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ABSTRACT Mathematical models are extensively employed to understand physicochemical processes in biological sys-
tems. In the absence of detailed mechanistic knowledge, models are often based on network inference methods, which in
turn rely upon perturbations to nodes by biochemical means. We have discovered a potential pitfall of the approach underpin-
ning such methods when applied to signaling networks. We first show experimentally, and then explain mathematically, how
even in the simplest signaling systems, perturbation methods may lead to paradoxical conclusions: for any given pair of two
components X and Y, and depending upon the specific intervention on Y, either an activation or a repression of X could be
inferred. This effect is of a different nature from incomplete network identification due to underdetermined data and is a phe-
nomenon intrinsic to perturbations. Our experiments are performed in an in vitro minimal system, thus isolating the effect and
showing that it cannot be explained by feedbacks due to unknown intermediates. Moreover, our in vitro system utilizes proteins
from a pathway in mammalian (and other eukaryotic) cells that play a central role in proliferation, gene expression, differen-
tiation, mitosis, cell survival, and apoptosis. This pathway is the perturbation target of contemporary therapies for various types
of cancers. The results presented here show that the simplistic view of intracellular signaling networks being made up of acti-
vation and repression links is seriously misleading, and call for a fundamental rethinking of signaling network analysis and
inference methods.
INTRODUCTION
Mathematical models in molecular, cellular, and develop-
mental biology, representing intracellular networks orga-
nized into modular components that interact positively
(activation) or negatively (inhibition or repression), are
extensively employed to understand physicochemical pro-
cesses in biological systems (1–4). The lack of mechanistic
knowledge presents a challenge to constructing accurate
models and establishing rigorous links to experimental
data (5), and has led to the widespread adoption of reverse
engineering and network inference methods that aim to un-
ravel network topology from quantitative data gathered
from perturbations (e.g., small-molecule kinase inhibitors,
over- or underexpression of enzymes, gene knockdowns,
siRNAs) (6–10). However, underlying all these methods is
the assumption that perturbations to a node will uniquely
determine the sign of its direct effects on other nodes.
Here we report on a surprising discovery that contradicts
this widespread assumption: perturbation methods may
lead to paradoxical conclusions, with either an activation
or a repression of a second component being inferred, de-
pending upon the particular type of intervention performed
on the first component.

We carried out our experiments on an in vitro reconsti-
tuted system involving the proteins from the canonical
mitogen-activated protein kinase/extracellular signal-regu-
lated kinases (MAPK/ERK) pathway. This comprises a
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set of phosphorylation/dephosphorylation covalent modifi-
cation cycles found in all eukaryotes (11–17), and is
involved in the regulation of proliferation, gene expres-
sion, differentiation, mitosis, cell survival, apoptosis, and
other processes (18). Our rationale for testing our ideas
on an in vitro system is that, if a method fails there, there
is no justification for believing that it will work in a more
complicated in vivo context. We also analyzed a generic
mathematical model that shows the generality of the phe-
nomenon for other enzymatic systems. Our results show
that the simplistic view of signaling networks through
activation and repression links is seriously misleading,
calling for a fundamental rethinking of network analysis
and inference methods. This is especially urgent because
the perturbation of pathway activities (and, specifically,
the targeting of MAPK/ERK components) is the focus
of current-generation drugs to treat advanced melanomas
and a wide range of tumors including lung and thyroid
cancers (19).
Perturbation methods

Awidely used strategy for reverse engineering, and indeed a
common feature of many popular approaches, relies on the
following simple principle: to deduce the character of a
directed interaction from a network node Y to another
node X, apply a perturbation that locally affects Y, and quan-
tify the change in X (20). The perturbation used experimen-
tally might be performed through small-molecule kinase
inhibitors, over- or underexpression of enzymes, siRNAs,
http://dx.doi.org/10.1016/j.bpj.2014.04.031
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or other interventions. If (positively) first-order correlated
effects are observed, an arrow Y / X is drawn, in the
network being studied, to graphically represent an activa-
tion. If the effects are of opposite sign, a blunt arrow Y x
X is drawn, to represent an inactivation, repression, degrada-
tion, or inhibition. Otherwise, no arrow is drawn between
these nodes (Fig. 1, a–c).

In this work, we undertook to test experimentally the
following question: is it possible that the nature of the spe-
cific perturbations may affect the results? We discovered
that, indeed, perturbation methods often lead to paradoxical
conclusions, that is, different perturbations, on the same
node, may lead to opposite conclusions. Specifically, even
for the simplest systems, it is possible that, for the same
pair of components X and Y, depending upon the specific
type of intervention on Y, either an activation Y / X or a
repression Y x X might be inferred. We emphasize that
this effect is of a completely different nature from the
well-studied issue of incomplete network identification
due to underdetermined data (21). It is a phenomenon
intrinsic to perturbation approaches, no matter how much
data is collected.
EXPERIMENTS AND THEORY

Experiments

We carried out our experiments on an in vitro reconstituted
system involving the proteins from the canonical Raf/Mek/
Erk MAPK/ERK pathway, a cascade of phosphorylations in
which Raf activates Mek, which, when active, in turn acti-
vates Erk. An example in which MAPK networks are used
as a subject of perturbation-based reverse engineering is
Santos et al. (22).

Specifically, our system consists of

1. Constitutively active Raf;
2. Unphosphorylated Mek;
3. Unphosphorylated Erk with Threonine T188 in the acti-

vation loop mutated to Valine (Erk-T188V), leaving only
Tyrosine Y190 to be phosphorylated by Mek;

4. Protein Phosphatase 2A (PP2A); and
5. Protein Tyrosine phosphatase (PTP).
FIGURE 1 Perturbation experiments. (a) Correlated response suggests activa

drawn in graph. To see this figure in color, go online.
For simplicity, we refer to Erk-T188V simply as ‘‘Erk’’. The
possible enzymatic reactions between these proteins are as
follows:

1. Constitutively active Raf will doubly phosphorylate Mek
to form activated Mekpp,

2. Mekpp in turn will phosphorylate Erk to form Erkp,
3. PTP will only dephosphorylate Erkp, and
4. PP2A will only dephosphorylate Mekpp.

The choice of Erk-T188V ensures that PP2A does not also
dephosphorylate Erkp. In the context of our general discus-
sion of perturbation methods, X is Mekpp, and Y is Erkp.
Our perturbations consist of modifying the total amounts
of Erk or PTP.

We measured doubly-phosphorylated Mek and singly-
phosphorylated Erk using an MS method, which we have
previously shown to be significantly more accurate than
quantitative Western blots with phosphospecific antibodies
(23). When the concentration of PTP is increased in the re-
action conditions (see Materials and Methods), we observed
decreased Erkp and increased Mekpp. In contrast, when the
concentration of Erk is increased in the reaction conditions
(see Materials and Methods), we observed increased Erkp
and increased Mekpp (Fig. 2 a). Western blots supported
the MS results with less quantitative discrimination
(Fig. 2 b).

Thus, our minimalist, in vitro system clearly shows that
opposite inferences between two nodes in a reaction (X as
Mekpp and Y as Erkp) can be inferred depending upon
experiment: a perturbation in which we increase PTP leads
to concluding an inhibitory edge Y x X, while a perturba-
tion in which we increase Erk would lead to an inference
of an activation Y / X. Every network reverse engineering
algorithm based on these experiments and using active
Mekpp and Erkp as nodes will suffer from this paradoxical
result. The only solution to the ambiguity is to add to the
network description the various phosphorylation states,
and to measure these as well.
Modeling

To understand these experimental results, we formulated
and analyzed a minimal mathematical model that suggests
tion. (b) Anti-correlation suggests repression. (c) If no response, no edge
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FIGURE 2 (a) Mass-spectrometry-based quantitation of Erkp and Mekpp under PTP perturbation (top) and Erk perturbation (bottom). The amounts of

Erkp and Mekpp at 30 min, quantified by the AQUA method (see Materials and Methods and Gerber et al. (41)), are plotted at the indicated concentrations

of the perturbed enzymes. Error bars show the standard error of the mean of three technical replicates (same sample, three different reaction tubes). (b) West-

ern blot-based quantitation of Erkp and Mekpp under PTP perturbation conditions and Erk perturbation conditions. Amounts of Erkp and Mekpp, quantified

as described in Materials and Methods, are plotted at the concentrations of the perturbed enzymes after 30 min of reaction time. Error bars show the standard

error of the mean of three technical replicates (same sample, three different reaction tubes). To see this figure in color, go online.
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an explanation for the ambiguous effects. We employ a
widely-used model of enzymatic transformation of a sub-
strate, in our case Erk, to a product, in our case Erkp:

Mek #
a

b
Mekpp

Mekppþ Erk#
g

d
Mekpp : Erk/

x
Mekppþ Erkp

PTPþ Erkp#
4

j
Erkp : PTP/

h
PTPþ Erk:

(1)

The letters a,b,. denote reaction constants, which are al-

lowed to be arbitrary positive numbers. In this model, a
kinase is constitutively activated and inactivated. The inac-
tive form of the enzyme is, in our case, Mek. Its active form,
Mekpp, drives a phosphorylation reaction in which a target
or substrate, Erk in our case, is converted to an active or
phosphorylated form, Erkp, the product of the reaction.
Finally, a constitutively active phosphatase, PTP in our
case, dephosphorylates Erkp back into inactive form Erk.
Biophysical Journal 106(12) 2720–2728
The model includes two intermediate enzyme-substrate
complexes, Mekpp:Erk and Erkp:PTP. Some limitations of
these assumptions are discussed in the Materials and
Methods. We denote by X the total amount of active Mek
(Mekpp) and by Y the total amount of active Erk (Erkp).
In our experimental system, these are the total measured
amounts. Note that the total amounts of Erk and PTP, in
any form, are

ErkT ¼ ErkþMekpp : Erkþ Erkpþ Erkp : PTP and
PTPT ¼ PTPþ Erkp : PTP

:

We assume that protein is synthesized and degraded over
long timescales, so that the total protein concentration can
be regarded as constant over the system’s equilibration time-
scale. We can show the following for the model (details are
provided in the Materials and Methods).

Suppose that the system is allowed to reach steady state
and the amounts of X (total active Mek, in our experimental
system) and Y (total active Erk, in our experimental system)
are measured. If the total amount of substrate ErkT is
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increased, and the system is allowed to reach steady state,
then it will be found that the levels of both Y and X have
increased: perturbation analysis would suggest that Y /
X. If, instead, the total amount of Erk phosphotase PTPT is
decreased, and the system is allowed to reach steady state
again, then it will be found that the amount of Y has once
again increased, but the amount of X has now decreased:
perturbation analysis would instead suggest that Y x X.

An intuitive and mechanistic interpretation of this
behavior is as follows: When the total substrate ErkT is over-
expressed, its active form Erkp increases at steady state, so Y
is higher, but there is also more inactive Erk that can
sequester the enzyme (MekPP), thus insulating it from
dephosphorylation and resulting in higher total active
enzyme X as well. On the other hand, if the total phosphatase
amount PTPT is decreased, there is again more active form
Erkp and hence higher total active substrate Y, but now there
is less inactive target (Erk) to sequester enzyme (Mekpp),
thus insulating it less from dephosphorylation and resulting
in lower steady-state value of total active enzyme X. Of
course, this intuitive interpretation has to be rigorously
proved, because it is conceivable that there could be, for
example, less inactive Erk in the first case, with all additional
Erk taking active form. It is important to note that the model
displays the same behavior at intermediate time points (sim-
ulations shown in the Supporting Material). We can also be
more specific about the changes in every individual quantity:
Fig. 3 shows the changes in all the components of the system.
Relation to retroactivity

Network reconstruction algorithms differ widely in the sta-
tistical and mathematical methods used to analyze the infor-
FIGURE 3 Predictions of theorem. (a) Results of perturbation in total phosph

substrate. (b) Results of perturbation in total substrate ST: (i) changes in individ

color, go online.
mation gleaned from perturbation experiments. A typical
example is the modular response analysis (MRA) method
introduced in Kholodenko et al. (6,20) and Andrec et al.
(24) for deriving local response coefficients from global
response data. MRA uses linear algebra techniques to distin-
guish local interactions from confounding effects that prop-
agate throughout intermediate nodes in a network and cause
global changes that are hard to distinguish from local ef-
fects. Other algorithms for the same purpose use informa-
tion-theoretic tools, graphical Bayesian models, numerical
approximations that damp long-distance effects, or network
deconvolution techniques (25–27). Recent work using MRA
uncovered topological differences in the MAPK core
network in rat adrenal pheochromocytoma (PC-12) cells,
which were dependent upon whether cells were activated
with epidermal or neuronal growth factor (22) (see our
Fig. 4).

It was hypothesized in Santos et al. (22) that the different
topologies arise from pathways that involve other players in
the cell, such as PKC phosphorylation of RKIP, promoting
Erk1/2 activation by modifying the affinity of RKIP for
Raf-1 as well as other PKC feedback mechanisms (28,29).
Our results show that even in isolated in vitro systems,
such ambiguous effects may take place, including a minimal
system involving proteins from the canonical MAPK
pathway. The self-contradictory aspect that we discovered
potentially impacts a broad range of methods, raising ques-
tions to be considered when evaluating the resulting
networks.

Our mathematical analysis predicts that such ambiguous
effects will typically appear in backward-pointing interac-
tions that superficially contradict the cascade view of cell
signaling, in which substrates are the targets of enzyme
atase FT: (i) changes in individual nodes and (ii) in total active enzyme and

ual nodes and (ii) in total active enzyme and substrate. To see this figure in
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FIGURE 4 Graphical representation of MAPK networks (Raf, Mek, and

Erk) in PC-12 cells, illustrating the reconstruction done in Santos et al. (22)

based on data collected in different experiments. (Left) After 50 epidermal

growth factor stimulation; (right) after 50 neuronal growth factor stimula-

tion. (Sharp arrows) Positive effects; (blunt arrows) negative effects. Pro-

tein amounts were perturbed by RNAi downregulation of mRNA.

Network reconstruction was based on the algorithm from Andrec et al.

(24), a variant of MRA. To see this figure in color, go online.
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activity but the substrates themselves do not actually affect
enzyme activity. In the traditional view, backward arrows
are often explained through hypothetical signaling nodes
that might mediate the feedbacks and/or cross-talk between
pathways (30). An alternative, or at least complementary
explanation, lies in the retroactivity phenomenon, akin to
impedance in electrical and mechanical networks, in which
the mere act of transmitting a signal produces a reaction due
to the load imposed by the substrate (31–36). The biochem-
ical basis for retroactivity may be the competition among ki-
nases and phosphatases for binding to docking sites (37),
resulting in a sequestration-induced feedback (see also
Blüthgen et al. (38)). Various experimental demonstrations
of retroactivity have been performed, ranging from an
in vitro covalent modification cycle based on a reconstituted
uridylyltransferase/uridylyl-removing enzyme PII cycle (a
model system derived from the nitrogen assimilation control
network of Escherichia coli (39)), to an in vivo study of a
MAPK kinase pathway regulating the terminal patterning
system of the Drosophila embryo (40).

Our primary focus here was not on the existence of such
apparent feedbacks but rather, on the apparently contradic-
tory appearance of effects of opposite signs, such as the
different-color arrows among respective components in
Fig. 4. Our experimental results also serve to illustrate the
retroactivity phenomenon, but with the added insight that
retroactivity may lead to paradoxical network reconstruc-
tions. These contradictory effects may be obscured in other
experiments by the use of phosphospecific antibodies for the
detection and quantitation of protein modifications, a tech-
nology that is inherently biased and error-prone compared
to mass spectrometry (23).
MATERIALS AND METHODS

Proteins

N-terminal GST-tagged recombinant human Raf-1 (~65 kDa) residues,

306-end, containing the mutations Y340D and Y341D rendering it consti-
Biophysical Journal 106(12) 2720–2728
tutively active, were purchased from Millipore (Cat. No. 14-352; Billerica,

MA). N-terminal GSTand C-terminal His6-tagged, recombinant full-length

human Mek1 (~71 kDa) were expressed and purified from bacteria using

Ni/NTA columns (see Fig. S1 in the Supporting Material). N-terminal

His6-tagged p42 MAP kinase (Erk2) from Xenopus laevis expressed on a

pT-T7 (~43 kDa) plasmid (gift from Jim Ferrell) was mutated on Threo-

nine188 to Valine (Erk-T188V), by site-directed mutagenesis using a

QuikChange II Site-Directed Mutagenesis Kit (Cat. No. 200524; Strata-

gene, La Jolla, CA) according to the manufacturer’s instruction. It was ex-

pressed and purified as described in Prabakaran et al. (23) (see Fig. S1). For

simplicity, we refer to Erk-T188V simply as ‘‘Erk’’. Both Mek and Erk were

purified to almost 95% purity.

Protein phosphatase 2A (PP2A) was purchased from Millipore (Cat. No.

14-111) and protein tyrosine phosphatase (PTP) was purchased from New

England Biolabs (Cat. No. P0752S; Ipswich, MA).
In vitro reactions

All reactions were done in 20 mMMOPS, 5 mM EGTA, 1 mM dithiothrei-

tol, 150mMNaCl, 0.1 mMATP, 15mMMgCl2, pH 7.2 and at 25�C. Briefly,
the reactions were set in three different 1.5-mL Eppendorf tubes. The pro-

teins were added in the sequence Raf, Mek, Erk, and PP2A, followed by

PTP to a final volume of 25 mL, and the reaction mixture was shaken at

350 rpm at 25�C for 30 min. Then the reactions were stopped with the addi-

tion of sample buffer (Cat. No. np0007; Invitrogen, Carlsbad, CA).

For PTP perturbations, the reactions were carried out at two different

concentrations of PTP, at 3 nM and 30 nM. The rest of the constituents

in the reactions are 80 nM Raf, 300 nM Mek, 920 nM Erk, and 20 nM

PP2A. For Erk perturbation, the reactions were carried out at two different

Erk concentrations, 230 and 1380 nM. The rest of the constituents are

80 nM Raf, 300 nM Mek, 30 nM PTP, and 20 nM PP2A.
Mass spectrometry analysis

Synthetic phosphopeptide internal standards, corresponding to the tryptic

phosphopeptides of Erkp (VADPDHDHTGFLVE(pTyr)VAT(RC13N15))

and Mekpp (LCDFGVSGQLID(pSer)MAN(pSer)FVGT(RC13N15)) with

C-terminal arginines fully labeled with 13C and 15N were purchased from

New England Peptide (Gardner, MA) at 95% purity. Stock solutions were

prepared for each peptide according to the manufacturer’s instructions.

For mass spectrometry (MS), a reaction mixture containing both Erk and

Mek in sample buffer was loaded on a 12% 29:1 sodium dodecyl-sulfate

polyacrylamide-gel electrophoresis gel, washed with water, and stained

with SimplyBlue (Cat. No. LC6065; Invitrogen, Carlsbad, CA). A blank

lane was used for background correction.

Bands corresponding to Erkp (~43 kDa) and Mekpp (~71 kDa) were

excised, washed with 100 mM ABC (ammonium bicarbonate) buffer and

ACN (acetonitrile) (Honeywell Burdick and Jackson, Muskegon, MI),

reduced with 10 mM dithiothreitol at 56�C for 45 min and then alkylated

with 50 mM iodoacetamide in the dark for 30 min. After washing with

ABC and ACN (2:1 mixture) for 15 min three times and then 5 min shrink-

ing with ACN, 12 ng/mL of sequencing-grade modified trypsin (Cat. No.

V5111; Promega, Madison, WI) was added and the mixture left on ice

for 1 h.

A quantity of 500 fmol of each of the internal standards was added and

the mixture incubated at 37�C for 18 h. The digested tryptic peptides were

extracted with ABC buffer. After drying in a speed vac, the sample was re-

constituted in 20 mL of 50% water (containing 5% formic acid) and 50%

ACN. Aliquots of 5 mL were analyzed by liquid chromatography/mass

spectrometry (LC/MS).

The LC/MS system comprised a micro-autosampler, a nanoLC-2D nano-

flow HPLC pump (both from Eksigent Technologies, Dublin, CA), and a

LTQ XL-Orbitrap high-accuracy/resolution mass spectrometer (Thermo

Fisher Scientific, Waltham, MA). A 100-mm PicoTip Emitter column
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(New Objective, Woburn, MA) was packed in-house using 5 mm, 10-nm

pore size Magic C18 beads (Michrom BioResources, Auburn, CA). A 60-

min gradient, 95–20% A, 5–80% B, in the first 10 min for Mekpp

doubly-charged phosphopeptide (LCDFGVSGQLID(pSer)MAN(pSer)

FVGTR) to elute was utilized for quantifying Mek phosphorylation, along

with two targeted full-scan windows 5 2.5 m/z for the doubly-phosphory-

lated peptide and its corresponding internal standard (A ¼ 0.2% formic aid

in water and B ¼ 0.2% formic acid in ACN). Fig. S2 illustrates a represen-

tative chromatogram, mass spectrum of doubly-charged Mekpp and mass-

spectrum of its internal standard. A 60-min gradient, 95–65% A, 5–35% B

was utilized for Erkp triply-charged phosphopeptide (VADPDHDHTGFL

VE(pTyr)VATR) to elute with two targeted full-scan windows 5 2.5 m/z

for the monophosphorylated peptide and its corresponding internal stan-

dard. Fig. S3 illustrates a representative chromatogram, mass-spectrum of

triply-charged Erkp and mass-spectrum of its internal standard. The

amounts of both Mekpp and Erkp were quantified using the AQUA method

(41) by taking the peak-area ratio of the phosphorylated peptide to its cor-

responding internal standard.

Peak-area integration of extracted ion chromatograms (50.17 m/z of the

most abundant isotope), blank correction, and calculation of sample/inter-

nal standard ratios were programmed in the software XCALIBUR (Thermo

Scientific). The intensities of the phosphorylated peptides of Mek and Erk,

normalized to their corresponding internal standards, are plotted in Fig. 2
dm=dt ¼ � am þ bm�

dm�=dt ¼ am � bm� � gm�e þ ðdþ xÞcm�e
de=dt ¼ � gm�e þ dcm�e þ hc

pe�
dcm�e=dt ¼ gm�e � ðdþ xÞcm�e
de�=dt ¼ xcm�e þ jc

pe� � 4pe�

dp=dt ¼ ðjþ hÞc
pe� � 4pe�

dc
pe�

�
dt ¼ � ðjþ hÞc

pe� þ 4pe�:

(2)
using the software GRAPHPAD PRISM Ver. 4 (GraphPad Software, La

Jolla, CA).
Western blot analysis

For the antibody analysis of Fig. 2 b, samples in sample buffer were heated

at 70�C for 10 min and 100 pg/well of each sample was loaded in triplicate

on a 15-well 12% 29:1 sodium dodecyl-sulfate polyacrylamide-gel electro-

phoresis gel (nine technical replicates for each data point). For the antibody

analysis of Fig. S4, Fig. S5, and Fig. S6, three technical replicates were

loaded for each reaction. After separation, proteins were transferred onto

transfer membranes (Cat. No. IPVH00010; Millipore) for 1 h, incubated

with blocking buffer (Cat. No. 92740-000; LI-COR Biosciences, Lincoln,

NE) for 60 min at room temperature, and then incubated with rabbit

anti-phospho-Mek antibody (Cat. No. 2338; Cell Signaling Technology,

Beverly, MA) at 1:2000 dilution and mouse anti-phospho-tyrosine-Erk

(monoclonal anti-MAP kinase, monophosphorylated tyrosine produced in

mouse (Cat. No. M3682; Sigma, St. Louis, MO)) along with rabbit anti-to-

tal Erk (Cat. No. 06-182; Millipore) antibody at 1:2000 overnight at 4�C.
Membranes were washed four times with PBS (phosphate-buffered sa-

line) and incubated with IRDye 680, goat anti-rabbit IgG (Cat. No. 926-

32221; LI-COR Biosciences) at 1:1000 dilution, and IRDye 800, goat

anti-mouse IgG (Cat. No. 926-32210; LI-COR Biosciences) at 1:10 000

dilution and for 1 h at room temperature in the dark. Finally, membranes

were washed four times with PBS and scanned with the Odyssey Infrared

Imager (LI-COR Biosciences) at 169-mm resolution, medium-quality, and

intensity level 3 for both 680 and 800 channels. Bands were quantified

with ODYSSEY software (Ver. 2.3; LI-COR). Each band was five times
zoomed, manually outlined and default background correction settings (me-

dian, border width 2, top-down) used to determine the integrated intensity.

Fig. S4 illustrates a representative Western blot used for the experiment.

Mek and Erk due to their different molecular weights run to different posi-

tions on the gel. Red bands indicate IRDye680 channel and green bands indi-

cate IRDye800 channel. Their overlaid images are also shown in Fig. S4.

Intensity from the red channel is used for the Mekpp quantitation while

the relative intensity of the green channel to the red one is used for quantita-

tion of Erkp ((23)). The intensity of the 680 channel for Mekpp and the 800

channel for Erkp were plotted using GRAPHPAD PRISM, Ver. 4.
Details of model

Assuming that protein is synthesized and degraded over long timescales, so

that the total protein concentration can be regarded as constant over the sys-

tem’s equilibration timescale, the mass-action kinetics’ differential equa-

tions governing the time evolution of the components in the chemical

reaction (1) is given by the set of ordinary differential equations shown

in Eq. 2. For simplicity, we use the following lower-case variables to indi-

cate the molar concentrations of components: cm*e¼ [Mekpp : Erk]; cpe*¼
[Erkp : PTP]; e ¼ [Erk]; e* ¼ [Erkp]; m ¼ [Mek]; m* ¼ [Mekpp]; and p ¼
[PTP].
The letters a, b,. denote reaction constants, which are allowed to be arbi-

trary positive numbers for the purpose of our mathematical arguments. The

amounts of constitutively active Raf and protein phosphatase 2A (PP2A)

are subsumed by the values of a and b. Total concentration of active kinase,

in free (Mekpp) or bound (Mekpp:Erk) form, is denoted by x. Total concen-

tration of active target, in free (Erkp) or bound (Erkp:PTP) form, is denoted

by y.

The following three conservation laws hold along any solutions of the

system

mþ m� þ cm�e ¼ m�
T ; (3)

where m*T is the total amount of enzyme in any form (inactive, active but

free, or bound to complex),

pþ cpe� ¼ pT ; (4)

where pT is total amount of phosphatase (free or bound), and

eþ cm�e þ e� þ cpe� ¼ eT ; (5)

where eT is the total amount of substrate in any form.

We will show next that, for the model in Eqs. 1 and 2, from a perturba-

tion in total phosphatase pT, one would deduce a repression arrow Y x X,

but from a perturbation in total substrate eT, one would deduce an activa-

tion arrow Y / X. Specifically, if pT is increased, then, at steady state, y

decreases and x increases; if, instead, eT is increased, then both y and x

increase.
Biophysical Journal 106(12) 2720–2728



2726 Prabakaran et al.
A theorem

Any vector of steady-state concentrations�
m;m�; e; cm�e; e

�; p; cpe�
�

is obtained by setting to zero the right-hand sides of the differential equa-

tions, and solving these seven algebraic equations for m,.. Equivalently,
for any given values of the total concentrations m*T, pT, and eT, steady states

are characterized by the three conservation constraint Eqs. 3–5 together

with the following four additional relations:

m ¼ b

a
m�ðobtained from _m ¼ 0Þ; (6)

cm�e ¼ h
cpe�

�
obtained from _e� þ _cpe� ¼ 0

�
; (7)
x

X;Mekpp : Erk;Erkp : PTP;Erk Y;Erkp Mekpp;Mek PTP
DPTPT [ [ Y Y [
DErkT [ [ [ Y Y
cm�e ¼ g
m�eðobtained from _cm�e ¼ 0Þ; (8)
dþ x

cpe� ¼ 4
pe�

�
obtained from _cpe� ¼ 0

�
: (9)
jþ h

The existence and uniqueness of steady states, for any given values of the

conserved quantitiesm*T, pT, and eT, follows from the existence and unique-

ness of steady states for the system obtained by removing the _m equation,

the terms ‘‘am-bm*’’ in the _m� equation, and replacing in the conservation

relation for m*T the value of m determined from m* by Eq. 6. This reduced

system was shown to have unique steady states in Angeli and Sontag (42). A

very useful tool for the study of dynamics for such enzymatic systems is

that of contraction theory (43,44).

At any given steady-state vector of concentrations, let us denote by x the

total concentration of active kinase, free or bound,

x ¼ m� þ cm�e;

and by y the total concentration of product, free or bound,
y ¼ e� þ cpe� :

We want to show that x and y both increase (respectively, decrease) if the

amount of substrate is increased (respectively, decreased), and, instead,
that x increases (respectively, decreases) and y decreases (respectively, de-

creases) if the amount of phosphatase is increased (respectively, decreased).

Mathematically, we want to compare the signs of the derivatives x0 and y0 to
those of p

0
T or e

0
T. We formulate the question more precisely as follows.

Suppose that we consider a one-parameter family of positive steady-state

concentrations

pðqÞ ¼ �
mðqÞ;m�ðqÞ; eðqÞ; cm�eðqÞ; e�ðqÞ; pðqÞ; cpe� ðqÞ

�
;

and respective total active kinase and products
xðqÞ ¼ m�ðqÞ þ cm�eðqÞ;
yðqÞ ¼ e�ðqÞ þ cm�eðqÞ:

The parameter q may be thought of as pT, or eT, but for the analysis is arbi-

trary. We suppose given a certain value q0 of this parameter, and compute
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m�0 ¼ dm�

dq

����
q ¼ q0

;

e0 ¼ de

dq

����
q ¼ q0

;.
where we are using primes to indicate the derivatives with respect to q, eval-

uated at the parameter q0, and we omit the parameter from now on (thus,
when writing e* below, we mean e*(q0), and so forth). Note that if the

one-parameter family p(q) describes steady states that correspond to

same total phosphatase PT, we have p
0
T ¼ 0, and if instead the substrate

amount is constant, then e
0
T ¼ 0.

Mathematically, we show the result in the Theorem stated below, which

can be summarized symbolically as follows:
Theorem

The following relations hold for the derivatives with respect to q, under the

assumption that m*
0
T ¼ 0:

In general,

sign x0 ¼ sign c0m�e ¼ sign c0pe� ¼ sign e0 ¼ �sign m�0

¼ �sign m0;

however, when e0T ¼ 0,
sign x0 ¼ sign c0m�e ¼ sign c0
pe� ¼ sign e0 ¼ sign p0

¼ �sign e�0 ¼ �sign m�0 ¼ �sign m0 ¼ �sign y0

¼ sign p0T ;

and when p0T ¼ 0,

0 0 0 0 �0
sign x ¼ sign cm�e ¼ sign c
pe� ¼ sign e ¼ sign e

¼ �sign p0 ¼ �sign m�0 ¼ �sign m0 ¼ sign y0

¼ sign e0T :

Proof

From Eq. 6, we have that sign m*
0 ¼ sign m

0
, which, combined with Eq. 3

and m*0T ¼ 0, gives that sign c
0
m*e ¼ �sign m*

0
.

From the definition x¼ m*þ cm*e together with Eq. 3, we havemþ x¼
m*T, from which it follows, because m*T ¼ 0, that sign x

0 ¼ sign m*
0
.

Also, differentiating Eq. 7 gives c
0
m*e ¼ �sign c

0
pe*.

Differentiating Eq. 8 gives�
g m�

dþ x

	
e0 ¼ c0m�e þ

�
g e

dþ x

	
ð�m�0Þ; (10)

so, because we already proved that sign c
0
m*e ¼ sign (�m*

0
), it follows that

sign e
0 ¼ sign c

0
m*e. This completes the proof of the first assertion.

0

Suppose now that e T ¼ 0. Because Eq. 5 says that

eþ cm�e þ y ¼ eT ;

it gives that y
0 ¼ �(c

0
m*e þ e

0
).
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Because sign c
0
m*e ¼ sign e

0
, it follows that (cm*e þ e)

0 ¼ c
0
m*e þ e

0
has

the same sign as c
0
m*e, and hence –sign y

0 ¼ sign(cm*e þ e)
0 ¼ sign c

0
m*e ¼

sign x
0
.

And because we already know that sign c
0
pe* ¼ sign x

0
, this also implies

that sign y
0 ¼ sign(�c

0
pe*). From

e� ¼ y� cpe� ;

we conclude that sign e*
0 ¼ sign y

0
.

Differentiating Eq. 9:

�
4 p

jþ h

	
p0 ¼ c0pe� þ

�
4 f

jþ h

	
ð�e�0Þ:

Because sign c
0
pe* ¼ sign (�e*

0
), it follows that sign p

0 ¼ sign c
0
pe*.

Finally, because p
0
T ¼ p

0 þ c
0
pe*, also sign p

0
T ¼ sign p

0
. This completes

the proof of the second assertion.

Now take the case p
0
T¼ 0. From Eq. 4, c

0
pe*¼�p

0
, so sign c

0
pe*¼�sign

p
0
. Differentiating Eq. 9:�

4 p

jþ h

	
e�0 ¼ c0pe� þ

�
4 e�

jþ h

	
ð�p0Þ;

so also sign e*
0 ¼ sign c

0
pe*.

Because y ¼ e* þ cpe*, it follows that also sign y
0 ¼ sign e*

0
.

Finally, because e
0
T ¼ e

0 þ c
0
m*e þ e*0 þ c

0
pe*, and the four terms in this

sum all have the same sign as x0, it follows that sign e
0
T ¼ sign x

0
. This com-

pletes the proof of the theorem.

It is also possible to formally prove that a perturbation in total enzyme

(Mek) will result in changes in X and Y in the same direction as this pertur-

bation. The proof is similar, but this conclusion is far less interesting,

because it is evidently true from the form of the reactions.

In the model and proof, we assumed that both enzymes are strongly irre-

versible, in the sense of Xu and Gunawardena (45). As long as equilibria are

nondegenerate (Jacobian is nonsingular), it then follows, by continuity of

steady states on reaction constants, that a sufficiently small rate for a reverse

reaction will not change the conclusions.

Another generalization of the theorem would be to explicitly model the

phosphorylation and dephosphorylation of Mek, through a full Michaelis-

Menten set of reactions including complex formation. The same conclu-

sions hold in that case, with a very similar but substantially longer proof.

Our theorem shows that the sign of the derivatives (m0 and so forth) are

constant at all steady states. This implies a global change as well, along any

smooth curve connecting steady states. In other words, the theorem is

proved formally for first-order perturbations, but the same result holds for

all perturbations. Indeed, suppose that we want to compare the values of

the steady-state concentrations p(q1) and p(q2) at two values q1,q2 of the

parameter q. Because, coordinatewise, we have, for example

mðq2Þ � mðq1Þ ¼
Z q2

q1

m0ðqÞdq;

then it follows that, if m
0
(q) > 0 for all parameter values q, also m(q2) >

m(q1).

Our result is justified by a mathematical proof, and hence is valid for all

parameters. Simulations that illustrate dynamic behavior as well as the ef-

fect of noninfinitesimal perturbations are shown in the Supporting Material.
DISCUSSION

A plethora of sophisticated reverse engineering methods are
routinely used to generate valuable data in the form of net-
works of players interconnected by edges indicating positive
and negative interactions. Nonetheless, our results empha-
size that a naive and simplistic view of enzymatic networks,
through positive and negative arrows interconnecting what
are inherently complex nodes, does not tell the whole story
in signal transduction. We have shown that even in simple
in vitro systems, such a view is misleading; clearly, if a
method fails there, there is no justification for believing
that it will work in a more complicated in vivo context.
Approaches that are more sophisticated are called upon, in
order to address the pitfalls of perturbation techniques,
which may, by themselves, lead to false conclusions. Seri-
ously erroneous conclusions may derive from considering
only discrete classes of connections while ignoring the intri-
cate nonlinear mechanisms underlying processes such as
phosphorylation (17,46,47).

To avoid incorrect interpretations of data obtained from
inhibitor or activator chemical screenings, it is imperative
to enrich analysis by considering the dynamics of such pro-
cesses in more mathematical and modeling detail. This
analysis might include, for example, enlarging network de-
scriptions to take into account sequestration effects, stoi-
chiometric constraints imposed by binding of transcription
factors to different promoter sites, competition for mRNA
polymerase, or competition for ribosome binding sites.
More powerful methods might require the introduction of
new perturbations that modify rate constants and other pa-
rameters. This task leads to challenging theoretical and
experimental questions in systems biology.
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Paradoxical results in perturbation-based signaling network reconstruction

Sudhakaran Prabakaran, Jeremy Gunawardena, and Eduardo D. Sontag

Additional experimental data
Supplementary Figure 1: The figure shows coomassie stained gels of purified Erk and
Mek. Mutated Erk (ErkT88V) was expressed in bacteria and purified using Ni/NTA
column (molecular weight ∼43 kDa). It is purified to almost 95% purity. Mek1 was also
expressed and purified to 95% purity.
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Supplementary Figure 2: Representative chromatogram, representative spectrum of the
analyte Mekpp peptide (doubly charged) along with the representative spectrum of its
corresponding internal standard peptide is shown in the figure. Relative area under the
curve of the analyte Mekpp peptide to its internal standard is used for Mekpp quantitation.
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Supplementary Figure 3: Representative chromatogram, representative spectrum of the
analyte Erkp peptide (triply charged) along with the representative spectrum of its corre-
sponding internal standard peptide is shown in the figure. Relative area under the curve
of the analyte Erkptide to its internal standard is used for Erkp quantitation.
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Supplementary Figure 4: PTP perturbation and Erk perturbation were further done for
pairs of new values and analysed with western blots. The results are consistent with the
previous results (Figure 2). Briefly, amounts of Erkp and Mekpp, quantified as described
in Materials and Methods, are plotted at the concentrations of the perturbed enzymes
after 30 minutes of reaction time. Error bars indicate standard errors of the mean of three
technical replicates (same sample, three different reaction tubes).
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Supplementary Figure 5: Representative western blots for experiment in Supplementary
Figure 4 along with time-course data are shown in the Figure. These blots were done
for PTP pertubation experiments. Reaction aliquots containing Erk (∼43kDa) and Mek
(∼71kDa), collected at 0min, 10min, 20min, 30min and 40min of reaction times were
snap frozen and run on the same SDS-PAGE, transferred and probed with mouse, anti-
phospho Erk ab, rabbit, anti-total Erk ab and rabbit anti-phospho-Mek ab. Secondary
anti- mouse (green pseudo color) and anti-rabbit (red pseudo color) were used to probe the
primary antibodies. The relative intensities of green and red channels were used for Erkp
quantitation (overlaid image), the red channel intensity was used for Mekpp quantitation.
Error bars show the standard error of the mean of three technical replicates (same sample,
three different reaction tubes).
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Supplementary Figure 6: Representative western blots for experiment in Supplementary
Figure 4 along with time-course data are shown in the Figure. These blots were done
for Erk pertubation ex- periments. Reaction aliquots containing Erk (∼43kDa) and Mek
(∼71kDa), collected at 0min, 10min, 20min, 30min and 40min of reaction times were
snap frozen and run on the same SDS-PAGE, transferred and probed with mouse, anti-
phospho Erk ab, rabbit, anti-total Erk ab and rabbit anti-phospho-Mek ab. Secondary
anti- mouse (green pseudo color) and anti-rabbit (red pseudo color) were used to probe the
primary antibodies. The relative intensities of green and red channels were used for Erkp
quantitation (overlaid image), the red channel intensity was used for Mekpp quantitation.
Error bars show the standard error of the mean of three technical replicates (same sample,
three different reaction tubes).
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Supplementary Figure 7: Quantitative values of reactions in Supplementary Figure 5.
Mekpp and Erkp quantitative values do not show significant differences between 30 and
40 min, as shown by p-values computed using Student’s t-test, 2-tailed, unequal variance.

On the other hand, the discovered effects are significant, at both 30 and 40 minute time-
points. For Erkp under PTP Pertubation, one has at 30 min, p-value = 0.01 and at 40
min, p-value = 0.08. For Mekpp under PTP Pertubation, one has at 30 min, p-value =
0.004 and at 40 min, p-value = 0.047
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Supplementary Figure 8: Quantitative values of reactions in Supplementary Figure 6.
Mekpp and Erkp quantitative values do not show significant differences between 30 and
40 min, as shown by p-values computed using Student’s t-test, 2-tailed, unequal variance.

On the other hand, the discovered effects are significant, at both 30 and 40 minute time-
points. For Erkp under Erk Pertubations, one has at 30 min, p-value = 0.027 and at 40
min, p-value = 0.057. For Mekpp under Erk Pertubation, one has at 30 min, p-value =
0.059 and at 40 min, p-value = 0.02
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Simulations
We provide here some simulations that confirm the predictions of the theorem. We take
initially the following values for the kinetic constants:

α = 0.1, β = 0.1, γ = 0.01, δ = 1, ξ = 1, ϕ = 0.01, η = 1, ψ = 1,

and conserved quantities:

mT = 100, pT = 100, eT = 1000

(units: s−1 for constants in monomolecular and nM−1s−1 for bimolecular reactions, and
nM for conserved quantities). As precise values of kinetic constants are not known,
we picked these numbers as a rough order of magnitude approximation of the different
Raf/Mek/Erk constants in the reactions given in the Online Supplementary Materials
for the paper (1). (The values of α and β are obtained from multi-step reactions as
kcateT/Km, assuming a first-order linear regime in a Michaelis-Menten approximation.)
The conserved quantity numbers represent a rough range of the concentrations of enzymes
used in our experimental work. Later, we also show simulations where parameters and
enzyme concentrations are taken to have very different values.

As initial states in the first set of simulations, we take:

m(0) = mT , p(0) = pT , e(0) = eT , m
∗(0) = 0, cm∗e(0) = 0, e∗(0) = 0, cpe∗(0) = 0.

The simulations in Fig. 9 compare the solutions for the above values of pT and eT and the
solutions obtained when perturbing each of these by doubling them one at a time. Shown
are plots of total active enzyme (left) and total active substrate (right). Observe that not
only the predicted changes in steady states are as claimed, but in addition the dynamic
behavior at intermediate states, even under non-infinitesimal perturbations, is consistent
with the predictions.

Keeping our parameters unchanged, we investigate next the effect of starting at fully
activated substrate, enzyme, or both, see Figs. 10, 11, and 12. At steady state, the same
values obtain, but transient behaviors are different. Nonetheless, the conclusions regarding
the effect of perturbations stay unchanged: For the active enzyme (x(t)) all values are
higher, at steady state, for both types of perturbations. For active substrate (y(t)), all
values are higher both transiently and at steady state for substrate perturbations, while
all values are lower both transiently and at steady state for phosphatase perturbations.
9



Supplemental Figure 9: Left: active enzyme (x(t)) as function of time, using mT = 100,
pT = 100, eT = 1000, α = β = 0.1, m(0) = mT , e(0) = eT , m∗(0) = 0, e∗(0) = 0.
Observe that all values are higher, both transiently and at steady state, for both types of
perturbations. Right: active substrate (y(t)) as function of time, using same parameters.
Observe that all values are higher, respectively lower, both transiently and at steady state,
for substrate (ErkT , red), respectively phosphatase (PTPT , blue), perturbations. Black
plot is reference (unperturbed).
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Supplemental Figure 10: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 0.1, m(0) = mT , e(0) = 0, m∗(0) = 0, e∗(0) = eT . Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 11: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 0.1, m(0) = 0, e(0) = eT , m∗(0) = mT , e∗(0) = 0. Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 12: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 0.1, m(0) = 0, e(0) = 0, m∗(0) = mT , e∗(0) = eT . Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Different nominal kinase and phosphotase amounts

We study here the effect of increasing enzyme amounts by an order of magnitude. Once
again, conclusions are unchanged. See Figs. 13, 14, 15, and 16.

Supplemental Figure 13: Left: active enzyme (x(t)) as function of time, using pT = 1000,
mT = 1000, eT = 1000, α = β = 0.1, m(0) = mT , e(0) = eT , m∗(0) = 0, e∗(0) = 0. Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 14: Left: active enzyme (x(t)) as function of time, using pT = 1000,
mT = 1000, eT = 1000, α = β = 0.1, m(0) = mT , e(0) = 0, m∗(0) = 0, e∗(0) = eT . Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 15: Left: active enzyme (x(t)) as function of time, using pT = 1000,
mT = 1000, eT = 1000, α = β = 0.1, m(0) = 0, e(0) = eT , m∗(0) = mT , e∗(0) = 0. Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 16: Left: active enzyme (x(t)) as function of time, using pT = 1000,
mT = 1000, eT = 1000, α = β = 0.1, m(0) = 0, e(0) = 0, m∗(0) = mT , e∗(0) = eT . Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Different kinetic constants for kinase modifications

We study here the effect of increasing by a factor the rates α and β at which the enzyme
E may be phosphorylated or dephosphorylated. Conclusions remain unchanged. See
Figs. 17, 18, 19, and 20.

Supplemental Figure 17: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 1, m(0) = mT , e(0) = eT , m∗(0) = 0, e∗(0) = 0. Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 18: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 1, m(0) = mT , e(0) = 0, m∗(0) = 0, e∗(0) = eT . Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 19: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 1, m(0) = 0, e(0) = eT , m∗(0) = mT , e∗(0) = 0. Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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Supplemental Figure 20: Left: active enzyme (x(t)) as function of time, using pT = 100,
mT = 100, eT = 1000, α = β = 1, m(0) = 0, e(0) = 0, m∗(0) = mT , e∗(0) = eT . Right:
active substrate (y(t)) as function of time, using same parameters. Colors are as in Fig. 9.
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