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Parametric stabilization is easy
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A polynomially parametrized family of continuous-time
controllable linear systems is always stabilizable by polynomi-
ally parametrized feedback.
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1. Results

Theorem 1. Let (A,, B,) be a pair of matrices, all
whose entries are real polynomial functions of the
parameter X € R'. Assume that A, is nXn, B, is
n X m, and that the pair (A,, B,) is controllable for
each A € R'. Then, there exists an m X n matrix K,
whose entries are also real polynomials in A, such
that, for every X, each eigenvalue of the matrix
A + BK has a negative real part.

This result will be a consequence of the follow-
ing much more general fact.

Theorem 2. Let n, m be integers, and A =(a,;),
B = (b,;) two matrices of distinct indeterminates, of
sizes n X n and n X m respectively. Then there exist:

* an m X n matrix K(A, B, v) of real polynomi-
als in the a;;, b, ;, and other variable y, and

* (scalar) polynomials p(A, B, y)and s(A, B, v)
in the variables a,;, b,;;, and v,
such that (a) when the variables a,;, b,; take values
making (A, B) controllable, p( A, B, v) is nonzero,
for every real y, and (b) for any such values of the
a;;, bij, and for each v, the matrix A + B(gK) has
all eigenvalues with real part less than —vy whenever
q is a (real) number such that pq > s.

We first indicate why Theorem 1 follows from
Theorem 2. Let (A4,, B,) be any polynomially

* Research supported in part by US Air Force Grant AFOSR
80-0196.

parametrized family. Pick y =0 and choose X, p,
s, as in Theorem 2. Substituting the expressions of
the a,;, b;; as polynomials in A into the entries of
K, p, s, we may assume that these are also poly-
nomials in A. By (a), p(A) has no real zeroes. It
follows by the arguments on real algebraic geome-
try in [3] that there is a polynomial function g(A)
such that pg > s for all A. Thus ¢K is a polynomi-
ally parametrized stabilizing feedback. The same
argument, specializing y at nonzero values, gives
stabilization with arbitrary convergence rates, a
property which is in turn equivalent to the as-
sumed pointwise controllability. Note that, if p
would happen to be bounded below by a positive
real number and if s is bounded above, then the
desired q could in fact be chosen to be a constant.
This will not hold in general, but coincidentally,
happens to be true for the most interesting exam-
ple in the literature of polynomial families of
systems, as will be discussed in Section 3.

The proof of Theorem 2 is extremely simple,
once that one is aware of a stabilization method,
for (single, not families of) linear systems, due to
Bass [1], and apparently never published. (An ex-
position of this method is given, however, in the
textbook [16].) We shall give this argument in
Section 2, but first will discuss the relation be-
tween the results here and those in previous works.

There has been a large number of papers on
questions related to the stabilizability of parame-
trized families of systems, both continuous and
discrete time. See for instance [2,3,5-13,17,18] and
the references there. Many of these papers provide
results for stabilization of continuous, rational,
differentiable, or analytic families, by feedback
laws with the same degree of smoothness. Theorem
2 (in essence due to Bass) gives a very simple proof
in all the above cases — just take for instance
q = (s +1)/p - if one is interested only in stabiliza-
bility (with arbitrary convergence rates). Note how-
ever that, in many of the above works one ob-
taines, much more interestingly, either a pole-shift-
ing result or (see below) an ‘almost pole-shifting’
property. Such stronger results are often of more
relevance in control design. Further, the proof
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does not generalize in any obvious way to the
discrete-time case (at least if 4 is singular), so
methods like those in [9,12] may be still needed in
the latter. In connection with the results in [10]
and others, note also that we do not need to
assume here that the given systems are ‘ring re-
achable’, i.e., that controllability holds as well for
complex values of A.

In a recent note [3] we established a result on
stabilization of scalar (m = 1) polynomial families.
The proof given there is totally different from the
one here, and establishes a much more precise
result than the stated one of stabilization with
arbitrary convergence rates. Indeed, it actually
shows that, for any set S of n —1 complex num-
bers (counting multiplicities) which is symmetric
with respect to the real axis, for each € > 0, and for
every negative real number p, there is a poly-
nomial feedback such that each A4, + B,K, has
eigenvalues placed as follows: one is real, less than
p, and the remaining n—1, are, with the same
multiplicities, at distance < ¢ from corresponding
elements of S. In other words, one can (approxi-
mately) place n—1 eigenvalues arbitrarily and
another one at —oo. This result, proved for the
scalar case in [3], will be shown in Section 3 to be
false in the nonscalar case. In fact, we shall give an
example where not even continuous approximate
pole-shifting (in this sense) is possible. Then, we
shall work out in detail the polynomial (and the
more straightforward continuous, in fact, rational)
stabilizers predicted by Theorems 1 and 2 for this
example. (A generalization of the result in {3] to
the nonscalar case, using dynamic feedback, is
possible, however.) In Section 4, we provide, as a
corollary to the main result, an input/output sta-
bilization theorem.

We refer the reader to the above references for
motivations regarding the study of parametrized
families of systems. Let us only add a reference to
[15], which obtains families of linear systems as
linearizations of nonlinear systems about different
operating points, with polynomial families appear-
ing in the case of systems with finite Volterra
series expansions.

2. Proof of Theorem 2

Let A, B be matrices of indeterminates as in the
statement of the theorem, and let y be another

182

SYSTEMS & CONTROL LETTERS

June 1984

indeterminate. Let S be the ring of (real) poly-
nomials in the a,, the b, ;, and y. Pick any poly-
nomial w( A, y) such that 4 + wl has all its eigen-
values with real part larger than 0 and such that
w >y, for every possible value of y and of the a,;.
Such a choice is always possible: for instance, the
spectral radius of 4 is bounded above by any
matrix norm of 4, and the Euclidean-induced norm
of A is in turn bounded by the square root of Ea,'f"j;
so all eigenvalues of A are in magnitude less than,

say, ;

vi=1+Za},. (2.1)

Thus 4 + vl has all eigenvalues with positive
real part; now pick

wi=uv+ vy (2.2)

This insures that 4 + wl has all eigenvalues as
wanted. Alternatively, one may choose v=n+
Sa?, where the @, denote the coefficients of the
characteristic polynomial of 4. (Because all eigen-
values of 4 are less than max [1, Zje,]<v in
magnitude.)

Consider the (Lyapunov) linear operator

c?: Snxn_*S"Xn,

L(X)=(A+w) X+ X(A+wI). (23)

(Prime indicates transpose.) Let s(A4,y) be the
determinant of .%. Note that, for each specializa-
tion of the a;; and v, & is invertible (since 4 + wl
has no purely imaginary eigenvalues), and in par-
ticular s is a polynomial with no real zeroes. Let A4~
be the ‘cofactor’ transformation

N STXn s gnxn (2.4)

such that /' F=YLAN "= sI .. Now let X = A"(BB’).
This is a polynomial matrix (over S). Moreover,
from the pointwise invertibility of Z it follows that
X is a symmetric matrix. Let Z be the cofactor
matrix of X; this is again a symmetric matrix of
polynomials. We may now define the desired K as

= -B'Z. (2.5)
Finally, let
p=2det(X). (2.6)

Assume the variables in 4, B are specialized at
values making the pair (A4, B) controllable and let
y take any real value. Since —(A + wl) is stable
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and (—A4 — wl, B) is again controllable, it follows
from Lemmas 12.1 and 12.2 in [19] that the unique
solution Y of

(A+wl)Y+Y(A+wl) =BB (2.7)

is positive definite, and in particular invertible.
Now, sY =X, and s is always nonzero, so it fol-
lows that X itself is invertible when evaluated at
such (A4, B, v). So p is not zero, as required for the
first conclusion of the theorem. Now assume that ¢
is such that pg > s. Then

(A+wl+gBK)X+ X(A+wl+¢BK)
=(s~pq)BB’. (2.8)

Since s — pg < 0, the matrix in the right of (2.8)
can be written as —DD’, where D is a scalar
multiple of B. (Of course, D is not a polynomial
matrix anymore, but we are now arguing point-
wise.) It follows that the pair

(4 +wl+¢BK, D)

is controllable, so again using the lemmas in [19]
we conclude that (4 + ¢BK)+ wl is stable. Thus
A + ¢BK has all eigenvalues with real part less
than —w, hence less than —v, as desired.

Remark 2.9. If only rational stabilization is de-
sired, one may take the inverses of ¥ and X
instead of the respective cofactor matrices, as well
as s = g =1 and p = 2. Together with the choice

v=n+Za’

discussed above, this results in an equivariant
feedback law, in the sense of [9]: if T € GL(n),
then

K(T AT, T"'B)=K(A4, B)T.

This construction will be useful in Section 4.

3. An example

One of the most interesting examples regarding
stabilization of families of systems is the one given
in [2]; see discussions on this example in [7], and
related material in [17,18]. We use here a trivial
variation of it, which simplifies calculations and
illustrates the same points. With r =2, and using
‘x, y’ instead of A;, A, the family is the one given
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by the pair

_{ 0 1 = y
a-(_9 o) B= (2, L) 6D
where z = 1 — x? — y2. This pair is controllable for
all real (and even all complex!) x, y (see [2}), and it
is impossible to solve the pole-assignment problem
for it. Moreover, and this is very important in
connection with the construction in {3}, it it impos-
sible to even obtain approximate pole locations for
this example. Indeed, assume that it would be
possible, for even a single pair A, p with A <0 and
p <2A, to have a feedback matrix K, even con-
tinuous on x, y, with the property that, for all x, y
the two eigenvalues of 4 + BK are one at a dis-
tance less than, say, ¢ = 3A from A, and the other
being less than p. Since the eigenvalues remain
separated, the eigenvalue A(x, y) close to A would
depend continuously on x, y. Thus,

D=A+BK+X(x,y)I (3.2)

is a continuous matrix function having a one-di-
mensional kernel for each x, y. It follows that
ker D defines a line bundle over R%. Let v(x, y) be
a section of this bundle, always nonzero. Then,

B(Kv)=(AI-A)v (3.3)

for all x, y. Since A(x, y) can never be an eigen-
value of A, it follows that B(Kv) is a linear
combination, with continuous coefficients, of the
columns of B, which is always nonzero. But the
topological degree argument in [2] shows that such
combinations cannot exist. We conclude that ei-
genvalues cannot be placed as wanted. Thus the
‘almost’ pole-assignment result in [3], given there
for single-input systems, cannot be generalized
(with static feedback) to the non-scalar case.

It becomes then of interest to carry out the
calculations for this example to obtain a stabiliz-
ing feedback, and to understand why the line-bun-
dle argument does not apply when only stabiliza-
bility is required. One should expect complex poles
and/or double roots when applying Theorems 1
and 2.

We have carried out the necessary computa-
tions, using the REDUCE symbolic manipulation
system as well as double-precision FORTRAN under
TOPS-20. Results are displayed in the appendixes.

First we tried a straightforward application of
Theorem 2, using rational feedback. With the no-
tations in the proof, we may choose w=1 (con-
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stant). The determinant of ¥ is here a constant:
s = 32. We may take

qg=s/det X=2s/p.

* Then, pg=2s>s, as desired. The resulting feed-
back matrix (k;;) (ie., ¢K, in the notations used
earlier) is displayed in Appendix 1, as well as the
resulting closed-loop matrix (a;;) (4 + BK, using
the above notations). Note the rational form of all
the matrix entries. The characteristic polynomial
of the closed-loop system turns out to be

z2+4z+5, (3.4)
with constant coefficients, a surprise since the
original system does not have constant Kronecker
indices, and hence is not equivalent, over the con-
tinuous feedback group, to a constant system [5).
Note that, as expected, the roots are complex:
-1Fi.

While still in the rational case, we may ask what
happens if we use instead a different g of the form
st/det X = 2st/p, with ¢ different from 1. Figure 1
shows a typical root-locus, for fixed x, y but
varying ¢, obtained for the closed-loop system.
Observe the branch point after which the roots
become real. The picture in this figure was com-
puted for the case x =y = 0; for other values the
locus is similar. The branching point occurs at

t=(1+v2)/2=1.2071

in this case.

Conversely, we may study what happens with a
fixed gain ¢ but varying x, y; for instance with
t =1000 we get roots approaching approximately
—1 and —4000 for x =y =0 or large x, y, com-
plex for suitable values of x, y, and branches at

x=y=036613 and x= —y=0.36613
(roots at —2000).

Fig. 1.
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The polynomial case is even more interesting.
We need to find a polynomial g(x, y) such that
pq > s for all x, y. Consider the polynomial p(x, y).
Calculating, p = 64d, where '

d=x8+4x7 +4x%? + 4x° + 12x°y?
—4x° + 6x%y* + 12x%y? — 6x* + 12x3y*
—8x3y? + 4x3 + 4x2p° + 12x2p* — 12x2y?
+4x2 4+ 4xy° — dxp* + 4xy? —Ax + 8
+4y—6y*+4y?+1.

Now, 4 is a polynomial whose highest order
homogeneous component is positive definite (due
to the x® + y® part). Since we also know that p (or
d) has no real zeroes, it follows in the present case
that d is bounded below by a positive constant.
Thus pg>s can be satisfied with a constant g.
Using a Newton-Raphson method to locate the
minimum of d, we get a minimum value of

2710102 = 0.09765625 (3.5)

for d, achieved at x = 3 and y = 0. Thus pg > s can
be satisfied for instance with g = 1000/32. Using
this value, we computed symbolically the net
feedback matrix gK = (k,;) and closed-loop matrix
(a; ;) as well as the coefficients b, ¢ of the closed-
loop characteristic polynomial z2 + bz + ¢ (see Ap-.
pendix 2).

Remarkably, even though ¢ contains large coef-
ficients, the actual feedback law (the only part that
needs to be computed by an on-line controller) has
very small coefficients. The locus of closed-loop
eigenvalues, as a function of x, y, has, as expected,
complex cases (e.g. at x =y =0.37), as well as
branching points (e.g., at x =y =0.3599 or x=
—y =0.3599).

4. An input / output interpretation

It is natural to relate the conclusion of Theorem
1 to stabilizability properties of families of transfer
functions [9,13]. Let m, p be fixed positive in-
tegers. By a polynomially [resp., rationally] parame-
trized family of transfer functions we shall mean a
P X m matrix

W, =(pi(2)/q¢(2))

such that (a) each p¥/ and ¢¥/ is a polynomial in z
whose coefficients are polynomial [resp., rational]
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functions of A € R, with
deg.qy > deg,py foreachi,j,

and (b) the 1eading coefficient of each g¥/ is inde-
pendent of A.
For instance,

Mz +2A0,) /(22 + Xz = (A +1y))

is such a family (with m = p = 1). Condition (b) is
natural in the context of systems over rings; it
insures that the evaluation at each A leads to a well
defined transfer function, and that the Markov
parameters of W, again depend polynomially or
rationally on A.

A polynomial [resp., rational] I / O stabilizer for
W, is given by an m X p family V) as above (note
m, p are exchanged), such that the transfer func-
tion (uy, u,) = (y,, y,) in Figure 2 is stable for
each A. We then have the following:

Theorem 3. Let W, be a rationally {resp.. polynomi-
ally) parametrized family, and assume that d(\) =
McMillan degree of W, is constant (as a function of
A). Then, W, admits a rational stabilizer (resp., if
r < 2 there is a polynomial stabilizer).

In the spirit of Theorem 2, one could replace
the above statement by one in terms of stabiliza-
tion with arbitrary convergence rates. Doing so
would have the extra advantage that the condition
becomes necessary as well (this follows by an
argument using continuity of closed-loop eigenval-
ues), but reasons of space preclude a more detailed
treatment here.

Proof of Theorem 3. In the polynomial case, note
that, under the hypothesis r <2, there exists a
polynomially parametrized family (A4,, By, Cy)
which realizes W,, and such that (4,, B,) is con-
trollable and (A4,, C,) is observable for each A (see

uz

Uy Y1 Y2

Fig. 2.
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[14]). The conclusion follows then by Theorem 1
applied to (A,, B,) and the dual (4}, C;), to-
gether with the standard observer/state-feedback
construction. In the rational case (with r arbitrary),
the argument is basically that used in [9] for the
analytic case (but note that the definitions of
regulator are not the same as in that reference):
locally in the variety of systems of degree d, a
rational realization can be constructed, and this
can be composed with a stabilizer construction as
in Remark 2.9 through an observer /state-feedback
configuration. It is easily verified that the stabi-
lizer obtained from a given (A4, B, C) is invariant
under the canonical GL(#n) action

(A,B,C)— (T"UT, T"'B, CT),

and depends rationally on A. Equivalence insures
that the local constructions patch-up into a well
defined global rational stabilizer.
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Appendix 1. Rational feedback

a, = p/q. where p= 4y{x6 + 4x> - 3x4y? - 4x4y + . <9x3y2 - 4x3y - a4 3x2y4 - E)tzy3 +
2)(2y2 + 4x2y - .i’x2 + 4xyl1 - 4)(y3 - 4)(y2 + 4xy) - 4y5 - y4 + .‘Iy3 + y2 -4 -1,andq= x8 +
a7+ z!xay2 + ax® s 72x5y2 - ad 6x4y4 + 72x4y2 - x4 72x3y4 - 8x3y2 + oax3 4 4)(2y6 +
72)(2y4 - 72x2y2 + 4;(2 + 4xy6 - 4xy4 + 4xy2 - 4x + y8 + tly6 - 6‘y4 + 4y2 + 1.

a,, = p/qQ. where p = xB + ax’ o+ 4x‘5y2 + 4x6y + ~4x6 + 72x5y2 + 76x5y - ax® 4 6x4y4 + 72)(4y3
+ 72x4y2 + 12x3y4 + 32)(3y3 + 8x3y2 - 76x3y + ax3 4x2y6 + 72x2y5 + 12x2y4 + 8x2y3 +
4x2y2 - 72x2y + 4x2 + 4xy6 + 74.‘3xy5 + 72xy3 - 72xy2 + 16xy - 4x + y8 + 4y7 + 4y('3 - 4y5 +
B+oax’ 4+ 4x6y2 + 4x® + 72)(5y2 - 4x® 4 6)("‘y4 + 72x4'y2'
- 6xt 4 72x3y4 - 8x3y2 + a4 szys + 72x2y4 - 72)(2y2 + 4x? o+ 4xy6 - 4xy4 + 4xy2 - 4ax +
y8 + 4y6 - 6y4 + 4y2 + 1.

= p/q where p = -5x° -20x” - 20x%?% + axB - 20x% - 60x%y% + 16x5y + 20x° - 30x%* +

70y4+4y3+4y2-4y+1,andq= X

a2
72x4y3 - 28)(4y2 + 72x4y + 30x* - 60x3y4 + 32x3y3 + 56x3y2 - 76x3y - 20x° - 20)(2y‘5 + 72x2y5
+ 4x2y3 + 72x2y2 - 72x2y - 20x% - 20)(y(5 + 76)(y5 + 36‘xy‘1 - 76xy3 - 36xy2 + T16xy + 20x - 5y8
+ 4y7 + 12y6 - 4y5 - 78y4 + -'zy3 + 72y2 - 45 and g = x® + ax’ 4 :l)(sy2 + ax® 4 72x5y2 - 4
44 72x4y2 A 72)(3y4 - 8x3y2 + ax 2
- 4)(y4 + 4xy2 - 4x + y8 + dy) + 4y2 + 1.

& . 4’ - zley2 - xsy - ax® - 72x5y2 - 4x5y v 4x5 - 6x4y‘l - 3x"'y3

+ 6‘x4y + 4x2y6 + 72x2y4 - 72x2y2 + 4x° o+ 4xy6
a,, = p/q where p = 4 - x

- éix‘ly2 - Xt - 72x3y“ - 8)(3y3 + 12x3y2 + 4x3y - - 4x2yG - :ixzy5 - 4x2y'J - 2x2y3 + 8)(2y2
+ 3x2y - ax? - :Ixy6 - 4xy5 + 8xy4 + 4J(y3 - 8)(y2 - 4xy + 4x - y8 - y7 + y4 - y3 +y - 1) and
7. 4x6y2 + ax8 4 12x5y2 - 45 s 6x4y4 + 72x4y2 - 6x* o+ 72)(3y4 - 8x3y2 + a4’

+ 4)(2y6 + 72)(2y4 - 12)(2y2 + 4x% 4 4xy6 - 4xy4 + 4xy2 - 4x + y8 + 4y6 - ¢'5y4 + 4y2 + 7).

q = xB 4 ax

k11 = p/q. where p = 455 - 3x4y + 2x% 4 2x3y2 - 4x3y - 6x2y3 + 4x2y2 + 4x2y - 2x% 4 xy4

4 6

- 4)(y3 + 4xy + x - 3y5 + 2y 4y3 - 2y2 - 3yl and g = X+ ax’ 4 «b(ey2 + 4x” o+ 72)(5y2
- 4x> 4 6xay‘1 + 12x% 4 72x3y4 - 8x3y2 + xS s 4x2y6 + 72x2y‘1 - 72x2y2 + 4x2 + 4xy6 - 4xy4
+4xy2-4x+y8+4y5-6y4+4y2+ 7.

k]2 = p/q. where p = 4x° - x“y + 2x% 4 2x3y2 - 2x2y3 + 4x2y - 2x% + xy“ + X - y5 - 2y4 +
8 8 4 72x5y2 - a5 4 6x"'y4 + 12x4y2 - 6x% +
6

4y3 + 2y2 - yl, and q= x + 4X7 + 4X6y2 + 4x
12x3y% - ax3y? + axd
AR )

kyy = p/q where p = ax® + ax® + ax
- X%+ 3yt - e vy -y

+ 4x2y6 + 72x2y4 - 72)(2y2 + 4x% 4 4xy6 - 4xy4 + 4xy2 - 4x + y8 + 4y

4

42 C0f o x® a3y - a3 e 3yt - 2xdB - 2x3)?

E’~3y4-t- 3y2-y- 7},andq=x8+4x7+4x6y2+4x6+
12x5’y2 - 4B s 6x4y4 + 12x4y2 - 6x% 4 12’x3y4 - 8x3y2 + o+ 4x2y6 + 12x2y4 - 72x2y2 + 4x?
+4xy6-4xy4+4xy2-4x+y8+4y6-6y4+4yz+ 1.

4y 6x3y2 + 4x3y - a4 3x2y4 + 2x2y3 +
8

k22 = p/q, where p = 4(x6 + 3x5 + 3)(4y2 + x4y + X
v ax” + x82 4
a8 + 7,2x5y2 - a5+ 6x4y4 + 72x4y2 - 6xt 4 12x3y‘1 - 8)(3y2 + a3 4x2yG + 72x'2y4 - 72x2y}
+ 4xy6 - 4xy4 + 4xy2 - 4x + y8 + 4ys - sy4 + 4y2 + 1.

2x2y2- 2+3xy4+4xy3-4xy2-4xy+.?)(era«rys*ry‘l-I},andq=x
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Appendix 2. Polynomial feedback

5

a, = 725ylx6 + 4x7 + 3x4y2 - 4x4y + 3x% 8x3y2 - 4x3y R 3x2y4 - 8x2y3 + 2)(2y2 +

4x2y - 3%+ 4xy‘1 - 4xy3 - 4xy2 + 4xy + 4x + y6 - 4y5 - y4 + 4y3 + y2 -4y -1

a, = 725x6y + 500x5y + 375x4y3 + 375x4y + 1000x3y3 + 5x3y2 - 500x3y + 375)(2y5 + 250x2y3 +

500x%y? - 375x% + 500xy® + 500xy* - 500xy® - 500xy? + 500xy + 125y - 125/° + 500y +
125y~ - 125y + 1.

a,, = - 125x% - 500x7 - 500x%% + 125x% - 500x® - 1500x%% + 500x°y + 500x® - 750x*y* +

375x%3 - s00x%?% + 375x%y + 750x* - 1500x°%y* + 1000x%° + 1500x°%2 - 500x% - 500x°
- 500x%y® + 375x%y5 + soox?y* + 250x%° - 375x% - 500x% - 500xy® + 500xy® + 7000xy*
- 500xy° - 1000xy* + 500xy + 500x - 125/% + 125/7 + 500y® - 125/° - 750y % - 125/ - 126.

a,, = 125 - xB - ax’ - :t)(sy2 - xsy - ax® - 72x5y2 - 4x5y + 4x® - 6x4y4 - :a‘x"y3 - 8x4y2+ 6x*
- 72x3y4 - z‘a’xsy3 + 72x3y2 + 4x3y -4l - 4x2y6 - .’:‘xzy5 - 4)(2y4 - 2x2y3 + 8x2y2 + 3x2y - ax?

- 4xy6 - 4xy5 + 8xy4 + 4xy3 - 8)(y2 - 4xy + 4x - y8 - y7 + y3 +y - 7).

ki, = 125(x° - 3x4y + 2x* 4 2)(3y2 - 4x3y - 6x2y3 + 4x2y2 + 4x2y - 2x% + xy® - 4xy3 + 4xy +
2t + 4® - 27 - 3y

ki, = 125x° - x% + 2x* + 2x3? - .?xzy3 + 4x2y - 2x% 4 xy* x-S -2+ 4B 2y2 -yl
k,, = 725{)(6 + 3+ 3x4y2 - x4y + x* s 6‘)(3y2 -l .?xzy4 - 2x2y3 - 2)(2y2 - X% .‘5‘)(y4

21
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k22 = 725{x6 + 35+ 3x4y2 + x4y + x4

3 2

+ 6x3y2 + 4x3y - 4xT + 3x2y4 + 2x2y3 + 2x2y2 - X7+

3xy4+4xy3-4xy2-4xy+3x+y6+y5+y4-y2+y- 7).

Characteristic polynomial is 22+bz+c, where:

b = 7125x% + 4 + ‘Ixsy2 + 4x® 4 72)(5)/2 - 4x” 4+ 6x4y‘1 + 72)(4y2 - 6x 4 72x3y4 - «*3’)(3y2
4x2y6 + 72x2y4 - 72x2y2 + ax? .'xxy‘5 - 4xy4 + 4)ry2 - 4Ax + y8 + <xyG - 6y4 + z.'y2 + 1), and:
c = 31250x'%% + 125000x''y? + 187500x'%* + 62500x°%° - 375000x°y° + 468750x5,° +
312500x%% - 406250x%% + 125x® + 1250000x"y® - 1500000x7y* + 500000x’y? + 500x7 +
625000x%y® + 625000x%/° - 1625000x%y* + 625500x%% + 500x% + 1250000x%/® - 2250000x%y° +
1500000x%y* - 498500x°y° - 500x° + 468750x%'° + 625000x*® - 2437500x%°® + 1875750x%y*
- 405750x%y% - 750x* + 62500000x3y® + 1500000x%y° - 998500x°y* + 374000x%y% + 500x° +
187500x%y'% + 312500x%y'C - 1625000x%/° + 1875500x%/® - 813000x%y* + 63000x% + 125000xy'?
- 375000xy'° + 500000xy® - 499500xy® + 374500xy* - 124500xy° - §00x +31250y'* + 62500y'2
- 406250y '0 + 625125/% - 406750y + 63750y* + 30750y% + 126.

5

+
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