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INTRODUCTION 

THE FIELD of Algebraic System Theory is slowly expanding beyond the traditional confines of 
linear systems to include various restricted types of nonlinear systems, for instance, bilinear 
systems. We shall consider here a more general type of systems which have algebraic constraints 
on their state set and for which the state transitions are given by (arbitrary) polynomial functions 
of the inputs and state variables. The only technical restriction we shall make is to consider 
systems which begin their evolution from an equilibrium state. 

This paper is a summary (of a preliminary nature) of the results obtained so far on the above 
questions. A thorough study of the realization theory of polynomial systems is carried out in 
Sontag [7]. 

One of our main concerns in this work has been to obtain finiteness conditions, for it is our 
belief that finite computational procedures are an essential goal of applied algebra. 

In the first four parts of this paper we give the necessary mathematical preliminaries and define 
the systems that we study. Part 5 is concerned with teachability in bounded time, while in Part 
6 we look at the problem of deciding whether two systems have the same external behavior by 
applying finitely many inputs. In Part 7 we show that finitely many inputs (which can be chosen 
quite arbitrarily) are sufficient to separate those states of a system which are distinguishable. 
Part 8 is an investigation concerning the conditions under which systems with the same external 
behavior are isomorphic. 

* This research was supported in part by US Army Research Grant DAHC04-74-G-0153 and by US Air Force Grant 
AFOSR 72-2268 through the Center for Mathematical System Theory, University of Florida, Gainesville, FL 32611, 
U.S.A. This is an expanded version of the paper with the same title presented at the CNR-CISM Symposium on Algebraic 
System Theory, June 1975, Udine, ITALY. The editor of the proceedings, G. Marchesini, was unable to include this 
paper in the proceedings. 
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1. A L G E B R A I C  P R E L I M I N A R I E S  

We review now some notions from commutative algebra and algebraic geometry. The results 
can be found in any of the standard references; see, for instance, Dieudonn6 [1], Mumford [4], 
Macdonald [3]. Although the literature usually treats only the case in which solutions are taken 
in algebraically dosed fields, the generalization to the present setup (namely, arbitrary infinite 
fields) does not present any major difficulty. We shall therefore omit the proofs here. 

Throughout  this paper, k denotes an arbitrary but fixed infinite field. For any nonnegative 
integer n, k" is the set of all n-tuples of elements in k. In particular, k ° is a one-element set (0}. 
Similarly, k[T 1 . . . . .  T J ,  or kiT] when there is no danger of confusion, is the ring of polynomials 
in the indeterminates T 1 . . . . .  T with coefficients in k. If n = 0, kiT] is defined to be k. When 
f is in k iT  1 . . . . .  T ]  and x e k" then f(x) denotes the evaluation (i.e. specialization) o f f  at x. 

For  each subset Y _ k[T 1 . . . . .  T,] we define 

V(Y): = {x e ld'lf(x) = 0 for all f e Y}. 

For  each subset S ~_ k" we define 

I(S): = { f e  k[T 1 . . . .  , T,]I f ( x  ) = 0 for all x e S}. 

Of course, V(Y) = V((Y>), where (Y> denotes the ideal generated by the set Y. Since every 
ideal of kiT] is finitely generated (Hilbert's Theorem), we note that 

Lemma 1.1. For every Y _~ kiT] there exists a finite subset Yo - Y such that V(Y) = V(Yo). 
Proposition 1.2. Let V and I be defined as above. Then V, I give a Galois connection between 

the lattices of subsets of k iT  1 . . . . .  T,] and of ~.  Furthermore, the induced closure operator 
S~--~ S: = V(I(S)) defines a topology on/d', called the Zariski topology. The dosed sets for this 
topology are called k-points of algebraic sets. Algebraic sets in k" can themselves be considered as 
topological spaces under the topology induced from k". 

Since the field k is infinite, a polynomial function f :  k" ~ k: x ~ f(x) can tm identified in an 
unambiguous way with a polynomial in k [T  1 . . . . .  T,]. We shall always assume such an identifica- 
tion and shall speak indistinctly of polynomials and polynomial functions. A polynomial function 
f :  V ~ k, where V _ k", is by definition the restriction to V of a polynomial function f:/d'  --, k. 

Definition 1.3. Let V ~ k" be an algebraic set. Then the k-algebra A(V) of all polynomial func- 
tions f :  V -~ k with pointwis¢ operations is the coordinate ring of E The k-algebras of type A(V) 
are affine k-algebras. 

It is not difficult to verify that A(V) = k[T]/I(V). When k is algebraically dosed, affine k- 
algebras are characterized as finitely generated k-algebras with no nilpotent elements. 

The dimension of a k-algebra A is defined as the maximum possible length of chains of prime 
ideals. When A is an integral domain finitely generated over k, the dimension of A coincides with 
the transcendence degree of A over k. 

We say an algebraic set V _ k" is irreducible if there do not exist algebraic sets V1, V 2 such that 
V = V 1 w V 2 and V # V 1, V # V 2. Such algebraic sets are also called (affine) varieties. The 
following results are well known. 

Proposition 1.4. An algebraic set V is irreducible if and only if I(V) is a prime ideal. I f . . .  c V _ 
c V i c Vi+ 1 ~ . . .  is a strictly monotonic chain of algebraic sets, then . . .  ~ I(Vi_l) ~ I(V~) 

I(V~+ 1) ~ -. .  is also strictly monotonic. In particular, every ascending or descending chain of 
irreducible algebraic subsets of V has a length at most equal to the dimension of A(V). The dimen- 
sion of A(k") is n. 
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We remark that the last statement of Proposition (1.4) is the only place where the assumption 
k = field is essential. Generalizations to arbitrary integral domains are not very difficult. 

The (algebraic)dimension dim V of an algebraic set V is by definition the dimension of A(V). 
Except for the algebraically closed case, this number is only an upper bound on the geometric 
dimension given by the maximum length of chains of varieties included in V. Clearly, if V _~ k ~ 
then dim V ~< n. 

Definition 1.5. Let V, W be algebraic sets and W _ km. A map f:  V ~ W is called a morphism (or 
polynomial map) if there exist f l  . . . . .  fm in A(V) such that f (x)  = (fl(x) . . . .  ,f,~(x)) for all x e V. The 
associated comorphism A(f): A(BO ~ A(V) is the k-algebra homomorphism defined by A(f):g ---, 
g of  for all g ~ A(W). 

Theorem 1.6. Algebraic sets and morphisms define a category, which is equivalent to the dual 
of the category of affine k-algebras and k-algebra homomorphisms. 

Remark 1.7. The image of an algebraic set under a morphism is not necessarily an algebraic set. 
However, it can be proved (see Mumford [4], Chapter I, §8, Corollary 2]) that the image of an 
algebraic set is a constructible set if k is an algebraically closed field. (A set is constructible in V 
if it can be expressed as a finite union of sets of the form U c~ F, where U is open and F is closed 
in the Zariski topology of V.) 

Theorem 1.8. Let f :  V ~ W be a morphism of algebraic sets. Then: 
(a) f is continuous for the Zariski topologies on V and W. 
(b) f is dominating, i.e. ~ ~  = W, if and only if A(f)  is injective. 
(c) f is injective if A(f)  is surjective. 
Remark 1.9. Injectivity o f f  does not imply surjectivity of A(f), except in special but important 

cases, for example, when f is the restriction of an injective affine map f:  k ~ ~ / ¢ ' .  (Surjectivity of 
A(f)  is in fact equivalent in general o f f  being a closed embedding.) 

Proposition 1.10. Products exist in the category of algebraic sets. Moreover, A(V x W) is 
isomorphic as a k-algebra to A(V) ® A(W), the tensor product of the k-algebras A(V) and A(W). 

Intuitively, if V _~ k n and W _ k ~ then the categorical product of V and W is the set product 
V x W seen as an algebraic subset of k n+m. 

From Hilbert's theorem on ascending chains, it is known that a chain of ideals in kiT]  is 
necessarily finite. A recent theorem gives explicit bounds for the lengths of such chains: 

Theorem 1.11. (Seidenberg [5]). Let K(j) be a nonnegative integer for j = 0, 1 . . . .  and consider 
strictly ascending chains of ideals I o c I 1 c . . .  c I in k iT  1 . . . . .  T j ,  where Ij has a basis of ele- 
ments of degree ~< x(j). Then there is an integer/~(x, n) computable from x and n such that the 
length of any such chain is smaller than/~(x, n). 

For the explicit form of p, the reader is referred to the work of Seidenberg. Another way of 
expressing the conclusion of the theorem is the following. We call an (infinite) sequence of ideals 
I o __ 11 _ _  12 ~ . . .  strict if it satisfies the property: 

If I n = I n + 1 then I,+ 1 = In + 2" 

Then the conclusion of(1.11) for a strict sequence is that if each lj can be generated by polynomials 
of degree ~< x(j) then I s = I s + 1 for s = #(x, n). 

Finally, we shall need an interpolation result. If f ~ k i T  1 . . . . .  T j  then degif  is by definition 
the degree o f f  as a polynomial in T~. 

Proposition 1.12. Assume L _~ k is a subset of cardinality m + 1. Let A:/~ ~ k. Then there 
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exists a unique f ~ k i t  1 . . . . .  7"] such that  d e g i f  ~< m and f ( l  1 . . . . .  In) = A(! 1 . . . . .  l.) for all 
(l 1 . . . .  ', 1~) ~ ~ .  

2. SYSTEMS 

Let k be an infinite field, Y a fixed algebraic set over  k and U a fixed variety (irreducible alge- 
braic  set). Then  

Definition 2.1. A (polynomial, discrete time, constant) dynamical system over k, having input space 
U and output space Y, is E = (X, x o, p, h), where  

(i) X (the state space) is an algebraic set over  k. 
(ii) x 0 (the initial state) is a fixed element  of  X. 

(iii) p (the transition map) and h (the output map) are morph i sms  X x U ~ X and X ~ Y. 
Remarks 2.2. (i) x t = p(x t_ 1, ut- 1) is interpreted as the state at t ime t cor responding to the state 

xt-  1 and the input  u t_ ~ at t ime t - 1; Yt = h(x) is in terpreted as the output  at  t ime t. 
(ii) Since k = is irreducible, a system with uncons t ra ined  inputs fits in our  f ramework.  
(iii) Since any algebraic set is embedded  in some affine space, there is no loss of  generali ty in 

assuming tha t  the ou tpu t  set is k °. 
(iv) x o can be identified with a m a p  f rom k ° into X. 
Definition 2.3. The dimension of a system ~ is that  of the algebraic set X z. I f X z  = / d ,  the system 

E is said to be unconstrained. 
The m a p  p can be extended recursively to a m a p  X x U* ~ X (where U* is the free mono id  on 

U), which we shall also denote  by the letter p. Let  g: U* --, X be defmed by if(to) = p(x o, to). Then:  
Definition 2.4. The  input-output map of a system E is the m a p  f :  U* -~ Y given by f = h o y. 
We shall denote  by gt and ft the restrictions of g and f to U t (the t-fold Cartesian power  of  U). 

It  follows from the definition of  p and h that  at and  ft are m o r p h i s m s  f rom the variety U t into X 
and Y. 

Definition 2.5. Let X = (X, x o, p, h) and X = (J~, ~o, P,/i) be two po lynomia l  systems. A mor- 
phism of systems E -* E is a m o r p h i s m  T of algebraic sets such that  the following d i ag ram com-  
mutes :  

x U ~ X  X 

2 x u ~ - - , 2  

Y and T(xo) = :~o. 

Observe  that  the existence of a m o r p h i s m  Z --* E implies that  fz = ft- 

3. COSYSTEMS 

Definition 3.1. A polynomial cosystem E over k is a quadrup le  (A, ~, fl, 7) where A is a k-algebra 
and  ~: A(Y) -~ A, fl: A ~ A ® A(U), 7: A --, k are k-algebra h o m o m o r p h i s m s .  I f  A is an affine 

algebra,  then E is an affine cosystem. 
We can associate in a s t ra ightforward manne r  to any  cosystem an i n p u t - o u t p u t  function 

m app ing  A(Y) into H (®hA(U)). 
Definition 3.2. A morphism of cosystems -= -~ ~ is a k-algebra h o m o m o r p h i s m  r / f r om A to 
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such that  the following diagrams commute:  

A ~ ,A®A(U) 

A(Y) 
rl ® 1A(V) 

\ 
/i ~ ~.~i ® A(U)) 

Polynomial, discrete-time, constant systems and cosystems, 
form two categories which we shall call Systems and Cosystems 
be a full subcategory of Cosystems. 

A 

/ 

with their respective morphisms, 
respectively. Affine cosystems will 

Theorem 3.3. (Duality). Systems and (Affine cosystems) °v are equivalent categories. 
Proof. This is a direct consequence of (1.6). 

4. E Q U I L I B R I U M - S T A T E  A S S U M P T I O N  

Let X t = gt(Ut). It is the reachable set at time t. 
Definition 4.1. The state x o e X z is an equilibrium state for the system Z if there exists u o ~ U 

such that P(Xo, Uo) = x o. 
We shall restrict ourselves to considering systems having an initial state which is an equilibrium 

state. By a change of coordinates in U and X, we can take x o = 0, u o = 0 without loss of generality; 
this assumption then means that p has no constant term. In other words, we assume that the 
system was operating in a certain steady-state mode before we disturbed it with our new sequence 
of inputs. Such an assumption is satisfied for most classes of systems studied so far (linear, bilinear). 
F rom our point of view, the main value of the assumption is due to the following easy result: 

Lemma 4.2. The sequence of reachable sets {Xt} is monotonically increasing if and only if the 
initial state of the system is an equilibrium state. 

5. R E A C H A B I L I T Y  A N D  Q U A S I - R E A C H A B I L I T Y  

Definition 5.1. A system E is reachable iff XR: = u X t = X. E is reachable in bounded time iff 
t>~O 

X r = X for some r. 
Definition 5 . .  The system ~ is quasi-reachable iff its state set is the closure (in the Zariski 

topology) of the reachable set, i.e. XQ: = u X~ = X. It is quasi-reachable in bounded time iff 
t~>0 

, ~  = X for some r. A system ZQ with state-space XQ can be naturally defined using the restric- 
tions of p, h to X o. 

Lemma 5.3. The sequence {Xt} is strict, i.e. Xt = "~,+1 implies Xt+l = Xt+2" 
Proof. By definition, we have X t + 1 = P(Xt × U), for all t > 0. The morphism p is continuous, 

hence p(X t × U) ~ p(X'~--x U). Thus 

X,+~ = p(X, x U) ~_ p(X, x U) = p(X, x U) = p(X,+ ~ x U). 

But of course P(Xt+ 1 x U) _~ p(X~+l x U) = X~+ 2. By (4.2), X,+ 2 _ Xt+ r So Xt+ 1 _ X,+ 2 
~_ Xt+ 1, and therefore -~t+l = Xt+2- 

Proposition 5.4. Let dim E = n. Then the set of quasi-reachable states is X .  
Proof. Since U is irreducible by assumption, so is U t. Since X t is the closure of the image of U t 

under the morphism g, (of algebraic sets), Xt is also irreducible. We therefore have an increasing 
sequence T o _~ X ,  _ X 2 _~ . . .  of closed irreducible subsets of X. Since dimension of X is n, 
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the preceding sequence cannot have more than n + 1  distinct sets, by (1.4). It follows therefore 
from (5.3) that this sequence cannot increase after step n. 

Remark 5.5. We have just proved that a quasi-reachable system is quasi-reachable in bounded 
time. The same property does not hold, however, for reachability, as can be seen from the follow- 
ing example. 

Let U = X =  Y = R , p ( x , u ) = x +  u 2 - 2 u , h ( x ) = x , x  o = 0 . T h e n X  t = { x ~ R l x > 1  - t } .  
The system is clearly reachable, but not in bounded time. 

We can nevertheless obtain the following characterization of reachable states: 
Proposition 5.6. Let k be an uncountable, algebraically closed field. Then the reachable states 

form a constructible set if and only if they can be reached in bounded time. 
Proof. Since t f  is a variety and gt a morphism of algebraic sets, it follows immediately from 

(1.7) that X t is a constructible set. If X R is reached in bounded time, it is equal to an X,, hence 
constructible. 

The proof of the converse statement, based on Noether's Normalization Theorem, is too 
long to be given here. 

6. FINITE CHARACTERIZATION OF THE INPUT-OUTPUT MAP 

In this part we study questions related to the specification of polynomials systems. Specifically, 
we ask: how many experiments are needed to characterize the input-output map of a system? 

Recall that if Y~ is known to be linear, U = k, and if dim ~z ~< n, then to determine the map 
fx it is enough to know the values of f,~(co) for the 2n inputs (0 . . . . .  0, 1, 0 , . . . ,  0) of length 2n. 
To determine uniquely a polynomial of degree r, in general its values at r + 1 points must be 
known. Hence, to obtain similar results for nonlinear systems, some a priori estimates are needed 
for the degree of the polynomials involved in the definition of Z. Using such estimates, one of the 
contributions of this paper is to effectively compute a bound on the number of input-output  
experiments sufficient to decide whether or not two systems have identical external behavior. 
Theorem 6.1. Let Z, Z be systems of dimension ~< n. Write f :  =f~, f :  = ft" Then the following 
statements are equivalent: 

(i) f = f, 
(ii) f2n = f2n" 
Proof. By definition Y c k v for some p. Hence the map f:e~--~f(co) - f(co) is well defined. 

The map f can be realized as f~, where Z is defined as X': = X x ~ ,  Xo: = (Xo, ~o), p((x, ~), u): = 
(p(x, u), p(x, u)), and h(x, ~): = h ( x ) -  h($). The theorem is then an immediate consequence 
of the following 

Lemma 6.2. Let f = f~, where X is a system of dimension r. Suppose that fr - Y ~ Y, a constant 
function. Then ft = Y for all t > 0. 

Proof. Since ft = h°gt for all t, it follows that ft = Y if and only if hlX t =- y. By hypothesis, 
hlX ~ - y. Since h is continuous, it follows that hlX r = y. By (3.4), X = XQ _ X,, for all t. There- 
fore h IX , - y for all t. 

Observation 6.3. In general, knowledge of the map ft for some t < 2n is not enough to identify 
a system of dimension n. Indeed, consider affine systems with U: = Y: = k, X: = k ~ and x o = 0:. 

~x(t + 1) = Fx(t) + gu(t) 
E: [y(t) = hx(t) + c 
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Then ft  is comple te ly  de termined by c, a I . . . . .  a t where a~ = hF s- 10. I t  is well known  f rom linear 
system theory  tha t  the da ta  c,a~ . . . . .  a2, (but no p roper  subset  of  it) is sufficient to 
determine f .  

Definition 6.4. deoree (E) <<. s iff there exist representa t ions  of  p and  h by polynomia ls  having 
(ordinary) degree ~< s separately in each variable ui, i = 1 . . . . .  m (where U _ k ~) and having 
degree ~< s jo int ly  in the variables xj. 

If  degree (Z) ~< s then ft:  Ut ~ Y admits  a representa t ion  by polynomia ls  of  degree ~< s t ÷ 1 in 
each variable (easy verification). F r o m  Propos i t ion  (1.12) and f rom T h e o r e m  (6.1) we obta in  the 

Corollary 6.5. Let  E, E be systems of d imension ~< n and of degree ~< s. Let L ___ k be any  set of  
s2, +1 + 1 elements. Let/2~): = {(u 1 . . . .  , u )  ~ U"lu, ~ L"}. T h e n f  = f if and  only iffl L (2n) = f I/3 2"). 
So the equali ty of  behaviors  of  any  two systems E, E is effectively decidable. 

For  the last s ta tement  above  to be meaningful ,  we are of  course assuming that  the field k 
itself is effectively presented.  

7. F I N I T E  O B S E R V A B I L I T Y  

Definition 7.1. Two states x 1, x 2 are distinguishable if and only if there exists an input  sequence 
o9 ~ U* such that  h~'(Xl) # h°'(x2), where h°'(x): = hop(x, ~0). A system is said to be abstractly 
observable when any pair  of  states are distinguishable.  

Proposition 7.2. For  any system E, there exists a finite set of  input  sequences 091, o92 . . . . .  o~q 
such that  h'~'(xl) = h°"(x2) for all i~  {1 . . . . .  q}, if and only if x 1 and x 2 are not  distinguishable. 

Proof. An input  sequence o9 enables us to define a m o r p h i s m  

l~: X x X - ,  k P : ( x l , x ~ ) ~  h~'(Xl) - h°'(xz). 

If we compose  this m a p  with the p coordinate  project ions k p ~ k: y ~Yi ,  i = 1 . . . . .  p, we get p 
morph i sms  l°"i • X x X ~ k. The  states x I and x 2 are dist inguishable if and only if one of these 
morph i sms  is nonzero  at  (xl,  x2). Thus  the states which are not  dist inguishable fo rm exactly 
the algebraic subset  of  X x X defined as V({l~.lo9 ~ U*, 1 <<. i <~ p}). It  follows f rom the Hilber t  
Basis T h e o r e m  (1.1) tha t  this can be defined as the set of  c o m m o n  zeros of  finitely m a n y  
of the l~"s. It is therefore sufficient to apply the cor responding  finitely m a n y  input  sequences to 
determine whether  any two states are dist inguishable or  not.  

Corollary 7.3. Dist inguishable  states can be separa ted  in bounded  time. 
We have thus p roved  that  to test whether  any two states are dist inguishable or  not  it is sufficient 

to apply  input  sequences of  bounded  length to the system. In fact, we have even shown that  it is 
enough to apply  finitely m a n y  input  sequences. But our  result  is just  an existence s ta tement  and 
does not  tell us how to choose these input  sequences. The  following t heo rem answers this 
question. 

Theorem 7.4. Given  a po lynomia l  system E there exist two integers t and r (which can be 
compu ted  effectively f rom Z) such that  the following p rope r ty  is true: 

If  L is a subset  of  U of cardinal i ty r, then h°'(xl) = h~'(x2)  for all o9 e/~ implies h°'(xl) = h°J(x2) 

for all o9 in U*. 
Proof. Let V: = {(xl, x2)e  X x Xth°/(xa) = h~'(x2) , for all og~ U j, j <<. n, 1 <~ i <<. p}. The 

degrees of  the po lynomia l s  h~(x) in the variables  x are bounded  for all 09 e U" because of  their 
recursive definition. I t  follows that  V t = Vt+ x . . . .  for some compu tab l e  index t (Theorem (1.1 1)). 
Thus  x I cannot  be dist inguished f rom x 2 if and only if (xa, x2 )e  V t. But (xl,  x2 )e  V t means  that  
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h~(xl) = h~(x2) as morphisms from U j into k. Since the degrees of the polynomials representing 
these morphisms are bounded, the result follows from (1.12). 

In other words, the computational aspects of our problem are reduced to those of Seidenberg's 
Theorem (1.11). 

8. SYSTEM ISOMORPHISM 

This section is concerned with the "uniqueness theorem for canonical realizations". This 
theorem, which is known to hold for several classes of systems (e.g. automata, linear systems) 
states that two "canonical" realizations of a given input/output map are "isomorphiC'. The 
appropriate notion of system isomorphism in the present context is that given by (2.5); a counter- 
example will show, however, that a naive definition of "canonical" as "reachable + (abstractly) 
observable" is not sufficient to give us the desired result. 

Counterexample 8.1. We wish to construct two systems E, E with f~ = f t  both reachable and 
abstractly observable but such that E is not isomorphic to ~. The construction is based on the 
fact that (in the category of algebraic sets) a morphism which is bijective (one-to-one and onto) 
is not necessarily an isomorphism. 

Let q: V ~ W be a morphism between varieties V, W such that q is a bijective map but V is 
not isomorphic to W. For instance, let 

V: = k, 

W: = {(x ,y)~k2lx  3 - y2 __ 0}, 

q : z ~  (z2, z3). 

(It is a standard algebraic-geometric fact that V :p W.) 
Given any q, V, W as above, let U: = V, Y: = W and define 

~ :  = (V, Xo, prz, q), 

~: = (W, q(Xo), q°Pr2, lw); 

here x 0 e V is arbitrary while pr 2 : V x V ~ V and P~2: W x V ~ V denote the projection on the 
second factor. 

Since q induces a system morphism E ~ E, it follows that f~ = ft" Using that q is bijective, it 
is easy to verif,y that both systems are reachable and abstractly observable. Finally, E is not 
isomorphic to Z, because their state-sets V, W are not isomorphic. 

The difficulty in proving the uniqueness theorem is most easily understood in terms of co- 
systems. In view of Theorem (1.8), the notion of reachability (rather quasi-reachability) is dualized 
into a notion of "observability" for cosystems. The notion of abstract observability for systems, 
however, does not have a nice dualization (see Remark 1.9)). Categorical problems like system- 
isomorphism are easier to study in algebraic categories like Cosystems rather than in geometrical- 
topological categories like Systems. Therefore, it is natural to require a stronger notion of system 
observability, corresponding to "cosystem reachability". 

This stronger notion, which we shall call "algebraic" observability, can also be motivated by 
system-theoretic considerations. An intuitive definition of observability for a system E is that 
there should exist a procedure which permits the determination of an arbitrary initial state of Z 
on the basis of appropriate input-output experiments (see a detailed discussion in Kalman I-2, 
Chapter 10]). The word "procedure" is, of course, overly vague. In the classical context of linear 
systems it is well-known that any possible procedure is equivalent to a linear procedure. Already 
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when considering linear systems over rings, however, the definition of "procedure" becomes more 
delicate, and is in fact directly related to the existence of "observers" which are systems over the 
same rings, see Sontag [6]. It is natural in the present context to consider an algebraic notion of 
observability. In other words, we shall only allow algebraic operations on the input-output data. 
This is formalized as follows: 

Definition 8.2. A system E is algebraically observable if there exist an integer s and ~ = (co 1 ..... %) 
e(U*) s, such that for every costate q ~ A(X) there exists q ~ A(YO with 

qoH ~ = q, 

where He: X ~ ys is given by x~--~ (h°'l(x) . . . . .  h°"(x)). 
Clearly this definition amounts to requiring that A(H~): A(Y ~) ~ A(X) be a surjective comor- 

phism. The image of this comorphism is called the observation algebra of the system. Now the 
uniqueness theorem can be proved. 

Theorem 8.3. Let E, ~. have the same input-output map. Assume that Z is quasi-reachable and 
that E is algebraically observable. Then there exists a unique morphism T: E ~ E. If ~: is quasi- 
reachable [resp. reachable] then T is dominating [-onto]. If E is observable then T is injective. If 
E is algebraically observable and E is quasi-reachable then T is an isomorphism. 

Proof. Let the dimension of E be n. It follows from quasi-reachability of E and from (5.4) that 
g :  U" ~ X is dominating. So, by (1.8), ~ = A(g,): A(X) - .  A(U') is injective. From the definition 
of algebraic observability we obtain s, ~ such that ~ = A(~/g): A(YO ~ A(,~) is surjective. Con- 
sider the diagram: . A(X) 

A(YO i~ A(U") 

Clearly there exists a (unique) k-algebra homomorphism ~/making the diagram commutative. 
It follows from the equivalence of categories (1.6) that there exists a (unique) T: X --, X such 
that A(T) = r/. A routine calculation shows that T gives the desired morphism. 

Uniqueness of T is clear, and the rest of the proof is straightforward. 
As an application, we consider the class of state-affine systems: U = k ' ,  Y = k p, X = k", h is 

linear and p(x, u) is of the form pl(u) + P2(U)X (these systems are sometimes called variable-struc- 
ture systems). In this case the maps h" are affine maps, so that the notions of abstract observability 
and algebraic observability coincide (see 1.9). Then: 

Corollary 8.4. Let E, Z be observable variable structure systems. Assume that f~ = ft- Then 
X o is isomorphic to EQ. 

C O N C L U S I O N S  

We have presented in this paper several preliminary results relating to reachability, observa- 
bility, identification, and isomorphism of polynomial systems. One of the main problems not 
discussed here, the problem of minimizing a given system, requires an extension of the present 
framework, because the category Systems is too "small" to permit needed operations (quotients, 
etc.). This amounts to saying that Affine cosystems is too "small" and should be replaced by 
Cosystems. By dualizing the latter, we obtain a category Scheme Systems containing the original 
category Systems. Recent investigation shows that a satisfactory theory of minimal realiza- 
tions exists for scheme systems. Although it is not at all clear that the "physiCal" realization of 
such generalized systems would be of interest, only by embedding the theory of nonlinear systems 
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into such a framework can we gain the necessary perspective to analyse minimization problems. 
Current research efforts are directed toward this goal and toward the study of the realization 
problem; see Sontag [7]. 
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