices of distinct indeterminates, of 
sizes n X n and n X m respectively. Then there exist: 

* an m X n matrix K(A, B, y) of realpolynomi- 
als in the aij, b,,, and other variable y, and 

* (scalar)polynomialsp(A, B, y) ands( A, B, y) 
in the variables aij, b,,, and y, 
such that (a) when the variables aij, bij take values 
making (A, B) controllable, p( A, B, y) is nonzero, 
for every real y, and (b) for any such values of the 
aij, b,,, and for each y, the matrix A + B(qK) has 
all eigenvalues with real part less than - y whenever 
q is a (real) number such that pq > s. 

We first indicate why Theorem 1 follows from 
Theorem 2. Let (A,, B,) be any polynomially 
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parametrized family. Pick y := 0 and choose K, p, 
s, as in Theorem 2. Substituting the expressions of 
the a,,, bij as polynomials in X into the entries of 
K, p, s, we may assume that these are also poly- 
nomials in X. By (a), p(X) has no real zeroes. It 
follows by the arguments on real algebraic geome- 
try in [3] that there is a polynomial function q(X) 
such that pq > s for all X. Thus qK is a polynomi- 
ally parametrized stabilizing feedback. The same 
argument, specializing y at nonzero values, gives 
stabilization with arbitrary convergence rates, a 
property which is in turn equivalent to the as- 
sumed pointwise controllability. Note that, if p 
would happen to be bounded below by a positive 
real number and if s is bounded above, then the 
desired q could in fact be chosen to be a constant. 
This will not hold in general, but coincidentally, 
happens to be true for the most interesting exam- 
ple in the literature of polynomial families of 
systems, as will be discussed in Section 3. 

The proof of Theorem 2 is extremely simple, 
once that one is aware of a stabilization method, 
for (single, not families of) linear systems, due to 
Bass [l], and apparently never published. (An ex- 
position of this method is given, however, in the 
textbook [16].) We shall give this argument in 
Section 2, but first will discuss the relation be- 
tween the results here and those in previous works. 

There has been a large number of papers on 
questions related to the stabilizability of parame- 
trized families of systems, both continuous and 
discrete time. See for instance [2,3,5-13,17,18] and 
the references there. Many of these papers provide 
results for stabilization of continuous, rational, 
differentiable, or analytic families, by feedback 
laws with the same degree of smoothness. Theorem 
2 (in essence due to Bass) gives a very simple proof 
in all the above cases - just take for instance 
q := (s + 1)/p - if one is interested onIy in stabiliza- 
bility (with arbitrary convergence rates). Note how- 
ever that, in many of the above works one ob- 
taines, much more interestingly, either a pole-shift- 
ing result or (see below) an ‘almost pole-shifting’ 
property. Such stronger results are often of more 
relevance in control design. Further, the proof 
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does not generalize in any obvious way to the 
discrete-time case (at least if A is singular), so 
methods like those in [9,12] may be still needed in 
the latter. In connection with the results in [lo] 
and others, note also that we do not need to 
assume here that the given systems are ‘ring re- 
achable’, i.e., that controllability holds as well for 
complex values of X. 

In a recent note [3] we established a result on 
stabilization of scalar (m = 1) polynomial families. 
The proof given there is totally different from the 
one here, and establishes a much more precise 
result than the stated one of stabilization with 
arbitrary convergence rates. Indeed, it actually 
shows that, for any set S of n - 1 complex num- 
bers (counting multiplicities) which is symmetric 
with respect to the real axis, for each E > 0, and for 
every negative real number p, there is a poly- 
nomial feedback such that each A, + B,Kh has 
eigenvalues placed as follows: one is real, less than 
p, and the remaining n - 1, are, with the same 
multiplicities, at distance < E from corresponding 
elements of S. In other words, one can (approxi- 
mately) place n - 1 eigenvalues arbitrarily and 
another one at -co. This result, proved for the 
scalar case in [3], will be shown in Section 3 to be 
false in ,the nonscalar case. In fact, we shall give an 
example where not even continuous approximate 
pole-shifting (in this sense) is possible. Then, we 
shall work out in detail the polynomial (and the 
more straightforward continuous, in fact, rational) 
stabilizers predicted by Theorems 1 and 2 for this 
example. (A generalization of the result in [3] to 
the nonscalar case, using dynamic feedback, is 
possible, however.) In Section 4, we provide, as a 
corollary to the main result, an input/output sta- 
bilization theorem. 

We refer the reader to the above references for 
motivations regarding the study of parametrized 
families of systems. Let us only add a reference to 
[15], which obtains families of linear systems as 
linearizations of nonlinear systems about different 
operating points, with polynomial families appear- 
ing in the case of systems with finite Volterra 
series expansions. 

2. Proof of Theorem 2 

Let A, B be matrices of indeterminates as in the 
statement of the theorem, and let y be another 
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indeterminate. Let S be the ring of (real) poly- 
nomials in the a,,, the b,,, and y. Pick any poly- 
nomial w( A, y) such that A + wl has all its eigen 
values with real part larger than 0 and such that 
w > y, for every possible value of y and of the a,,. 
Such a choice is always possible: for instance, the 
spectral radius of A is bounded above by any 
matrix norm of A, and the Euclidean-induced norm 
of A is in turn bounded by the square root of %T,; 
so all eigenvalues of A are in magnitude less than, 
say, 

u := 1 +Xa,2,. (2.1) 

Thus A + uZ has all eigenvalues with positive 
real part; now pick 

w := u + y2. (2.2) 

This insures that A + WZ has all eigenvalues as 
wanted. Alternatively, one may choose u := n + 

-w, where the (Y; denote the coefficients of the 
characteristic polynomial of A. (Because all eigen- 
values of A are less than max [l, E]a, I] < u in 
magnitude.) 

Consider the (Lyapunov) linear operator 

2 yxn -+ p-, 

P’(X):=(A+wZ)X+X(A+wZ)‘. 
(2.3) 

(Prime indicates transpose.) Let s(A, y) be the 
determinant of oE4 Note that, for each specializa- 
tion of the a,, and y, 2 is invertible (since A + wZ 
has no purely imaginary eigenvalues), and in par- 
ticular s is a polynomial with no real zeroes. Let JI’ 
be the ‘cofactor’ transformation 

& snxn --) snxn 
(2.4) 

such that M* %Y= sZ,+ Now let X := JY( BB’). 
This is a polynomial matrix (over S). Moreover, 
from the pointwise invertibility of pit follows that 
X is a symmetric matrix. Let 2 be the cofactor 
matrix of X, this is again a symmetric matrix of 
polynomials. We may now define the desired K as 

K:= -B’Z. 

Finally, let 

p := 2 det( X). 

(2.5) 

(2.6) 

Assume the variables in A, B are specialized at 
values making the pair (A, B) controllable and let 
y take any real value. Since -(A + wZ) is stable 
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and (-A - wl, B) is again controllable, it follows 
from Lemmas 12.1 and 12.2 in [19] that the unique 
solution Y of 

by the pair 

(A+wZ)Y+Y(A+wZ)‘=BB’ (2.7) 

is positive definite, and in particular invertible. 
Now, SY = X, and s is always nonzero, so it fol- 
lows that X itself is invertible when evaluated at 
such (A, B, y). Sop is not zero, as required for the 
first conclusion of the theorem. Now assume that q 
is such that pq > s. Then 

A=(-; ;), B=(yx .yx)y (3-l) 

(A+wZ+qBK)X+X(A+wZ+qBK)’ 

= (s -pq)BB’. (2.8) 

Since s -pq < 0, the matrix in the right of (2.8) 
can be written as - DD’, where D is a scalar 
multiple of B. (Of course, D is not a polynomial 
matrix anymore, but we are now arguing point- 
wise.) It follows that the pair 

(A+wI+gBK,D) 

where z := 1 - x2 - y2. This pair is controllable for 
all real (and even all complex!) x, y (see [2]), and it 
is impossible to solve the pole-assignment problem 
for it. Moreover, and this is very important in 
connection with the construction in [3], it it impos- 
sible to even obtain approximate pole locations for 
this example. Indeed, assume that it would be 
possible, for even a single pair A, p with X < 0 and 
p < 2X, to have a feedback matrix K, even con- 
tinuous on x, y, with the property that, for all x, y 
the two eigenvalues of A + BK are one at a dis- 
tance less than, say, E = +A from A, and the other 
being less than p. Since the eigenvalues remain 
separated, the eigenvalue X(x, y) close to X would 
depend continuously on x, y. Thus, 

is controllable, so again using the lemmas in [19] 
we conclude that (A + qBK) + wl is stable. Thus 
A + qBK has all eigenvalues with real part less 
than - w, hence less than -y, as desired. 

D:=A+BK+X(x,y)Z (3.2) 

is a continuous matrix function having a one-di- 
mensional kernel for each x, y. It follows that 
ker D defines a line bundle over R2. Let v(x, y) be 
a section of this bundle, always nonzero. Then, 

Remark 2.9. If only rational stabilization is de- 
sired, one may take the inverses of Y and X 
instead of the respective cofactor matrices, as well 
as s = q = 1 and p = 2. Together with the choice 

v := n + 2crf 

discussed above, this results in an equivariunt 
feedback law, in the sense of [9]: if T E GL(n), 
then 

B(Kv)=(XZ-A)v (3.3) 

for all x, y. Since X(x, y) can never be an eigen- 
value of A, it follows that B( Ku) is a linear 
combination, with continuous coefficients, of the 
columns of B, which is always nonzero. But the 
topological degree argument in [2] shows that such 
combinations cannot exist. We conclude that ei- 
genvalues cannot be placed as wanted. Thus the 
‘almost’ pole-assignment result in [3], given there 
for single-input systems, cannot be generalized 
(with static feedback) to the non-scalar case. 

K( T-‘AT, T-‘B) = K( A, B)T. 

This construction will be useful in Section 4. 

3. An example 

It becomes then of interest to carry out the 
calculations for this example to obtain a stabiliz- 
ing feedback, and to understand why the line-bun- 
dle argument does not apply when only stabiliza- 
bility is required. One should expect complex poles 
and/or double roots when applying Theorems 1 
and 2. 

One of the most interesting examples regarding we have carried out the necessary computa- 
stabilization of families of systems is the one given tions, using the REDUCE symbolic manipulation 
in [2]; see discussions on this example in [7], and system as well as double-precision FORTRAN under 
related material in [17,18]. We use here a trivial TOPS-20. Results are displayed in the appendixes. 
variation of it, which simplifies calculations and First we tried a straightforward application of 
illustrates the same points. With r = 2, and using Theorem 2, using rational feedback. With the no- 
‘x, y ’ instead of A,, A,, the famiIy is the one given tations in the proof, we may choose w = 1 (con- 
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stant). The determinant of 3 is here a constant: 
s = 32. We may take 

q:= s/det X= 2s/p. 

The polynomial case is even more interesting. 
We need to find a polynomial q(x, y) such that 
pq > s for all x, y. Consider the polynomial p( x, y). 
Calculating, p = 64d, where 

Then, pq = 2s > s, as desired. The resulting feed- 
back matrix (kij) (i.e., qK, in the notations used 
earlier) is displayed in Appendix 1, as well as the 
resulting closed-loop matrix (aij) (A + BK, using 
the above notations). Note the rational form of all 
the matrix entries. The characteristic polynomial 
of the closed-loop system turns out to be 

z2 + 42 + 5, (3.4) 
with constant coefficients, a surprise since the 
original system does not have constant Kronecker 
indices, and hence is not equivalent, over the con- 
tinuous feedback group, to a constant system [5]. 
Note that, as expected, the roots are complex: 
-lTi. 

d = x8 + 4x’ + 4x6yZ + 4x6 + 12x5y2 

-4x5 + 6x4y4 + 12x4y2 - 6x4 + 12x3y4 

- 8x3y2 + 4x3 + 4x2y6 + 12x*y4 - 12x2yZ 

+ 4x2 + 4xy6 - 4xy4 + 4xy2 - 4x + y8 

+4y6-6y4+4y2+1. 

While still in the rational case, we may ask what 
happens if we use instead a different q of the form 
st/det X = 2st/p, with t different from 1. Figure 1 
shows a typical root-locus, for fixed x, y but 
varying t, obtained for the closed-loop system. 
Observe the branch point after which the roots 
become real. The picture in this figure was com- 
puted for the case x =y = 0; for other values the 
locus is similar. The branching point occurs at 

t=(l+fi)/2=1.2071 ’ 

in this case. 

Now, d is a polynomial whose highest order 
homogeneous component is positive definite (due 
to the x8 + y* part). Since we also know that p (or 
d) has no real zeroes, it follows in the present case 
that d is bounded below by a positive constant. 
Thus pq > s can be satisfied with a constant q. 
Using a Newton-Raphson method to locate the 
minimum of d, we get a minimum value of 

2-lolO2 = 0.09765625 (3.5) 

for d, achieved at x = i and y = 0. Thuspq > s can 
be satisfied for instance with q := 1000/32. Using 
this value, we computed symbolically the net 
feedback matrix qK = (k,,) and closed-loop matrix 
(aij), as well as the coefficients b, c of the closed- 
loop characteristic polynomial z2 + bz + c (see Ap- 
pendix 2). 

Conversely, we may study what happens with a 
fixed gain t but varying x, y; for instance with 
t = 1000 we get roots approaching approximately 
-1 and -4000 for x=y=O or large x,y, com- 
plex for suitable values of x, y, and branches at 

x =y = 0.36613 and x = -y = 0.36613 

(roots at -2000). 

Remarkably, even though c contains large coef- 
ficients, the actual feedback law (the only part that 
needs to be computed by an on-line controller) has 
very small coefficients. The locus of closed-loop 
eigenvalues, as a function of x, y, has, as expected, 
complex cases (e.g. at x =y = 0.37), as well as 
branching points (e.g., at x =y = 0.3599 or x = 
-y = 0.3599). 

t= 1. 4. An input/output interpretation 
i 

i 

/=O i 

-t=+OO t=+m 

----pJo 
t=1 

Fig. 1. 
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It is natural to relate the conclusion of Theorem 
1 to stabilizability properties of families of transfer 
functions [9,13]. Let m, p be fixed positive in- 
tegers. By a polynomially [resp., rationally] parame- 
trized family of transfer functions we shall mean a 
p X m matrix 

WA = (P?(zvqY(z)) 

such that (a) each py and qp is a polynomial in z 
whose coefficients are polynomial [resp., rational] 
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functions of h E R’, with 

degq;;’ > deg py for each i, j, 

and (b) the leading coefficient of each qp is inde- 
pendent of X. 

For instance, 

is such a family (with m =p = 1). Condition (b) is 
natural in the context of systems over rings; it 
insures that the evaluation at each X leads to a well 
defined transfer function, and that the Markov 
parameters of W, again depend polynomially or 
rationally on X. 

A polynomial [resp., rational] I/ 0 stabilizer for 
W, is given by an m Xp family V, as above (note 
m, p are exchanged), such that the transfer func- 
tion (u,, u2) -+ (yl,yZ) in Figure 2 is stable for 
each h. We then have the following: 

Theorem 3. Let W,, be a rationally [ resp.. polynomi- 
ally] parametrized family, and assume that d(X) := 
McMillan degree of W, is constant (as a function of 
A). Then, W, admits a rational stabilizer [resp., if 
r < 2 there is a polynomial stabilizer]. 

In the spirit of Theorem 2, one could replace 
the above statement by one in terms of stabiliza- 
tion with arbitrary convergence rates. Doing so 
would have the extra advantage that the condition 
becomes necessary as well (this follows by an 
argument using continuity of closed-loop eigenval- 
ues), but reasons of space preclude a more detailed 
treatment here. 

Proof of Theorem 3. In the polynomial case, note 
that, under the hypothesis r < 2, there exists a 
polynomially parametrized family (A,, B,, C,) 
which realizes W,, and such that (A,,, B,) is con- 
trollable and (A,, C,) is observable for each X (see 

I I 

Fig. 2. 

[14]). The conclusion follows then by Theorem 1 
applied to (A,, Bh) and the dual (A;, CL), to- 
gether with the standard observer/state-feedback 
construction. In the rational case (with r arbitrary), 
the argument is basically that used in [9] for the 
analytic case (but note that the definitions of 
regulator are not the same as in that reference): 
locally in the variety of systems of degree d, a 
rational realization can be constructed, and this 
can be composed with a stabilizer construction as 
in Remark 2.9 through an observer/state-feedback 
configuration. It is easily verified that the stabi- 
lizer obtained from a given (A, B, C) is invariant 
under the canonical GL(n) action 

(A, B, C) + (T-‘AT, T-‘B, CT), 

and depends rationally on A. Equivalence insures 
that the local constructions patch-up into a well 
defined global rational stabilizer. 
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Appendix 1. Rational feedback 

al1 
= p/q. where p= 4y(x6 + 4x5 + 3x4y2 - 4x4y + 3x4 + 8x3y2 - 4X3Y - 4x3 + 3x2y4 - 8x2y3 + 

2x2y2 + 4x2y - 3x2 + 4xy4 - 4xy3 - 4xy2 + 4Xy) - 4y= - y4 + 4y3 l y2 - 4y - I), and q = x8 + 

4X7 + 4X6y2 + 4x6 + 12x=y2 - 4x= + 6x4y4 + 12x4y2 - 6x4 + 12x3y4 - 8x3y2 + 4x3 + 4x2y6 + 

12x2y4 - 12x2y2 + 4x2 + 4xy6 - 4xy4 + 4xy2 - 4x + y8 + 4y6 - 6y4 + 4y2 + 1. 

a12 = p/q. where p = x5 + 4x’ + 4x6y2 + 4x6y + -4x6 + 12x=y2 + 16x=y - 4x5 + 6x4y4 + f2x4y3 

+ 12x4y2 +’ l2x3y4 + 32x3y3 + 8x3y2 - 16x3y + 4x3 + 4x2y6 + 12x2y5 + 12x2y4 + 8x2y3 + 

4x2y2 - 12x2y + 4x2 + 4xy6 + 16xy= + 12xy3 - 12xy2 + 16xy - 4x + y8 + 4y7 + 4y6 - 4y5 + 

10y4 + 4y3 + 4y2 - 4y + 1, and q = X’ + 4x ’ + 4x6y2 + 4x6 + 12x=y2 - 4x’ + 6x4y4 + 12x4t2 

- 6x4 + 12x3y4 - 8x3y2 + 4x3 + 4x2y6 + 12x2y4 - 12x2y2 + 4x2 + 4xy6 - 4xy4 + 4xy2 - 4x’ + 

Y8 + 4y6 - 6y4 + 4y2 + 1. 

a21 
= p/q, where p = -5x’ -20x7 - 20x6y2 + 4x6y - 20x6 - 60x5y2 + 16x5y + 20x5 - 30x4y4 + 

l2x4y3 - 28x4y2 + 12x4y + 30x4 - 60x3y4 + 32x3y3 + 56x3y2 - 16x3y - 20x3 - 20x2y6 + 12x2y= 

+ 4x2y3 + 12X2Y2 - 12x2y - 20x2 - 20xy6 + 16xy= + 36xy4 - 16xy3 - 36xy2 + 16xy + 20x - 5ya 

+ 4y7 + 12y6 - 4y= - lw4 + 4y3 + 12y2 - 45. antj q = x8 + 4x’ + 4x6y2 + 4x6 + 12x=y2 - 4x= 

+ 6x4y4 + 12x4y2 - ‘6x4 + 12x3y4 - 8x3y2 + 4x3 + 4x2y6 + 72x2y4 - 12x2y2 + 4x2 + 4xy6 

- 4xy4 + 4xy2 - 4x + y8 + 4y) + 4y2 + 1. 

a22 = p/q. where p = 41 - x8 - 4x’ - 4x6y2 - x6y - 4x6 - 12x5y2 - 4x5y + 4x5 - 6x4y4 - 3x4y3 

- 8x4y2 - x4 - 12x3y4 - 8x3y3 + 12x3y2 + 4x3y - 4x3 - 4x2y6 - 3x2y= - 4x2y4 - 2x2y3 + 8x2y2 

+ 3x’y - 4x2 - 4xy6 - 4xy= + 8xy4 + 4xy3 - 8xy2 - 4xy + 4x - y’ - y’ + y4 - y3 + y - 1). and 

Cj = X8 + 4X7 + 4x”y2 + 4X6 + 12x=y2 - 4x= + 6x4y4 + 72xay2 - 6x4 + 12x3y4 - 8x3y2 + 4x3 

7 4x2y6 + 12x2y4 - 12x2y2 + 4x2 + 4xy6 - 4xy4 f 4xy2 - 4x + y8 + 4y6 - 6y4 + 4y2 + 1). 

k 
11 

= p/q, where p = 4(x5 - 3x4y + 2x4 + 2x3y2 - 4x3y - 6x2y3 + 4x2y2 + 4x’y - 2x2 A xy4 

- 4xy3 + 4xy + x - 3y= + 54 L 4y3 - 2y2 - 3yl. and q = x8 + 4x’ + 4x6y2 + 4x6 + 12x5y2 

- 4x= + 6x4y4 + 12x4 + 12x3y4 - 8x3y2 + 4x 
3 

+ 4x2y6 + 12x2y4 - 12x2 y2 + 4x 2 + 4xy6 - 4xy4 

+ 4xy2 - 4x + y8 + 4y6 - 6y4 + 4y2 + 1. 

k 
12 = plq. where p = 4(x5 - x4y + 2x4 + 2x3y2 - 2x2y3 + 4x2y - 2x2 + xy4 +x-y = - 2y4 + 

4Y3 + 2y2 - yl, and q = x8 + 4x’ + 4x6y2 + 4x6 + 12x5y2 - 4x5 + 6x4y4 + 12x4y2 - 6x4 + 

12x3y4 - 8x3y2 + 4x3 + 4x2y6 + 12x2y4 - 12x2y2 + 4x2 + 4xy6 - 4xy4 + 4xy2 - 4x + ya + 4y6 

- tip + 4y2 + 1. 

k 
21 

= p/q. where p = 4/x6 + 3x5 + 3x4y2 - x4y + x4 + 6x3y2 - 4x3 + 3x2y4 - 2x2y3 - 2x2y2 

- x2 + 3xy4 - 4xy2 + 3X + y6 - y5 - 3y4 + 3y2 - y - I), and q = x8 +4x 
7 

+ 4x6y2 + 4x6 + 

12x5y2 - 4x= + 6x4y4 + 12x4y2 - 6x4 + 12x3y4 - 8x3y2 + 4x3 + 4x2y6 + 12x2y4 - f2x2y2 + 4x2 

+ 4xy6 - 4xy4 + 4xy2 - 4x + ye + 4y6 - 6y4 + 4y2 + 1. 

k 
22 = p/q, where p = 4(x6 + 3x5 + 3x4y2 + x4y + x4 + 6x3y2 + 4x3y - 4x3 + 3x2y4 + 2x2y3 + 

2X2y2 - X2 + 3Xy4 + 4Xy3 - 4Xy2 - 4xy + 3x + y6 + y5 + y4 - l), and q = x8 + 4x7 + 4x6y2 + 

4x6 + 12x=y2 - 4x= + 6x4y4 + 12x4y2 - 6x4 + 12x3y4 - 8x3y2 + 4x 3 + 4x2y6 + 12x.2y4 - 12x2yl 

+ 4xy6 - 4xy4 + 4xy2 - 4x + ya + 4ys - 6y4 + 4y2 + 1. 
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Appendix 2. Polynomial feedback 

all 
= 125y(x6 + 4x 

5 
+ 3x4y2 - 4*4y + 3x 

4 
+ 8x3y2 - 4x3y - 4x3 + 3x2y4 - 8x2y3 + 2x2y2 + 

4x2y - 3x2 + 4xy4 - 4xy3 - 4xy2 + 4xy + 4x + y6 - 4y5 - y4 + 4y3 + y2 - 4y - 7. 

a12 
= 125x6y + 500x5y + 375x4y3 + 375x4y + 1000x3y3 + 5x3y2 - 5oox3y + 375xzy5 + 250x2y3 + 

5oox2y2 
125y3 - 

- 375xZy + 5ooxy= + 5ooxy4 - 5ooxy3 - 5ooxy2 + 5OOxy + 125y7 - 125y= + 500~~ + 
125~ + 1. 

a21 = - 125x’ - 500x7 - 500x6y2 + 125x6y - 500x6 - 1 5oox5y2 + 5oox5y + 500x5 - 75ox4y4 + 

375x4y3 - 5oox4y2 + 375X4Y + 750x4 - 1500x3y4 + 1ooox3y3 + r500x3y2 - 5oox3y - 500x3 

- 500x2y6 + 375x2y= + 500x2y4 + 250x2y3 - 375x2y - 500x2 - 5ooxy6 + 5ooxy5 + 1oooxy4 

- 5ooxy3 - 7oooxy2 + 5OOxy + 500x - 725y’ + 725~~ + 500~~ - 725y= - 750~ 2 - 725~ - 126. 

a22 
= 125/ - x8 - 4x7 - 4x6y2 - x6y - 4x6 - 12x=y2 - 4x=y + 4x= - 6x4y4 - 3x4y3 - 8x4y2+ 6x4 

- l2x3y4 - 8x3y3 + l2x3y2 + 4x3y - 4x3 - 4x2y6 - 3x2y= - 4x2y4 - 2x2y3 + 8x2y2 + 3x2y - 4x2 

- 4xy6 - 4xy= •+ 8xy4 + 4xy3 - 8xy2 - 4xy + 4x - ya - y7 + y3 + y - 1). 

k = 725(x5 - 3X4Y + 2x 
4 

11 
+ 2x3y2 - 4x3y - 6x2y3 + 4x2y2 + 4x2y - 2x2 + xy4 - 4xy3 + 4xy + 

2Y4 + 4y3 - 2y2 - 3y/. 

k 
12 

= 125/x= - x4y + 2x4 + 2x3y2 - 2x2y3 + 4x2y - 2x2 + xy4 + x - y= - 2y4 + 4y3 + 2y2 - yl. 

k 
21 

= 128x6 + 3x= + 3x4y2 - x4y + x4 + 6x3y2 - 4x3 + 3x2y4 - 2x2y3 - 2x2y2 - x2 + 3xy4 

- 4xy2 + 3x -c y6 - y= - q4 + a2 - y - 1J. 

k 
22 

= 125(x6 + 3x= + 3x4y2 + x4y + x4 + 6x3y2 + 4x3y - 4x3 + 3x2y4 + 2xzy3 + 2xzy2 - x2 + 

3xy4 + 4xy3 - 4xy2 - 4xy + 3x + y6 + y= + y4 - y2 + y - 1). 

Characteristic polynomial is z’+bz+c, where: 

b = 125/x’ + 4x7 + 4x6y2 + 4x6 + 12x5y2 - 4x5 + 6x4y4 + 72x4y2 - 6x4 + 12x3y4 - 8x3y2 + 

4x2y6 + l2x2y4 - 12x2 y2 + 4x2 + 4xy6 - 4xy4 + 4xy2 - 4x + ya + 4y6 - 6y4 + 4y2 + ll, and: 

c = 31250~“~~ + 125000x”y2 + 1875OO~‘~y~ + 62500~~~~ - 375000x9y2 + 468750~‘~~ + 

312500x8y4 - 406250xay2 + 125x’ + 1250000x7y6 - 1500000x7y4 + 500000x7y2 + 500x7 + 

625000x6ya + 625000x6y6 - 1625000x6y4 + 625500~~~~ + 500x6 + 1250000x5ya - 2250000x=y6 + 

15ooooox=y4 - 498500x=y2 - 500x= + 468750~~~” + 625000x4ya - 2437500~~~~ + 1875750~~~~ 

- 405750~~~~ - 750x4 + 62500000x3ya + 1500000x3y6 - 998500x3y4 + 374000x3y2 + 500x3 + 

187500~~~‘~ + 3125OO~~y’~ - 1625000x2ya + 1875500x2y6 - 813000x2y4 + 63000x2 + 125000xy” 

- 375OOOxy” + 500000xya - 499500xy6 + 374500~~~ - 124500xy’ - 500x +31250~‘~ + 62500~” 

- 40625Oy” + 625125~’ - 406750~~ + 63750~~ + 30750~~ + 126, 
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