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Nonlinear Regulation: The Piecewise
Linear Approach

EDUARDO D. SONTAG

Abstract— This paper approaches nonlinear control problems through
the use of (discrete-time) piecewise linear systems. These are systems
whose next-state and output maps are both described by PL maps, i.e., by
maps which are affine on each of the components of a finite polyhedral
partition. Various results on state and output feedback, observers, and
inverses, standard for linear systems, are proved for PL systems. Many of
these results are then used in the study of more general (both discrete- and
continuous-time) systems, using suitable approximations.

I. INTRODUCTION

HIS paper approaches nonlinear regulation through

the study of piecewise linear (PL) systems, with two
quite different sets of goals: the study of PL systems per se
(as a generalization of linear systems), and the use of the
tools and methods developed for PL systems in the control
of other. more general, classes of systems. This latter aspect
may be seen as constituting one systematic approach to
numerical nonlinear control, based on piecewise linear
approximations.

These are various reasons which suggest that it may be
worthwhile to investigate PL systems: simplicity of imple-
mentation, theoretical analysis, and calculation. The former
is due to the fact that digital controllers based on such
systems can be built easily using “if P(x) then f(x) else...”
programs, where P, f involve only affine combinations and
“greater than™ comparisons. This shifting of computational
emphasis from arithmetic to logic is especially convenient
when using microprocessors. Simplicity of analysis is in
principle less obvious, but the recent development of the
beginnings of a “PL algebra” in Sontag [12] indicates that
this may indeed be the case. The remarks in this paper
illustrate this simplicity on system theoretic grounds. The
last claimed advantage, regarding off-line calculation, is yet
to be explored in any serious detail. Preliminary investiga-
tions indicate that, at least for systems of reasonably small
dimension, low complexity algorithms may be available for
analysis and synthesis. Among other advantages, it should
be noted that the use of PL systems permits introducing
thresholds and other discontinuities in a natural way that is
not available in other algebraic approaches to nonlinear
system theory.
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In order to make this paper self-contained. we review
briefly the relevant definitions and results from [12]. A PL
subset of a finite-dimensional real vector space V' is the
union of a finite number of relatively open polyhedra. i.e..
of sets defined by (finitely many) linear equations f(x)=a
and linear inequalities f(x)>a. A PL set is a PL subset of
some V. A PL relation R: X— Y between PL sets is one
whose graph is a PL set, and similarly for PL maps.
Equivalently, the map f is PL if there is a covering of X by
PL subsets X, such that the restrictions f| X, are all affine
(=linear+ translation). A useful way of defining PL sets is
the following. Let L be the first-order language consisting
of constants » and unary function symbols r(-) for each
real r, variables x,, x,,- - -, binary function symbol +. and
relation symbols >, =. Then we have the following.

Lemma 1.1[12, Lemma (2.6)]: Every sentence in L de-
fines a PL set. Tx

When applying the above, one can include in L labels
for sets and functions already known to be PL: sentences
will still define PL sets. The study of “elementary” prob-
lems, those expressible by finitely many such sentences, is
considerably simplified by (1.1), as will be seen in Section
II. Another very useful tool is the existence of selection
(choice) functions.

Selection Lemma 1.2 [12, Theorem (2.11)]: Let R: X—>Y
be a PL relation with domain Z. There is then a PL map s:
Z— Y with s(x) in R(x) for all x. ,

Alternative ways of stating (1.2) are as a “global implicit
function theorem,” through sections of congruences, or as
a “PL axiom of choice.” Checking the truth of a sentence
in L, or constructing a set defined by such a sentence (as
those in Section II), can be carried out via three basic
algorithms: one for projecting polyhedra on hyperplanes.
another for checking feasibility of a linear program, and a
standard Boolean table. These procedures appear to be as
central as matrix multiplication is in the case of linear
algebra. The construction of sections in (1.2) can be also
accomplished via linear programming methods. Thus. all
constructions are “effective” in a very concrete sense. and
recent linear programming developments imply polynomial
time decidability of many types of formulas. Various useful
“closed-form” representations for PL maps have been in-
troduced by Kang and Chua [8], motivated by the network
theoretic applications developed by Chua [1]: the develop-
ment of software for PL algebra will probably include the
use of such representations. There are already a consider-
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able number of results relating to PL maps (see, for ins-
tance, Fujisawa and Kuh [3] and the references therein)
which deal with algorithms for checking various specific
algebraic properties. Our proofs in this paper are, however,
of a theoretical nature; the study of implementations
should, of course, be an important project in itself.

A fixed but arbitrary PL set U (the “input value set™)
will be used throughout. A special element “0” will be
singled out in U, to correspond to the notion of “no input
being applied.” Up to a translation, there is no loss of
generality in taking O to be the zero vector in a vector space
of which U is a PL subset. When output behavior is of
interest, Y will denote a fixed but arbitrary PL set (“output
value set”).

A system S=(U, X, Y, p,q) (where U, X, Y, or ¢ may be
omitted if clear from the context or if irrelevant) is given
by a pair of maps p, ¢ from XX U into X and Y, respec-
tively, for some set X (“state set”). One interprets S as
defining the equations

x(1+1)=p(x(1), u(1))

y()=q(x(r),u(t)), 1=0,1,---  (1.3)
with the x(7), u(t), y(¢) representing states, inputs, and
outputs at time r. A state output system has g independent
of u; S is autonomous if p is also independent of u. In both
cases one simply drops the corresponding u(¢) in display-
ing (1.3). A PL system is one for which X is a PL set and
both p, g are PL maps. A convenient way of specifying PL
systems is via algol-like “if-then-else” programs, and this
will be done when appropriate. Note that the class of PL
systems includes in particular finite automata and linear
systems; the former appear when every set is finite (hence
PL); any map among such sets is obviously PL. Various
(“‘hierarchical”) combinations of automata and linear sys-
tems are also PL: for example, a finite counter added to a
set of linear systems, deciding “which system” to use
depending on the value of the counter. Linear systems with
(polyhedral) input and state constraints (and /or saturation
effects) are also modeled by the theory. More general
nonlinear systems can be (under weak hypotheses) globally
approximated arbitrarily close by PL systems. Of course,
this generality means that one cannot expect to obtain
computationally trivial solutions to all control problems,
even though the basic procedures developed below are not
hard to understand. Efficient tools for the linear algebra
and combinatorics involved in the (off-line) computations
will have to be developed, and this should have high
priority in future research in this area. Similarly, the study
of approximations by PL systems is in itself basically open,
and it is clear that deeper results will depend upon a
systematic use of the powerful results developed for non-
linear systems during the past decade.

This paper should be seen as just a first step in the
development of a PL system theory. In contrast to most
previous approaches to the modeling of systems with dis-
continuities (“sliding mode systems,” “PL networks,” etc.),
the emphasis here will be first on discrete-time systems.
This different emphasis allows for the use of the algebraic
tools in [12], since the iterated transition maps are still PL.
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(Instead, for continuous-time systems with PL system maps,
the evolution map does not inherit the PL structure.) Since
the number of “linear pieces,” of course, increases with the
iterations, various compactness and other finiteness as-
sumptions are used at various points. The application to
non-PL systems is via approximations and, for continuous
time, the introduction of time sampling. For the latter the
theory is, then, one of sampled systems, suitable more for
digital control than for classical analog control. The con-
nections with the work of Aiserman, Gantmacher, and
others (e.g., see Minorski [10, chapters 6-10}) on continu-
ous time PL systems are not yet totally clear, however. For
a less systematic but very interesting discussion of various
problems for discrete-time systems with nonsmooth transi-
tions, see Vidal [16].

The first part will deal with bounded-time problems for
PL systems per se, while the second deals with “asymp-
totic” properties for PL and other systems. The number of
problems left open for further research is very large. Prob-
lems for PL systems of decoupling, disturbance rejection,
and many others treated successfully by the linear theory
are not studied here, although it is reasonable to expect
that similar methods will apply to these. Even for the
problems which are treated, many improvements in state-
ments and proofs should be possible, and open problems
are pointed out throughout.

II. ELEMENTARY PL CONTROL PROBLEMS

This section deals with the control and observation of
PL systems over finite time intervals. Besides being of
interest in themselves, the understanding of the corre-
sponding problems is helpful in the study of asymptotic
properties. The general approach is to express the proper-
ties of interest in the first-order language L, and to apply
tools from PL algebra to obtain easly the desired results.
The latter say in essence that for most reasonable bounded-
time problems for PL systems, if a solution exists ab-
stractly, then there is also a solution which can be imple-
mented using PL systems. Throughout this part, S will
denote a fixed PL system ( p,g). The extension of p to
input sequences will be denoted by P. An arbitrary PL
subset Z of the state space X will be also fixed, with all
definitions made relative to Z.

A. State Feedback

All the properties in this section will be stated relative to
a fixed equilibrium state x, i.e., an x for which p(x,0)=0;
for simplicity x will be taken to be zero. Both of the
definitions below describe, for fixed n, elementary first-
order properties of Z, since they include quantification
only over states and input values.

Definition 2.1: The subset Z is (n-step, globally) control-
lable (to zero) if for each state x in Z there is some input
sequence w of length at most n for which P(x,w)=0.

Definition 2.2: The subset Z is (n-step, globally) finitely
stable if the state 0 is an (n-step) attractor relative to Z, i.e.,
if P(x,0*)=0 for all x in Z and for any null input
sequence 0* of length (at least) n.
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Remark 2.3: For discrete-time linear systems (with un-
bounded inputs) it is well known that, with Z=X, (2.1) is
equivalent to the property that for any state x there be an
input sequence driving x to the origin, with no a priori
bounds on the length of such sequences. In fact, one may,
by Cayley— Hamilton, take n there as the dimension of the
system. For more general systems such a property is, of
course, not equivalent to the above (bounded-time) control-
lability—any nonnilpotent linear system with bounded
controls serves as a counterexample. Consequences of such
more general definitions will be studied in Section III
Clearly, various technical restrictions (of compactness, con-
vexity, etc.) could in any case be used, as linearity, to
ensure the above controllability under weaker conditions.

#*H

The analog of the following result is well known in the
linear case (“‘dead-beat controllers™).

Theorem 2.4 The subset Z is controllable if and only if
there exists a (feedback) PL map K: X— U with K(0)=0
such that Z is finitely stable for the closed-loop system
x(t+1)=p(x(t1), K(x(1))). )

Proof: When a stabilizing feedback exists, the original
set Z must be controllable [use u(7)=K(x(¢))]. The con-
verse is proved via a dynamic programming argument: let
X(1) denote the set of states controllable to zero in ¢ (but
not less) steps. Thus, X(0) is just {0} and the union of the
disjoint sets X(t), t=0,- - -,n, covers Z for some n. Each of
the X(¢) is a PL set, since it can be defined by first-order
sentences. Consider for each t=1,---,n the set R(¢) con-
sisting of all the pairs (x, 4) with x in X(7) and p(x, ) in
X(r—1), seen as a PL relation with domain X(¢). By the
selection lemma there is a PL section K(r): X(t1)—> U of
R(?). Define K(0) as the zero map and K as the union of
the K(1), and extend K to all of X arbitrarily. Any state x
of Z is in some X(t) and is hence driven to zero in ¢ steps
under u(t)=K(x(t)). (Note this K gives a minimal-time
controller.) ®HH#

As an easy illustration take the (almost-) linear system
for which Z is the set of real numbers x with |x|<B, X is
the union of Z and a distinguished state e, U is the set of
reals with |u|<1, and whose transitions are given by:
x(t+1)=x(t)+u(t) when x(t) is not e and the right-hand
side has absolute value less than B, and x(¢+1)=e other-
wise. (This kind of system arises if B is a bound on the
domain of linearity of a given model and e denotes an
error situation.) Then every state except e is controllable,
and a natural (and obvious) choice of K on Z is K(x):=if
|x|>1 then —sign (x) else —x. #®#

B. Observers

The iterated output map h gives the output resulting
from state x after the application of the input sequence
w=u(0) - - -u(t), ie, h(x,w) is q(P(x, u(0)---u(t—
1)), u(t)); the sequence of all the outputs is H(x,w)=
h(x, u(0)),- - -, h(x,w).

Definition 2.5: The input sequence w determines the
states of Z iff the outputs H(x,w) for x in Z are sufficient
to uniquely determine P(x,w).
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Remark 2.6: A w as above is called a “homing se-
quence” in automata theory (e.g., see Gill [5]). For linear
systems any input sequence whose length is at least equal
to the dimension of the system serves to determine Z,
provided that at least one such w exists, and in particular
observable systems admit such w. For various classes of
nonlinear systems there are similar results; see Sontag [11]
and Sussmann [14]. H#H#

The cascade S#S’ of two systems S=(U, X, Y, p.q) and
S’=WUXY, X,Y, p,hq) is the system (U, XX
X', Y, p*, q*), where

p*((x, x"), u)=(p(x,u), p'(x',(u,q(x,u))). (2.7)
q*((x,x’),u)=q’(x’,(u,q(x,u))). (2.8)

Definition 2.9: The system S’ is an observer for (the
states of) Z, relative to a set W of input sequences, iff
Y’= X and for each initial state (x, x’) of S#S5” having x in
Z, and each sequence w in W, h*((x, x"),w)=P(x,w).

If S’ and W are as above then any w in W determines
the states of Z. The converse is as follows.

Theorem 2.10: Let W be a set of length-n input se-
quences each of which determines the states of Z. There
exists then a PL observer S’ for Z relative to W.

Proof: Replace W by the set consisting of all those w
of length n which determine Z. This (larger) set is PL, since
(2.5) is a first-order definition. Let D be the PL subset of
Y”" consisting of all H(x,w) with x in Z and w in W.
Consider the set of all triples ( H(x,w),w, P(x,w)) with x
in Z and w in W. This is the graph of amap f: DXu" - X
and it is a PL set, so fis a PL map. The observer S’ is now
constructed as follows. The memory of S’ is composed of a
pair of shift registers which store the past n—1 input and
output values, as well as of an extra register for storing the
last output y’ of S’. If the past (n— 1) outputs and inputs
together with the present (y,u) constitute a pair in the
domain of f, then S’ outputs the corresponding value of f.
Otherwise, S’ simply evaluates p(y’,u), where u is the
present input. Clearly, S’ is an observer, and in fact the
output of S’ is equal to the state of S for any time r=n, as
long as the first n input values constitute a sequence in W.

#® 8

C. Input—Output Regulation

There are various ways to pose problems of input—output
regulation, i.e., problems of constructing a system S’ (regu-
lator) which, on the basis of the output of a given system S,
calculates the inputs necessary to force S to behave in a
desired way. Only stabilization is considered; other topics
like disturbance rejection, tracking, etc., will not be studied
in this note. The situation here has, of course, strong
overlaps with the results for linear systems (e.g., see
Wonham [17] for the linear case), and with those for finite
automata (for which see Gatto and Guardabassi [4]). Even
when restricting attention to I/0O stabilization there are
still many possibilities in the choice of definitions. The
main choice is in how one wants to model a situation in
which unobservable (finite-time) disturbances may in-
fluence S. If S’ is to regulate S but is “unaware” of when a
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disturbance occurs (except through its effect on the 1/0
behavior of S), then S’ must regulate S even when S’ starts
at an arbitrary initial state (namely, the one in which S’
ends up at the end of the action of the disturbance). If
instead S’ can be made aware of the disturbance, it could
reset itself to a special state and only regulation when
starting at that state is required. (One could also model
disturbances as extra inputs.) Alternative ways of thinking
about this are in terms of “time (in)variance” of the
regulator, or in terms of the “degree of feedback” in the
regulator construction. A related situation has been studied
in automata theory by Gatto and Guardabassi, who intro-
duced the terms “synchronous” and “asynchronous” regu-
lation. Since output feedback will be involved, the system S
will in this section be a state output system. As in Section
I, there is a fixed equilibrium state 0.

Definition 2.11: The PL system S'=(Y, X’,U, p’,q’) is
an (n-step) weak regulator for the subset Z of X iff there is
a state x’ in X’ such that, for each x in Z, solving the
closed-loop equations

x(1+1)=p(x(1),q'(x"(1), 9(x(1))))
x'(1+1)=p(x'(1),q(x(1)))

with x(0)=x, x’(0)=x’ results in x(¢)=0 for all t=n. A
strong regulator is one for which this property holds for
every x’ in S’. A weakly or a strongly regulable system is an
S which admits a regulator S’ for Z=X.

Proposition 2.13: Assume that there exists an input se-
quence w which determines the states of Z, and that
P(Z X {w}) is controllable. There is then a weak regulator
for Z.

Proof: Just cascade an observer with a system that
computes a controlling input. That is, S’ first feeds w into
S, for the first r (=length of w) instants, storing corre-
sponding outputs of S. Once that the state x of § is
determined, S’ sends the necessary input to control and
sends zero thereafter. S’ can be designed as a PL system
through the application of the selection lemma to the
relation R(x):={v of length n|P(x,v)=0} (where n=
controlling time). B H#H

Theorem 2.14: Assume that there exists an integer r
such that every sequence of length r determines the states
of Z, and that P(ZX U") is controllable. Then there exists
a strong regulator for Z. .

Proof: Let K be a PL feedback map as in (2.4) and let
S’ be an observer for Z relative to W, where W denotes the
set of all input sequences of length r, constructed as in
(2.4). Define S” using the same X’ and p’ as S’ but with
output ¢”'(x’, g(x)): =K(q'(x’, g(x))). For any x(0), x'(0),
the sequence w=gq"(x’(0), g¢(x(0))),- - -.q"(x(r—1), g(x(r
—1))) determines the states of Z, so the output
q'(x'(1), q(x(1))) is equal to x(¢) for any r=r. After 1=r,
therefore, g”’(x’(1), g(x(1)))=K(x(2), g(x(t))), so x(t) is
zero for all t=r+n. ®*#

Although the observability assumption used above is
probably too strong in general, it may very well be that (for
large enough r) it will apply to wide classes of systems [cf.
(2.6)]. In any case, it can usually be obtained by restricting

(2.12a)
(2.12b)
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U or (equivalently) avoiding values of K that result in
nondetermining inputs. Under suitable continuity assump-
tions, K can be perturbed while still controlling. as.in the
constructions in Section III.

D. System Inverses

The notion of inverse system is an input—output one, so
one needs here a few more definitions. An initialized PL
system (S, x) (or just S, if x is clear) is a PL system S with
a choice of a state x in X. The input—output map of (S, x) is
the map f which sends each input sequence w into the
output sequence H(x,w). When U’=Y, systems can be
composed in series as follows: S”:=S8’-S is the system
whose state space is XXX’ (in that order) and with
Pr((x, x"), u)=(p(x,u), p'(x’,q(x,u))) and q"((x,x"),u)
=gq'(x’, q(x, u)). For initialized systems (S, x), (§’, x’) one
defines S’- S as initialized at (x, x"). The 1/O map f’-f of
§’-S is then the composition of f and f’. A special type of
I/0 map of interest is the delay d* associated with a
nonnegative integer d:

d*(u(0),- - -,u(t—1))
=(0.- .0, u(0), u(1).- - -.u(t—d—1)) (2.15)

(input preceded by d zeros). Note that 4* can be realized
by an obvious PL system (with U=Y). A (left) d-invertible
fis-one for which there exists some f’ with f’-f=d*. It is of
interest in coding and other applications to characterize
those systems whose 1 /0 map is d-invertible.

Theorem 2.16: The 1/0 map f of (S, x,) is d-invertible
if and only if, for each state x reachable from x,, and for
each pair of input sequences w=u(0)---u(d) and w’'=
u'(0)- - -u’(d), the equality H(x,w)=H(x,w’) implies that
u(0)=u'(0).

Proof: Assume that f is d-invertible, f'-f=d*, f’ the
I/0 map of S'. Let x=P(x4,w*), with w* of length r. If
H(x,w)=H(x,w’), the outputs f(ww*) and f(w'w*) are
equal and have length r+d+ 1. The output of S’-S at time
r+d+1 is therefore equal for both inputs. But f'-f=d*
means that the output at time r+d+1 is u(0)=u’(0), as
wanted. Assume conversely that the required property holds
for H. Let M: XX Y4*' 5 U be a PL map having the
following properties: if there exists an input sequence
u(0) - - -u(d) such that H(x,u(Q)---u(d))=y(0) - -y»(d).
then M(x, y(0)---y(d)) is any u(0) obtained in this way.
(Note that u(0) may not be unique, since the property on H
holds only for reachable states, but the latter cannot be
singled out in the definition because they may not con-
stitute a PL subset of X.) If (x, y(-)) is such that no such
u(-) exists, M(x, y(-)) is zero. By the selection lemma and
first-order definition methods, there exists such an M. The
system S’ is now defined. Its state space is the product of d
copies of Y, X, and [d}, where the latter denotes the set of
integers {0,---,d}, thought of as a counter. The initial
state of S’ will have this counter at zero, all copies of Y at
zero, and X at the initial state of S. The dynamics of S’ are
as follows: the d copies of Y will constitute a shift register
storing the past d values of the input to S’. While the value
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i of [d] is less than d, the states of the copy of X will
remain unchanged and the value of i increases by 1 at each
step. When i reaches d, it remains there, and states in X are
updated according to the original transition function p and
using the inputs M(x, y) where the first d terms of y are
the values stored in the shift register (last d inputs) and the
last entry of y is the current input to S’ (output of §). The
output of S’ is given by: zero if i<d, and M(x, y), with y
as above, if i=d. T o##

Note that the existence of an abstract (non-PL) d-inverse
S’ of S would already imply the above property. Thus,
invertibility implies PL invertibility. The only nontrivial
part in the above proof is the fact that there is a PL map M
with the desired properties. The construction of S’ is just a
way of expressing the computations involved in d-inverting.
This kind of approach is very much the general one with
elementary properties of PL systems: after a certain map
or set is shown to be PL, the “system” implementing the
solution is just the obvious algorithm: PL systems are
general enough to accommodate the needed control struc-
tures. Related to the results in this section, we leave as a
suggestion the study of problems of feedback equivalence
for PL systems using the approach of Hautus [6] together
with the methods here.

I1II. ASYMPTOTIC BEHAVIOR

Since PL systems are defined in a finitary way (a PL
map can only have finitely many affine components), the
study of asymptotic problems for such systems is more
delicate than that in Section II. Infinite-time problems are
of interest because they often more accurately describe the
behavior of real systems, and also because they transfer
more easily under approximations of a non-PL system by a
PL system and vice versa. The general approach in this
section is to impose appropriate compactness conditions
and to couple this with weak local assumptions. Again the
emphasis is in proving that abstract existence of the vari-
ous types of controllers implies the existence of PL con-
trollers; checking the first of these (for non-PL systems) is
itself a major (and active) area of system theory, in whose
study the methods here may be useful numerically.

A. Asymptotic Control: Discrete Time

First, PL systems are treated. The following assumptions
will hold unless otherwise stated: X and U are connected
PL sets, p is continuous, and Z is compact. (These hypothe-
ses are much stronger than those actually needed in the
different proofs, but they appear to be natural enough to
be used as a blanket assumption.) Statements about open
or closed sets are always to be understood with respect to
the topology of X as a PL subset of a given Euclidean
space. The following definition will be used for both PL
and non-PL systems, and for Z not necessarily compact.

Definition 3.1: The subset Z is asymptotically controlla-
ble (a.c.) (to zero) iff for each state x in Z there exists an
infinite input sentence w such that the limit of x(z)=
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P(x,w') exists and is zero. (Here w' indicates the subse-
quence w(0),- - -,w(1).) The subset Z is (globally) asymptoti-
cally stable (a.s.) iff, for every x in Z, and with w constantly
equal to zero,

(a) x(¢) is bounded if x(0)=x;

(b) for each neighborhood V of zero there exists a
neighborhood W of x and a 7>0 such that z(¢) is in V for
any z(0) in WNZ and any t=T.

The above definition of a.s. is equivalent to the standard
Lyapunov notion (e.g., see Lee and Markus [9]), but rela-
tivized to Z. When Z contains zero, the definition is
equivalent to asymptotic stability of the origin plus all
solutions starting at the subset Z converging to zero. In the
results below, which already assume a local condition, only
convergence to zero will be nontrivial to obtain. The same
definition will be used later for continuous time systems. If
a feedback law exists inducing closed-loop asymptotic sta-
bility for Z then Z is a.c. The interest here is in the
converse statement, dealing essentially with the choice of
infinite input sequences via a “finite” feedback. A first
sufficient condition for this to be possible is the following.

Lemma 3.2: Let Z be asymptotically controllable. As-
sume that there is a PL neighborhood V’ of zero and a
continuous PL map L: V' — U such that, for some neigh-
borhood ¥ of 0, the iterates ¢‘(x) are always in V”’ for any
x in V, and V is as. for the system with transitions
g(x):=p(x, L(x)). There exists then a feedback PL map
K: X— U for which Z is a.s.

Proof: Without loss of generality, take V' to be a
connected open PL neighborhood of zero whose closure C
is compact and satisfies the same property. For every x in
C, there is some positive j such that the iterate g/(x) is
back in V. Thus the (open) preimages ¢ ~‘(V), i=1, cover
C, and by compactness these cover for i=1,-- -, j, some j.
Let D be the union of the sets ¥, g(V), - -,g’(V). Since p
and L are PL maps, D is a PL set, and it is invariant under
q (if x is in g/(V'), write x=gq’(z) for some z in V; then
g'(z) is in V for some i between 1 and j, and hence g(x) is
in ¢/~ (V). Let V(i) denote the set of elements of X
which can be controlled into V in i steps. Each V(i) is the
union, ranging over all w of length i, of the preimages of V'
under the maps P(-,w). By continuity of P with respect to
x, every V(i) is open. Since each V(i) is also the projection
on X of the set consisting of all pairs (x,w) with w of
length i and for which P(x,w) is in V, these are also PL
sets. By asymptotic controllability, the union of the V(i)
covers Z. By compactness of Z, there is some r so that
V(1),- - -,V(r) already cover the set Z. Let W(i) be the
complement of D and W(i—1) in V(i) (where W(0)=D).
Let K be equal to L on D, and equal to a selection function
on the W(i), i=1,---,r, in such a way that K(x) is an
input sending states of W(i) into V(i—1). Outside the
W(i), K is arbitrary. Any state x in Z is in some W(i), so it
will be sent in at most r steps into D; after that the
feedback L takes over, driving x(¢) towards 0. Thus, states
converge to zero, and the proof follows from the fact that
the origin is already a.s. for the local system. HH

Somewhat less than asymptotic controllability of Z is
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needed: it is enough to have “approximate controliability,”
i.e.. existence of finite sequences driving the states of Z
arbitrarily close to zero. The lemma could be extended to
include the case in which it is required that Z also be
invariant under the closed-loop transitions. A feedback K
giving such an invariance will exist iff asymptotic control
can be assumed without the sequence x(-) ever leaving Z.
The proof is basically the same, only the V(i) should be
now defined as the set of elements of the subset Z which
satisfy the necessary properties. Another extension would
be to prove that controls outside D may in fact be chosen
piecewise constant. This is not difficult to prove using
compactness, but is relatively less interesting, due to the
fact that the number of “pieces” and /or control times now
become large in almost any instance (for a trivial example,
consider an n-dimensional linear system x(z+1)=x(¢)+
u(t). with U also n-dimensional, and with V' a small
neighborhood of zero and Z a large set. The obvious
feedback u:= —x is linear (and so PL), but there is no
piecewise constant feedback which uses “few” pieces).

The hypothesis of (3.2) holds, for example, if it is known
that some controllability set X(¢) contains the origin in its
interior (then L is as in Section II-A). A more interesting
case is that in which p is linear at the origin, i.e.,, when
there is a neighborhood of x=0, u=0, where p is defined
and linear, and where this linear part is itself asymptoti-
cally controllable. In other words, p(x, u)=Fx+ Gu for
small x, u, and the modes of F corresponding to eigenval-
ues of at least magnitude one give a reachable system. In
the linear neighborhood a suitable feedback exists by the
linear theory. Note that such a condition on (F,G) is
“generic” in any reasonable sense. This argument gener-
alizes to the non-PL case. The basic method there will be:
for states near the origin a linear controller is used; for
other states, a controller designed using a PL approximant
will be sufficient. Discrete time is treated first.

Theorem 3.3: Let S be a discrete-time system with tran-
sitions x(r+1)=p(x(z), u(r)), whose state space X and
input value set U are PL, connected, and contain 0 in their
interiors, and with p continuous and p differentiable in a
neighborhood of x=0, u=0. Let Z be a compact subset of
X. Assume that Z and the linearization (F,G) of S at the
equilibrium state 0 (i.e., F=(dp/0x)0,0), G=
(dp/du)(0,0)) are both a.c. There exists, then, a feedback
map K: X— U such that Z is a.s. for the corresponding
closed-loop system.

Proof: Let K be a linear map such that all eigenvalues
of A:=F+ GK have absolute value less than one. The
notation | x| for a vector will be used for the box norm max
{|x,].---Jx,]}: |A4| is the corresponding operator norm.
“Distance” will refer to this norm. Since powers of 4
converge to zero, there is some ¢ with |A°|<1/4. Let
g(x):=p(x, Kx), for those x in X for which Kx is in U.
Pick a neighborhood ¥ of 0 small enough so that, for all x
in V. g'(x) is defined and differentiable for i=0,---,¢.
Further, V' should be small enough that the closure of the
union of the images of these g'(V) is also inside the
domain of differentiability of p. Since ¢‘ is differentiable,
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one may write, for x in V, ¢'(x)=A'x+h(x), with h(x) of
order o(x). Taking a smaller V' if necessary, one may
assume that | h(x)|<(1/4)|x| for all x in V. Further, ¥ can
be taken as a box |x|<<a. It follows that, on V, |¢'(x)|<
(1/2)|x|, and in particular V is invariant under the con-
traction q’. Moreover, {q'(x)} converges to zero, for any x
in V, since gq,- - -,q”' are all continuous and the subse-
quence {g“(x)} converges to zero. Let C be the compact
box consisting of those x with |x|<(a/2). Since Z is a.c.,
there is for each x in Z an input sequence w with P(x,w) in
the interior i(C) of C. Thus, the preimages of i(C) under
the continuous maps P(-,w) cover Z, and by compactness
a finite subset of the w is enough to cover. Let the integer r
and the compact PL subset U’ be such that every x in Z
can be controlled to i(C) (and hence to C) in at most r
steps using input values in U’. Replace U by U’. Consider
the union of all sets P(ZXU'), for i=0,---,r. This is
again compact and is hence contained in a compact PL
subset X' of X.

Let D’ be the union of the images (¢'(V)) for i=0,- - -t
—1. If xis in D’ it returns to V, in fact to the interior of C,
in at most ¢ steps. So D’ is also g-invariant. Let D be an
open PL neighborhood of D’ with the property that all
g'(D) are well defined and also that ¢‘(D) is eventually
inside V. There is always such a D, because, for each x in
the (compact!) closure of D’, ¢’(x) is in C for some i<t,
and g,---,q""! are all continuous. If x is any state in D
then applying the linear feedback u: = Kx results in x being
driven asymptotically to zero. The global feedback K will
be constructed as an extension of the map K as defined on
D. The global K, which will in fact be defined only on X’
(but can be extended arbitrarily outside X’), will in particu-
lar drive any state in Z into D. After reaching D, the
“local” K takes over. Since the local system is a.s., only
convergence to zero needs to be verified.

Consider the set C’ of those states in X’ which can be
driven into C using a single input in U. (This set is
compact.) Let p* be a PL map defined on the product of

X’ and U and such that p*(x, u) is uniformly at distance
less than (a/4) of p(x, u) (e.g., a continuous p* which is a
suitable simplicial approximation of p, with values in the
convex hull of X’— or, for a much cruder approximation, a
piecewise constant p*). For each x in C’ there is then some
u such that p*(x, u) is at distance less than a/4 from C.
Let V' be the open set consisting of all x in X’ which can
be so controlled in one step via the PL map p* into a state
at a distance less than a/4 from C. Since the latter is a
compact PL set, V¥’ is also PL. By the selection lemma,
there exists a PL map K’ defined on V' and with values in
U such that the distance of p*(x, K’(x)) to C is always less
than a/4. Thus, p(x, K’(x))is in V for any x in V. Extend
K to V' using K’ outside D. The argument may be repeated
now using C’, V' instead of C, V; instead of a as above,
one uses now a number a such that the distance from C’ to
the complement of V" is a/2. The only difficulty is that C’
is not necessarily PL. But since C’ is a compact subset of
the open set V”, there is always a PL C* lying between C’
and V7, so C’ can be simply replaced by this (larger) C* if
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necessary. Repeating, a new p* is defined on a suitable V”,
and a K" results which extends the previous K to V. By
the definition of r, after r steps the resulting C’ already
covers Z. Extend K arbitrarily outside the last V. Under
u=K(x), a state x in Z is driven in at most r steps into D,
as required. ®E

What should be emphasized of the above result is the
underlying idea of constructing an approximating PL sys-
tem S* (for example, the successive p* on the V’ that
appear in the proof) and building a PL controller for S*; if
S* is sufficiently close to S, the same controller works for
the latter. (Introducing a uniform topology for systems,
one could make this precise: there is a neighborhood of §
such that any PL system in this neighborhood, equal on V
to the linearization of S at zero, is also a.c.) The method
could be reversed to give a (sufficient) test for the control-
lability of the original S (based on checking controllability
of PL systems); if S* is controllable, and if S is sufficiently
close to S*, it is itself controllable. It would, of course be
desirable to have a version of this stated directly in terms
of S. '

Example 3.4: As a simple illustration, consider the sys-
tem with X=U=R, Z the set of states with |x|<3, and
transitions x(¢+ 1)=x(t)? +x(¢)+u(¢). In this very simple
case there is, of course, an obvious non-PL controller,
namely, u: = —x? —x, but we wish to obtain a PL solution.
For this note that the linear feedback K(x): x stabi-
lizes for | x| <1. Interpolating linearly on the complement,
one obtains for an approximant S*:

p*(x,u)=—3x—3+uon[-3,—1] (3.5a)

p*(x,u)=5x—3+uon(1,3]. (3.5b)

The obvious controller K(x):=3x+3 on [—3, —1],
K(x):=3—5x on [1,3] when applied to the original system
already happens to yield stability. Indeed, | p(x, K(x))|<1
for all x except x=2, —2. But in those cases the next state
is —1, which is driven to zero in the next iteration. (Of
course, one can not expect that such a simple procedure
will always work, and better approximations of S may be
necessary.) HH#

Generalizations of (3.3) could proceed in various direc-
tions. For instance, X could be taken to be a more general
topological space. One could then expect in that case an
analogous argument using triangulations of X, but the
detailed work remains to be done. Similarly, the control
space U could be taken as a more general space.

B. Continuous-Time State Feedback

Consider now continuous-time systems S with X, U, PL
open connected sets, / continuous [this can be weakened:
see (3.9)], and such that

(dx/di)(1)=f(x(1), u(t))

has a well-defined unique solution for =0 when starting
at any x(0) in X and given any u(-) piecewise continuous
with values in U. (By definition such #’s will be assumed to
be bounded on finite time intervals.) The definition of

(3.6)
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asymptotic controllability is the obvious analog of the one
before. The following result proves that sampled control is
(almost) always possible using PL feedback.

Theorem 3.7: Let S be as in (3.6), with f differentiable
in a neighborhood of zero. Assume that the linearization
(A, B) of f at O gives an a.c. linear system and that the
compact subset Z of X is a.c. in the system S. Then there
exist a PL map K: X’— U and a positive real number d,
such that, for the system (3.6) with the feedback

u(t):=K(x(id)) if id<t<(i+1)d,

the set Z is asymptotically stable.

Proof: By an easy modification of the argument in
Kalman et al. [7, Theorem 12] one shows that there exists
an integer j such that the sampled linear system (F,G)
obtained from (A4, B) using a sampling period 27/ is a.c. as
a discrete-time system. Let S’ be the discrete-time system
with the same X and U as S and with p(x, u): =solution of
(3.9) at time 27 for x(0)=x and u(r)=u (constant). (One
says that S’ is obtained through sampling of S at rate 2/))
Let L be such that E:=F+GL has all eigenvalues with
absolute value less than 1, and let ¥ be a neighborhood of
zero such that Ex is in U for each x in V and such that
using u:=Ex on S’ yields a system which is as. when
starting at x in V. (Such a V exists by the argument in
(3.3), since (F,G) is the linearization of p; an alternative
proof would work directly on S using the Bellman-
Gronwall lemma as in Desoer [2, p. 153].) Since z is a.c. in
S, for each x in Z there is some input function u(-)and a T
such that x(¢) is in V for all r=T. Since V is open, one
may approximate such a u(-) by piecewise constant inputs
in any fine enough partition of [0, T}, so for each x there is
some input constant on intervals of the form [n27",(n+
1)277] controlling x, and hence also a neighborhood of x,
into V, in a time T that can be chosen as an integral
multiple of 2. By compactness of Z, there are some i and
T which work for all x in Z. Without loss of generality one
may assume that i>j. Take d:=2"".

Claim: The discrete-time system S’ obtained by sam-
pling S at rate d has Z a.c. Indeed, if x is in Z the above
construction shows that x can be taken into V' using
d-sampled inputs, i.e., as a state of the system S”’. But once
in ¥ one may use the inputs u(f+i):=Ex(t) (for i=
0,---,m—1, and ¢ a multiple of m=2"7) to drive x
asymptotically to zero. (Note that the mth iterate of the
transition map p”’ of S”, with “piecewise constant” inputs
u as above, is by construction the same as p.) Thus, Z is
a.c. The linearization (F’,G’) of p” at zero is also a.c.,
because the lower frequency sampling (F, G) already is.

Thus, (3.3) applies to give a K which stabilizes Z for S”,
which is equivalent to stabilizing Z in S with the d-sampled
feedback K. #H#

Remark 3.9: a) The assumption of continuity on f can
be weakened considerably. All that is really needed is that
sampled systems obtained from S satisfy (3.3), and this will
sometimes happen under piecewise continuity of f. To
make this precise would require entering the topic of
defining “solution” of 0.d.e.’s with discontinuous right-hand
side.

(3.8)
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b) For computations, the above proof is, of course,
rather inefficient, and directly approximating S by a PL
system may be more practical; this is yet another area
requiring more careful study. Although of a very different
nature, this result has some analogies with the piecewise-
analytic theory of Sussmann [14]; these analogies are ex-
plored in Sontag and Sussmann [13), where it is also shown
that, in general, a “piecewise” smoothness of control laws
is unavoidable.

C. (Asymprotic) Regulators

The notions of weak and strong regulation introduced in
Section I1I-C can be generalized in the obvious ways to the
asymptotic case; Z should now be required to be a.s.
instead of finite-time stable. This applies also to non-PL
systems, as_defined in A and B above. (Output maps are
defined in the continuous case just as with discrete time.)
In the continuous case, one looks for sampled regulators.
As in Section II-C, S will be a state-output system.

Definition 3.10: Let S be a discrete-time system. The
subset Z of X is weakly regulable iff there exists a system S’
and a state x’ in X’ such that Z is a.s. [i.e., the coordinate
x(t) satisfies the conditions in (3.1)] for the closed-loop
system when S’ starts at x". If Z is a.s. for S’ starting at any
state in X', then Z is strongly regulable. For a continuous-
time system S, the subset Z is (weakly or strongly) regula-
ble iff there is a discrete-time system obtained from S by
sampling for which Z is (weakly or strongly) regulable. The
system S is (weakly or strongly) regulable on compacts iff
the above properties hold for each compact subset Z of X.

Variations of the definition are possible which would
require S’ itself to be stable. The constructions given below
will provide this stability in any case, but the relations
between the various possible definitions should be studied
in detail in the future. Of course, the interest will be in
“nice” (here, PL) regulators, but the above definition per-
mits posing the question of whether such nice regulators
exist when only the abstract possibility of regulation is
given. Note that a regulable linear system ( F, G, H) is one
for which (i.e., (F, G) is stabilizable and (F, H) is detecta-
ble. Since linear systems appear, it will be convenient to
assume that g(0)=0; this can always be done up to coordi-
nates in Y.

Recall that two states x, x” of a system S are indis-
tinguishable iff h(x, w)=h(x',w) for every admissible (finite
length) input function w. (The notations are as in Section
11-B: in continuous time, P(x,w) is the state reached after
application of w.) “Admissible input function” means any
sequence in discrete time, and any piecewise continuous w
in continuous time. (Values (w(¢) must, of course, belong
to U.) If Z is a subset of X, a coset for the indistinguisha-
bility (for simplicity, “indy”) equivalence relation restricted
to Z is an indistinguishability class rel (=relative to) Z. A
set which is a union of such classes, for a given Z, is
saturated rel Z. As a final definition, an input function w of
finite length (final-state) derermines the states of Z up to
indistinguishability (u.t.i.) iff for any x in Z the outputs
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H(x,w) are enough to determine the indy class of P(x,w);
a sampled such function w will be a w which is constant on
intervals [id, (i+1)d] for some d, and such that just
outputs at times id (not greater than the length of w) are
sufficient for this determination.

Assume now that S is weakly regulable on compacts. Let
L be an indy class rel Z, some Z compact. Let S’ be a weak
regulator for Z, and let S start at =0 in a state x
belonging to L. From (2.12) it is clear that the future
inputs to S will be the same if S starts at a different x’ in
L. Call w(-) the (infinite) input function thus obtained,
which depends only on L and not on the particular x. The
solutions x(¢) starting at the x in L satisfy the conditions
in (3.1) for the given Z. Since L is compact (because indy
classes are always closed by continuity of p, ¢), the conver-
gence to zero is uniform on L, i.e., for any neighborhood V
of zero there is a T such that x(¢) is in V for all r=T and
all x(0) in L. This can be achieved by first covering L by
neighborhoods W as in (3.1) and then taking a finite
subcover. (In fact, although with different w’s, a T can be
obtained for the same reason as depending only on the
compact Z.) Note that the existence of such w(-) depend-
ing only on L would be implied even if S and S’ were both
continuous-time systems and (2.12) would be suitably mod-
ified; this is all the more interesting in view of the fact that
this condition turns out to be equivalent to the existence of
a (sampled) regulator, and in fact a PL one.

Theorem 3.11: Let S be either a discrete- or a continu-
ous-time system, with X, U, open, PL, and connected, and
with p, g continuous, and differentiable in a neighborhood
of zero. Assume that a) for every compact Z and every
indy class L rel Z there exists an input function w(-) such
that solutions x(-) starting at states in L converge uni-
formly to zero; b) the linearization (A, B,C) of S at zero is
regulable; and c) for every compact Z there exists a sam-
pled v which determines the states of Z up to indy.

Then § is weakly regulable (by PL systems). Further, if
( p,q) are real-analytic and the local condition b) holds,
then a) alone is, in fact, a necessary and sufficient condi-
tion for weak regulability.

Proof: The first part of the proof basically repeats the
arguments in (3.3) and (3.7). More details are provided for
the continuous-time case; discrete time is analogous but
simpler. Let k be such that the linear system obtained by
sampling (A4, B,C) at rate 2* is discrete-time regulable.
From the linear theory one concludes the existence of a
linear regulator for the latter, say S”"=(A", B”,C”, D"),
where S” is built by cascading a Luenberger observer and
a constant feedback matrix that provides asymptotic stabil-
ity. Denote the state space of this regulator by R”, and
states by x"; this S” feeds C”x”+ D"y to (the sampled
version of) (A4, B, C). By the argument in (3.4), applied to
the closed-loop system which consists of the sampling of S
at that rate and of S”, there exists an open bounded PL
neighborhood of zero D* in XXR” such that a) D* is
invariant under closed-loop dynamics when the (sampling
of) the original system is used together with S”; and b)
there is asymptotic stability for the latter nonlinear closed-
loop system when starting in D*.
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Moreover, this stability is preserved under higher rate
sampling. For later use, note that there exists also a smaller
set E* with the same properties and such that the closure
cl(E*) of E* is included in D*. (This can be proved simply
by starting in (3.3) with the box of sides a/2 for “¥V >
instead of a.) Let the open subset D of X be such that
D>< {0} is included in D*, and let F be a compact subset of
R " such that the projection of D* in the second coordinate
is included in F. Again for future reference, find E such
that EX {0} is included in E* and such that the closure of
E is included in D.

Let Z now be a compact subset of X. We want to obtain
a regulator S’ for the states of Z. By c) there exists a
sampled input v which determines states of Z u.t.i.; rescal-
ing time if needed, we may assume that the sampling rate
for v is 2 for some i. (In discrete time, just let i=0.) Let i
be the largest of i and the above k. By continuity of P(-, v)
the set Z’: =P(Z X {v}) is again compact.

Consider now an indy class L rel Z’, and a correspond-
ing w as in a). Let T be an integer such that x(¢) is in D for
all x(0)in L and all 1=T. Let x be in L. Consider the map
(a restriction of P) PT: XX U(T)— X, which assigns final
states x(7") to initial states x(0) and piecewise continuous
input sequences of length 7. With the uniform convergence
topology on U(T'), PT is continuous. Since P(x,w) is in D,
there is then a neighborhood 4 X B of (x,w) which is also
mapped into D. For each x in L find such an 4(x) and
B(x). Since the A(x) then cover the compact L, there is a
finite subcover, say A(x,)," - -, A(x,). Let A be the union of
the A(x,), and let B be the intersection of the B(x;). Pick
any w’ in B. For some j, there is such a w’ which is
moreover sampled at rate 2/. Thus, P(x,w’) is in D for any
x in A. Replacing w by w’, one concludes that there is a
sampled w controlling L (and a neighborhood 4 of L) into
D at time T. Let A" be the intersection of 4 and Z’.

The set A" (open in Z’) can be assumed to be saturated
rel Z'. Indeed, consider the quotient space Z’/1, where I is
the indy relation, and let (8 be the canonical quotient map.
Since Z’ is compact and Z’/[ is Hausdorff (by continuity
again), 6 is closed. So the complement of 6 ~'6(Z’/A) is
open in Z’, saturated rel Z’, contained in the original 4’
and still contains L, as required.

For each class L there are then a sequence w, an integer
T, and a neighborhood 4 with the above properties. By
compactness of Z’, one concludes that there exist finitely
many, say m, open sets 4, and corresponding 4 saturated
rel Z’, and input functlons w; of lengths T j), all sampled
at some rate 2% such that P(x w;) is in D whenever x is
in A, Replacmg i by the ]argest of i and k, a fixed
sampling rate 2' will be used for the input v which de-
termines states of Z u.t.i. (in the process driving Z to Z’),
the inputs w; which control Z’, and the sampling rate for
(A. B,C) for which S” regulates locally.

From now on, the problem is strictly one about discrete-
time systems: for the continuous-time case a regulator will
be constructed for the system obtained sampling at the
above rate. Let r be the length of v and let k be the largest
length of the sequences w,. When sampling as above, one
would get k =largest of the lengths k( j)=2'T( ). Consider
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the set

g::{(H(x,u),[P(x,v)])lx in Z} CY"X(z'/I)
(3.12)

where [—] indicates indy class (restricted to Z’). Since Z’ is
compact and P, H, are continuous, C is also compact.
Since v determines states of Z u.ti., H(x,v) umquely
determines [P(x,v)], so C is the graph of a continuous
function f. Denote by J the domain of f. Let W, be any
open set in Y’ 1nterestmg J at f"([A D. (Note that
saturation of A gives precisely that it i1s open in the
quotient space.) If x is any state in Z whose output y(-)
(when v is applied) is in J, then y(-) is in some W,, and for
that j the corresponding w; controls P(x,v) mto D. Re-
place now each W, by a subset W/ which is PL, in such a
way that the latter still cover J. (This can be done,using
that the W, are open and compactness of J.) Replacing by
new sets WJ" one obtains a disjoint PL (nonopen) subcover
of J. Let g be the PL map which assigns the integer j to
each W

The construction of the regulator S’ is now easy. The
state set of S” will consist of the product

Y UXN(r+k+1)XN(m)XR" (3.13)

where N(j) is the set of integers {1,-- -, j}. (The compact
set F could have been used instead of the last coordinate.)
To describe the dynamics of S’, denote by i, j, y”, x” the
contents of N(r+k+1), N(m), Y"~!, and R" respectively.
The operation shift (a, y”) stores the value a in the last
coordinate of y” and shifts the rest of y” to the left,
dropping the first value. The input is the present output
value y of S (sampled at the beginning of the period in the
continuous-time case), and the output is the value that
results in the register u. Finally, the vector k(j), the
function g, the linear system S”, the vector v(i), and the
matrix w(i, j) [containing w;(i)] are assumed to have been
already defined. Then S’ evolves according to the follow-
ing:

u:=if i<<r then v(i)
else if r<<i<k(j) then w(i—r, j)
else C”"x"+ D"y,

ifi=r thenj: =g(y",y)

ifi<r+ktheni:=i+1;

y:=shift (y”, y);

if i>r+k(j) then x”

=A"X"+B"y. (3.14)

The initial state is i:=1, j arbitrary, y” arbitrary, and
x”:=0. It is clear that (3.14) defines a PL system. By
construction, any state of Z is first sent into a known state
in Z’, and then driven to the domain of local a.s.; thus S’ is
indeed a weak regulator.
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It does remain to prove that condition c) is not needed
in the analytic case. Since the proof is basically that in
Sontag [11, Section 3], it will only be sketched here. For
any input function w let K(w) be the set of pairs of states
x. x’ of Z with A(x,w)=h(x’,w). Each K(w) is compact
and defined by analytic equations. For each finite set
(w,. - -w,}, let K(w,,---,w):= intersection of
K(w,). - K(w,.- - -,w,). Consider the subclass consisting
of all those sets of type K(w,,- - -,w,) which use only input
sequences w, which are sampled at rate 2, for all possible /
and r. Let K(w,,---,w,) be such a minimal set. Assume
that the outputs to v=w, - - -w, at the end of w;, ww;, etc.,
would not determine states of Z u.t.i. There are then two
states x, x’ in Z which give the same output at those times
under ¢, i.e., such that (x, x’) is in K(w,,- - -,w,), but such
that (a,a’):=(P(x,v), P(x’,v)) is not in I. Let w be an
input with h(a,w)h(a’,w). By continuity of output val-
ues on time, w may be assumed to be of some length k2~
for some k, i. By continuity of output values on input
functions, w may be assumed to be sampled at some rate
2. Thus, the set K(w,---.w,,w) is strictly contained in
K(w,," - -.w,), contradicting minimality of the latter. Thus,
v indeed determines states of Z u.t.i., as a sampled input.
HH

For strong regulation the situation is more complicated,
but the result given below appears to be nearly necessary
and sufficient at least in the continuous-time analytic (or in
the discrete-time but polynomial) case: in that case it is
generally known that a generic set of inputs (relative to a
suitable topology) exists, each of which serves to determine
final states u.t.i.; it is not known (and in fact it is false)
that this set should contain a neighborhood of zero, or that
sampled inputs may be used, and these facts will be needed
below. (It is possible, however, that the stronger facts may
still hold in the analytic discrete and continuous cases, at
least when the state space is bounded and requiring only
“almost” indy u.t.i., which is enough for the proofs.) For
simplicity, the result will be proved under an observability
assumption. When dealing with “smooth” systems observa-
bility may be expected to be a generic condition on systems
(transition maps transversal to “kernel” of output maps,
intuitively)—a rigorous version and proof of this has in
fact been shown to the author by H. Sussmann. A com-
pactness assumption on U is also made for simplicity;
mathematically, this is a nontrivial assumption, but from a
practical viewpoint it is, of course, very natural [this is
dropped in (3.23)]. Call a subset V of the state space X
globally observable iff every indy class in X has at most one
element in ¥. The topology on input functions is taken to
be that of uniform convergence, and “generic” will mean a
countable intersection of open dense sets. Assume that U is
compact and contains a neighborhood of zero.

Theorem 3.15: Let S be as in (3.11), satisfying a) and b)
there, as well as: c)’ there exist an integer M and a generic
subset U of the set of input functions of length M such that
U contains all functions with values in a neighborhood G
of zero and such that each sampled w in U determines the
states of X u.t.i.; and c) there is a globally observable
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neighborhood V of the zero state. Then S is strongly
regulable (by PL systems).

Proof: Let k, S”, D, etc., be as in the first paragraph
of the proof of (3.11). Assume without loss of generality
that V is an open PL set, and that all values C”"x” +D"q(x)
are in G when (x, x’) is in D*. Construct all of these in
such a way that the closure of the projection F’ of D* in
the first factor is included in V. Let Z be a compact, and
assume without loss that it contains F'. Let Z” be a
compact set containing the union of all the images P(ZX
U(t)) (where U(t):=set of input functions of length 7), for
0<t<2M, and let Z’ be another compact containing all
the images P(Z” X U(t)), for 0<t<M. (Thus, Z’ also
contains all states reached from the original Z in at most
time 3M.)

Repeat now the constructions of the covering {4} and
the sequences w;, but regarding controllability to E as
opposed to controllmg only to D. Moreover, pick the final
W; C corresponding in the proof to each class L as a sequence
such that either T(j)<<M or every length-M sampled sub-
sequence of w; determines states of u.t.i. (The latter require-
ment will be met if one can prove that length-M sequences
with that property form a dense set, since B will then
contain at least one such sequence. But the set of wanted
sequences is given by a finite intersection of generic sets—
the sampling having been already chosen—and hence still
dense.) Use the notations k( j), k, m as earlier, and r: =2' ‘M.
Construct the set C using the constant input v=0 of length
r (any other small enough v would do), but using Z”
whenever Z was used for (3.12). The function g is con-
structed as before.

The above constructions can be combined as before to
give a weak regulator which first determines the state u.t.i.
and then drives this state to the domain of regulation for
S”. Recall from Part II that the idea of strong regulation is
intuitively that sudden disturbances during the operation
of this closed-loop system should not affect eventual stabil-
ity. One way to ensure this stability is to constantly check
(using a PL system!) for deviations of the observed 1/0
behavior from the “expected” behavior obtained when no
disturbances occur. This checking will be accomplished as
follows.

Let v;; be the length-r input sequence obtained as the
resmcnon of w; to (sampled instants) (=i, itr—1.
Thus, v ,Jlsdefmedforj—l -.mandi=1,- k(J)—r+1
when k(j) is at least r. Note that each v; i determmes states
of Z’ u.ti. For each 0<<i<k(j), let w/, denote the tail
subsequence obtained by restricting w; to its last k(j)—i+1
values. Let D, ; [respectively, E; ;1 be the set of states of Z’
that w, ; sends mto D [respectlvcly, E). Each D, and E;;
satura(ed rel Z'. Indeed, let x be in D,; and let x’ be
indistinguishable from x. Then P(x,w, ;) and P(x’,w, ) are
indistinguishable. But P(x,w, ) is in D which is included
in the globally observable V thus P(x,w;;)=P(x",w)
and x’ is also in D;; (clearly, much less than global
observability of V' would be needed here, since all that one
really wants is that P(x’,w,;) be again in V). The same
argument applies to E; ;. Their closures are also saturated,
and by the constructnon of D, E, cl(E;)) is contained in
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D, ,. Consider when k( j)=r the sets

G ={(H(x.v,,).[P(x.0,)])|xinc(D,,)}. (3.16)

Since the v, ; determine u.t.i., each such C; ; defines an ;; as
in (3.12). Let E, | [respectively, D, ;] be the (open set in the
domain of f ;) preimage of E, ., [respectively, D, ;,,].
Note that cl(E; ) is included in D, ,.

There is, then, a closed PL subset L(i, j) of Y” which
contains E;; and is contained in D, ;. Further, the L(i, j)
can be constructed, for each j, satisfying certain compati-

bility conditions for different i. Namely, that
PUAALG. )XW ))) Sl (LG=10 ). (3.17)

To obtain this, start by defining L(i, j) for i=1; next
consider the compact set P(f (L(i, j))X{w,,}); this is
included in D* and includes E*, so in constructing the next
set one may require containing this set, then repeat for
larger i. Let g,; be the (PL) characteristic function of
L(i, j). Then, if g, (H(x,v,;))is | it follows that P(x, W)
1s in D, and conversely if P(x, W, ;) is in E one knows that
this value is one.

The above functions will be used to detect deviations
while the w; are being applied. But disturbances may also
happen while in the domain of local linear regulation. For
this case, consider the set

{(u, H(x, u),[P(x,u)])|xin F’, uin U’} (3.18)

(recall that F’ includes cl( pr,(D*))). This defines on its
domain a continuous function 8 such that f(u, y) gives
[P(x,u)] in X/I for the uniquely determined class. Con-
sider the product space (X/I)XR" (the second factor is
the linear regulator state). Since I is trivial on V, the set
VXR" can be identified with a subset of this product
space, and hence also E* and D* are subsets of it. Let
&'(u, y,x”) be (8(u, y), x”). Since cl(E*) is included in
D*, there exists a PL subset of U”XY” XR” which maps
under § into a set containing E* and contained in D*; let ¢
be its characteristic function. Thus, at any time c¢(u, y, x”
is in particular 1 when (x, x”) is in E* for the unique x
giving past 1 /0 data (u, y), and conversely if this value is
1 then at least (x, x”) is in D*.

The construction of S’ is now as follows. The state set is

X:=U" ' XY 7T EXN(r)XN(m)XN(k)XR" X X,
(3.19)

with notations as earlier and X, a three-element set {TEST,
CONTROL, STANDBY }. To display the dynamics, denote by z
the coordinate of X, and denote y”, x” as before, u” the
content of the U™~ factor, w(i, j) as before, i, j, k’ the
contents of the N(r), N(m), and N(k) registers respec-
tively, g'(i, j, y) for g, (y), and let INPUT(u) be false iff u
is in V. All partially defined maps are assumed extended
arbitrarily outside their domains. The dynamics are

e |

TEEE TRANSACTIONS ON AUTOMATIC CONTROL., VOL. AC-26. NO. 2. APRIL 198]

(z=TEST:)u: =0;
if i<rtheni:=i+1 else

beginj:=g(y"”, y); k’:=1; z: =CONTROL; end;

y':=shift (y”, y); u”:=shift (u”’, u); (3.20)
(z=CONTROL:)u: =w(k’, j);
if k’<k(j)then k’:=k’+1 else
begin z: =STANDBY; x"": =0; end;
if r<<k’ then
if g’(d, j, y”, y)=0 then z: = TEST;
y"”:=shift (y”, y); u”:=shift (u”, u); (3.21)
(z=STANDBY:)u: =if INPUT (u) then 0
else C"x”+D"y;
x": ZA"x"fB”y;
if (INPUT (u) OR c(u”, y”, x"")=0)
then z: =TEST;
y":=shift (y”, y); u”:=shift (u”, u); (3.22)

To prove that S’ is a strong regulator, let x’ be an
arbitrary initial state of S’ and let x be in Z. Consider the
closed-loop evolution. Say that the alarm sounds if at some
time during the evolution z changes from CONTROL or
STANDBY into TEST.

Assume that the alarm does sound. Then it must sound
at a time when x is in Z”. This is proved as follows. If
originally z=TEsT, then after at most r instants one has
that z=CONTROL. Assume that the alarm sounds while
Z=CONTROL. Let k’ be the (first) time it sounds. If r<k’'—
1, then at 1—1, S’ had decided that x(t— 1) will be driven
into D by w; (which is being applied) and will hence
converge asymptotically to zero. The condition in (3.17)
ensures that the alarm will not sound again. So k'—1>r,
i.e.,, k’<r, and so at most 2r steps have elapsed since the
initial time. Thus, x(k’) is indeed in Z”. If the alarm does
not sound while z=CONTROL it means that k( j)<r (other-
wise the argument above ensures it would never sound).
Then at most 2r—1 steps have elapsed by the time the
state enters z =standby. If the alarm does sound at the first
time that z=STANDBY then r<<2r and again x(¢) is in Z".
Otherwise, it will never sound, since ¢ ensures that (x, x"’)
is in the invariant a.s. set D*. If the alarm does not sound,
the above arguments show that one indeed has a.s., since
x(t) is sent to D* and the convergence is uniform once
there. If the alarm did sound, z is set to TEST, and after r
more steps the state of S is determined u.t.i., and a suitable
J is obtained with convergence to E thereafter (the alarm
does not sound again, since x is sent into E, not just D,
and EX {0} isin E*). ##

Various modifications of the above would be desirable.
For example, the replacement of all the equality decisions
by tolerance comparisons would be needed in order to
insure robustness of the design. We leave this as a point to
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be further studied, and concentrate instead in weakening
the hypotheses of (3.15). The proof of the following variant
is (except for a more complicated notation) basically the
same as for (3.15), and hence will be omitted. Note that
compactness of U is not required anymore.

Theorem 3.23: Let S be as in (3.15) and assume that 1)
the linearization of S at zero is regulable; 2) there is a
globally observable neighborhood ¥ of the zero state; and
3) for each compact Z there exist a compact neighborhood
U, of O in U, a positive M, and a generic subset U of
U, (M) such that the following properties hold: i) for some
compact Z’ containing all P(ZX U(t)), 0<t<3M, and for
each indy class L rel Z’, there is an input function driving
states in L uniformly to zero; and ii) there is a sampling
time d (dividing M) such that any input in U which is
sampled at a rate divisible by d 7! serves to determine
states of Z’ u.t.i. Then S is strongly regulable. #H#

In the continuous-time case, the assumption on V im-
plies observability. This can be weakened by asking di-
rectly if there exists a linear regulator which converges
when starting at states indistinguishable from those close
to the origin.

Example 3.24: The hypotheses of (3.23) seem to be quite
weak. As a very simple illustration, consider the one-
dimensional, single input system (dx/dt)(t)=x(1)+u(?),
y(1)=x(t)+x(1)?. Clearly, 1) above is satisfied, while 2)
follows from observability. Consider the sampled system
(rate d ~'): x(t+1)=ax(t)+bu(t), y=x+x2, where a=e?,
b=a—1. Assume that input u is applied to this system in
state x; then y,=x+x? and y2=ax+bu+(ax+bu)2 =
(---)+(a—a*+2abu)x are observed, where (---) de-
pends only on y, and u. Thus, x will be obtainable from y,,
y, when a—a? +2abu+0, i.e., when u=1/2. Thus, inputs
of length 2 are always sufficient for determining states of
the sampled system, as long as the value 1/2 is not used.
We shall now choose both d and M:=2d. Let Z be a
compact, say, contained in [—k, k]. A suitable U, (to be
taken of the form [—sk, sk]) and a d should be such that
inputs of magnitude sk suffice for controlling states re-
ached in time 3M =6d from Z. In other words, one needs
that |e®/x+(e® —1)u|<sk, where |x|<k, |u|<sk. Thus
d. s must satisfy ke®? +sk(e®? —1)<sk, or 6d<<In(2s/(s+
1). For example, d=0.04, s=2 will satisfy the above. (In
fact, since s can be taken as close to 1 as wanted, this
means that the “transient” state set Z’ can be made to be
as close to Z as wanted, as long as the sampling rate is high
enough. Obviously, in a practical situation too fast a
sampling will lead to numerical instability.) H#H#

1V. CONCLUSIONS AND REMARKS

After an introduction and basic terminology, Section I1
studied bounded time problems. The study there consisted
basically in showing that certain “external” (and nonfirst-
order) properties of systems are equivalent to natural “in-
ternal” (first-order) properties, resulting then in PL solu-
tions for regulators. Section 111 concentrated on properties
which are not purely algebraic, although the PL structure
was also very useful here, and in the design of PL regula-
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tors for non-PL systems.

The previous material should be taken mostly as an
illustration of the possibility of developing an approach to
nonlinear regulation using PL systems. Although various
results were given, a much greater number of questions,
some of which were already mentioned, remain open. This
applies both to problems of computation and to problems
of a more theoretical nature. Among the latter we wish to
suggest a few other areas not treated above. One of these is
the topic of optimization. It is easy to see that finite-time
optimal control problems with PL costs (e.g., absolute-value
norms) result in closed-loop PL feedback solutions. In fact,
even a “piecewise quadratic” theory could be developed,
resulting in PL solutions. For infinite time problems, an
approach much like that in the last section (around the
origin a linear-quadratic problem) should give a constant
PL feedback. This should be worked out in more detail.
The structural stability of the various constructions should
be also explored carefully. Finally, questions involving
uncertainty have not been treated at all, but it conceivable
(although not clear!) that suitable stochastic control and
filtering questions may be posed and solved in the present
setup.
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