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Abstract
In this paper, we present necessary and sufficient conditions for observability of the class of

output-saturated systems. These are linear systems whose output passes through a saturation
function before it can be measured.

1 Introduction

The question of observability for time-invariant linear systems is certainly a well understood prob-
lem. But what happens when the output is not fully available? That is, instead of measuring
Cx, we can only measure σ(Cx), where σ is some nonlinear function. If the nonlinearity σ is
not injective, it is no longer obvious from the observability matrix [C ′A′C ′ · · · (An−1)′C ′]′ (prime
indicates transpose), whether or not the state can be “observed” from the output.

In [3], we answered this question in the case in which σ provided the sign of the output of the
linear system. That model was motivated by quantization and pattern recognition. In this paper,
we will look at continuous-time sytems in which the function σ is the identity near the origin,
but saturates the output values away from 0. (A preliminary version of this was presented at the
American Automatic Control Conference, June 1992 [5].)

By an output-saturated system, we mean a continuous-time system

Σ : ẋ(t) = Ax(t) + Bu(t)

y(t) = σ(Cx(t))

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n and σ defined by applying the function

σ(x) =


−1 x < −1

x −1 ≤ x ≤ 1
1 1 < x
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to each component of the output vector. We denote the above output-saturated system by Σ =
(A,B,C)os. This is an effective model for sensor saturation or overflow in the measurement device.
A system is observable if given any two initial states, there is a control which provides distinguishing
outputs for those two initial states. For linear systems, this definition of observability coincides
with saying that for any two initial states the outputs are different, using no controls. However,
for output-saturated systems, if the outputs remain large for two distinct states, they may look
the same. So it may be necessary to use the control to move the output into the “linear window”.
It is easy to see that the boundaries of this window are not really relevant for the question of
observability. We merely choose [−1, 1] for convenience. In fact, σ could be a completely different
function in each coordinate, as long as it is one-to-one in a neighborhood of 0 and saturated away
from zero.

After introducing some technical definitions and lemmas in Section 2, we proceed in Section 3 to
prove a characterization for observability of continuous-time output-saturated systems. Since the
conditions are not necessarily easy to check, Section 4 presents some necessary and some sufficient
conditions for observability depending only on certain eigenvalues of A. The two sections 5 and
6 focus separately on the cases of one, two, and more than two outputs. Finally, in Section 7
we study output-saturated systems with the added restriction of bounded inputs. We provide a
characterization of observability for the class of bounded-input output-saturated systems for which
the pair (A,B) is stabilizable.

2 Preliminaries

First we give Bohr’s definition of almost periodicity (see e.g. [1]) then prove some technical lemmas.

Definition 2.1 A function f : IR → IR is almost periodic if for any ε > 0, there exists a number
` > 0 such that for every open interval of length ` there exists a number τ contained in that interval
such that

|f(t + τ)− f(t)| < ε, ∀t ∈ IR.

This number τ , which depends on ε, is called an ε-almost period.

Lemma 2.2 If f : IR→ IR is almost periodic, and t0 ∈ IR is arbitrary,

lim sup
t→∞

f(t) = sup
t>t0

f(t),

lim inf
t→∞

f(t) = inf
t>t0

f(t).

Proof. Pick an arbitrary T0 > t0 and ε > 0. The function f is almost periodic, so there exists an
` such that in every interval of length `, there is an ε-almost period, τ . Suppose we are given a
T > 0. Then there exists a τ in the interval (T − T0, T − T0 + `) so that |f(T0 + τ) − f(T0)| < ε.
Let t1 := T0 + τ > T . As

f(T0)− f(t1) < ε,
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we have proved that for all T > 0 there exists a number t1 > T such that f(t1) > f(T0) − ε
and ε was arbitrary. This implies that lim sup f(t) ≥ f(T0). This is true for all T0 > t0, so
lim sup t→∞ f(t) ≥ supt>t0 f(t). Also supt>t0 f(t) ≥ lim sup t→∞ f(t), so we conclude that

lim sup
t→∞

f(t) = sup
t>t0

f(t).

The second statement follows analogously.

In particular, lim supt→∞ f(t) = supt∈IR f(t) and lim inft→∞ f(t) = inft∈IR f(t) for almost peri-
odic functions, so:

Lemma 2.3 If f : IR→ IR is almost periodic, and lim t→∞ f(t) = 0, then f(t) ≡ 0.

A function f(t) is called a Bohl function if it is a finite linear combination of functions of the
form t`eλt, with ` ∈ IN and λ ∈ C, or equivalently, if the Laplace transform f̂(s) of f(t) is rational.
The poles of this rational function f̂(s) are called the exponents of the Bohl function f(t) and the
order of a pole is called the index of the corresponding exponent.

A pair (λ, i) ∈ S ⊂ C × IN is maximal for the set S if Re(λ) ≥ Re(µ) for all (µ, j) ∈ S, and
i ≥ j for all other (µ, j) with Re(λ) = Re(µ). We say that (λ, i) is an (exponent, index) pair for f
if λ is an exponent of f of index i. We define E(f) as the set of exponents, λ, of f for which (λ, iλ)
is maximal among all (exponent, index) pairs. We will call E(f) the set of dominating exponents
of f .

Recall that an eigenvalue λ of a constant matrix A has index k if k is the size of the largest
Jordan block of A corresponding to λ, i.e., k is the multiplicity of λ as a root of the minimal
polynomial of A. We define the dominating eigenvalues of A, E(A), to be the set of eigenvalues λ
of A for which the (eigenvalue, index) pair (λ, iλ) is maximal among all (eigenvalue, index) pairs
associated to A. Notice that if p = 1 and (A,C) is an observable pair, then A must be cyclic, so in
this case, the index of λ is equal to the multiplicity of λ.

For a matrix of Bohl functions, W (t), we find a minimal realization (Amin, Bmin, Cmin) associated
to W (t), and then we define the dominating exponents for W (t) to be

E(W (t)) := E(Amin).

This definition does not depend on the particular realization used.

Remark 2.4 Let W (t) = (w1(t), . . . , wm(t)) be a row of Bohl functions. We say that the pair (λ, i)
is an (exponent, index) pair for W (t) if there is a j so that (λ, i) is an (exponent, index) pair for
wj(t). Then it follows that E(W (t)) is the set of λ so that (λ, i) is maximal among all (exponent,
index) pairs of W (t).

Lemma 2.5 Let f(t) be a Bohl function. Denote C+ := {s ∈ C : Re(s) ≥ 0}. If E(f) ⊆ C+ \ IR+,
then there exists a sequence {tk} with tk →∞ so that f(tk) = 0.
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Proof. Let α be the common real part of the dominating exponents, E(f). We can write

f(t) =
∑
j

ajt
`jeαjt{pj sin(ωjt) + qj cos(ωjt)}

= t`eαt
∑
j

ajt
`j−`e(αj−α)t{pj sin(ωjt) + qj cos(ωjt)},

where `j − ` ≤ 0 and αj − α ≤ 0 for all j. Now let g(t) be the sum of all the terms in which
`j − ` = 0 and αj − α = 0. Let h(t) be the sum of the rest of the terms. That is, we may write
f(t) = t`eαt (g(t) + h(t)) where

g(t) =
∑
j

aj{pj sin(ωjt) + qj cos(ωjt)} (1)

h(t) =
∑
j

ajt
−mje−njt{pj sin(ωjt) + qj cos(ωjt)}. (2)

We are assuming that f has a complex exponent with nonnegative real part equal to α. Thus, g
is not identically zero and the ωj’s are all nonzero. Any real exponents equal to α do not have
maximal index so they will correspond to terms in h of the form ajqjt

−mj . Note also that mj, nj ≥ 0
and for each j, at least one of mj, nj is nonzero, so limt→∞ h(t) = 0. Since g is a continuous function
of t, if we prove that lim supt→∞ g(t) > 0 and lim inft→∞ g(t) < 0, then together with h(t) → 0, it
follows that there must exist a sequence tk with tk → ∞ as k → ∞, such that g(tk) = −h(tk).
Thus g + h has infinitely many zeros, and so f does too.

Since g is a linear combination of periodic functions, it is itself an almost periodic function.
(See [1], Paragraph 48.) Thus we may apply Lemma 2.2 to the function g. Now suppose that
lim inf g(t) = inf g(t) ≥ 0. Then the function G defined by G(t) :=

∫ t
0 g(τ)dτ is nondecreasing.

By term by term integration it is easily seen that G is almost periodic and bounded (ωj 6= 0 for
all j, so G(t) looks again like the formula (1), but with different constants). This would imply
tha G is convergent. In that case, G must be constant (Lemma 2.3), from which it follows that
g is identically zero, a contradiction. So lim inf t→∞ g(t) < 0. Similarly, we may obtain that
lim sup t→∞ g(t) > 0.

Let (Ã, C̃) be the observable pair of submatrices in the Kalman observability decomposition for
the pair (A,C) (see [7], Section 5.2): (

Ã 0
A1 A2

) (
C̃ 0

)
. (3)

Let T ∈ Gl(n) be the matrix providing the coordinate transformation.

Proposition 2.6 Let A ∈ IRn×n, C ∈ IR1×n. The following statements are equivalent:

1. For all x ∈ IRn, inft>0 |CetAx| = 0.

2. The function C→ Cn : s 7→ C(sI − A)−1 has no poles on IR+.

4



3. The matrix Ã, in the Kalman observability decomposition of (A,C), has no eigenvalues on
IR+.

Proof. Note that since

CetAx =
(

C̃etÃ 0
)
T−1x, and

C(sI − A)−1x =
(

C̃(sI − Ã)−1 0
)
T−1x

for each x ∈ IRn, it suffices to prove the result for observable pairs (A,C). Thus, for the remainder
of this proof, we will assume (A,C) is an observable pair.

We first prove that C(sI − A)−1 has no poles on IR+ if and only if A has no eigenvalues on
IR+. Consider C(sI − A)−1 = C(sI − A)−1I as a 1 × n transfer matrix. As the triple (A, I, C) is
canonical (controllable and observable), the eigenvalues of A are precisely the poles of this transfer
matrix (see Corollary 5.7.2 in [7]). Thus C(sI − A)−1 has no poles on IR+ if and only if A has no
eigenvalues on IR+, and conditions 2 and 3 are equivalent.

To prove that condition 1 implies condition 3, suppose A has an eigenvalue λ ∈ IR+. Let v be
a corresponding eigenvector. Then

inf
t>0
|CetAv| = inf

t>0
eλt|Cv| = |Cv| > 0,

because (A,C) is observable, contradicting statement 1.
Next we prove that the third condition implies the first. If A has no eigenvalues on IR+, then

f(t) = CetAx is a Bohl function with no exponents on IR+, so, in particular, E(f)
⋂

IR+ = ∅. If
E(f) ⊆ C \ C+, we have f(t) → 0 as t → ∞ and so inft>0 |f(t)| = 0. If E(f) ⊆ C+ \ IR+, apply
Lemma 2.5. Then there is a t > 0 so that f(t) = 0, so clearly inft>0 |f(t)| = 0.

3 Property Q

In this section we introduce a property which, together with observability of the pair (A,C), will
serve to characterize output-saturated observability. This property will be used repeatedly in later
sections.

Let K be any subset of {1, . . . , p} and define NK by

NK :=
⋂
i6∈K
O(A,Ci)

where O(A,Ci) =
⋂
k=0,...,n−1 ker(CiA

k). If K = {1, . . . , p}, then NK = IRn, the whole state space.
If K = ∅, then NK = O(A,C), thus N∅ = {0} if the pair (A,C) is observable. The states in NK

are those that cannot be distinguished from 0 for the linear system (A,B,C) using outputs not in
K. Note that NK is an A-invariant subspace since each O(A,Ci) is. So we may define ANK to be
the operator A restricted to the subspace NK .
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For an output-saturated system Σ = (A,B,C)os, the sequence of p×m matrices

A := {CB,CAB,CA2B, . . .}

is called the Markov parameter sequence. Let I := I(A) ⊂ {1, . . . , p} be the indices of the nonzero
rows of A, J := J(A) ⊂ {1, . . . , p} be the indices of the zero rows of A and define N := NJ .

For any index set K ⊆ {1, . . . , p}, we let Q(K) be the following property:

For all ξ, and for all nonzero v ∈ NK , there exists a j = j(ξ, v) ∈ K so that
σ(Cje

tAξ) 6≡ σ(Cje
tAξ + Cje

tAv).
(Q(K))

(If NK = {0}, Q(K) automatically holds since there are no nonzero v ∈ NK .) Using this notation,
we letQ = Q(J) for K = J as defined above, and provide a necessary and sufficient characterization
for observability of continuous-time output-saturated systems.

Lemma 3.1 If Σ = (A,B,C)os is a continuous-time output-saturated system, then Σ is observable
if and only if

1. (A,C) is an observable pair, and

2. Property Q holds.

Proof. Necessity: Clearly (A,C) is an observable pair. For the second condition, assuming Σ is
observable, we must show that property Q holds. If NJ = {0}, then there is nothing to prove. So
assume NJ 6= {0}. Pick any ξ and any nonzero v ∈ NJ . Let η := ξ + v. Then η − ξ ∈ NJ . By
definition of NJ ,

Cie
tA(η − ξ) ≡ 0 ∀i 6∈ J. (4)

Since Σ is observable, there must exist some j ∈ {1, . . . , p} and a control u so that, for some t ≥ 0,

σ
(
Cje

tAξ +
∫ t

0
Cje

(s−t)ABu(s)ds
)
6= σ

(
Cje

tAη +
∫ t

0
Cje

(s−t)ABu(s)ds
)

. (5)

By (4), it cannot happen that such a j 6∈ J . Thus, there is a j ∈ J which satisfies (5). Since Aj
(the jth row of A) ≡ 0 for j ∈ J , this implies that

σ(Cje
tAξ) 6= σ(Cje

tAη),

i.e. σ(Cje
tAξ) 6= σ(Cje

tAξ + Cje
tAv).

Sufficiency: Given ξ 6= η, we must show that they can be distinguished. Let

J̃ := {j : Cje
tAξ 6≡ Cje

tAη}
= {j : ξ − η 6∈ O(A,Cj)}.

Note that the set J̃ is nonempty, by condition 1. If there is any j ∈ J̃ so that Aj 6≡ 0, then ξ, η can
be distinguished with an argument as that used for sign-linear systems (see [4]). Otherwise, for all
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j ∈ J̃ , Aj ≡ 0, so J̃ ⊆ J . For each i 6∈ J̃ , v = η − ξ ∈ O(A,Ci), so v ∈ NJ̃ ⊆ NJ , v 6= 0 and Q(J)
can be applied. So there is a j ∈ J and a t so that

σ(Cje
tAξ) 6= σ(Cje

tAη),

and indeed ξ and η can be distinguished. (Note that when J = {1, . . . , p} then NJ = IRn in the
above argument.)

Of course property Q is not always an easy property to check, but we can use this property to
simplify the proofs of the observability theorems of the next section. First we state some results
about property Q .

Remark 3.2 For any K ⊂ {1, . . . , p}, if (A,C) is an observable pair and v ∈ NK is nonzero,
then Cje

tAv 6≡ 0 for some j ∈ K. This is because, otherwise, v ∈ ⋂j∈K O(A,Cj). Together with
v ∈ NK =

⋂
i6∈K O(A,Ci), this implies that v ∈ O(A,C) = {0}, a contradiction.

Lemma 3.3 If (A,C) is an observable pair and for every j ∈ J , the row vector of functions
Cj(sI − A)−1 has no poles on IR+, then Q holds.

Proof. By Proposition 2.6, if Cj(sI − A)−1 has no poles on IR+, then

inf
t>0
|Cje

tAx| = 0, for all x ∈ IRn. (6)

The assumptions of this Lemma then imply that for every j ∈ J , (6) holds. By Remark 3.2, for
each nonzero v ∈ NJ , there is a j ∈ J so that Cje

tAv 6≡ 0. Then for all ξ ∈ IRn and all nonzero
v ∈ NJ , choose a j ∈ J so that Cje

tAv 6≡ 0. For that j, pick a t so that |Cje
tAξ| < 1/2. Without

loss of generality, we may assume Cje
tAv 6= 0 for this t. Then

σ(Cje
tAξ) 6= σ(Cje

tAξ + Cje
tAv),

and Q holds.

Lemma 3.4 If Q holds, then for all nonzero v in NJ , there is a j in J so that Cje
tAv 6≡ 0 and

inft>0 |Cje
tAv| = 0.

Proof. Suppose not. Then there would exist a v ∈ NJ , v 6= 0 so that for all j ∈ J either Cje
tAv ≡ 0

or inft>0 |Cje
tAv| 6= 0. Multiplying v by a scalar, we may assume that either Cje

tAv ≡ 0 or
Cje

tAv ≥ 1 for all t > 0. Let ξ = v. Then for all j ∈ J ,

σ(Cje
tAξ) ≡ σ(Cje

tAξ + Cje
tAv),

contradicting Q.

The next example shows that these necessary conditions are not sufficient.
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Example 3.5 Let Σ be the output-saturated system defined by the following observable triple.

A =

 2 0 0
0 −1 0
0 0 1

 , B =

 0
0
1

 , C =

(
1 1 0
1 0 1

)
.

Then J = {1}, NJ = {(x1, x2, x3)
′ : x1 = x3 = 0}, and

CetA =

(
e2t e−t 0
e2t 0 et

)
.

For any v = (0, a, 0)′ ∈ N , a 6= 0,

C1e
tAv = ae−t 6≡ 0

inf
t>0
|ae−t| = 0.

So this system satisfies the conditions of Lemma 3.4. But Σ is not observable. For example, the
states ξ = (1, 0, 0)′ and η = (1, 1, 0)′ are indistinguishable. Since K1(t) ≡ 0, the first component of
the output saturates at 1 for both initial states ξ and η. The second component of the output is
exactly the same for both initial states.

4 Observability: Necessity and Sufficiency

Property Q is not an easy property to check. In this section we will give some conditions which can
be checked by looking at the eigenvalues of the matrix A. For the general multiple output case, we
have the following necessary conditions for observability. Recall that IR+ denotes the nonnegative
real axis {s ∈ IR : s ≥ 0}.

Theorem 1 If Σ = (A,B,C)os is a continuous-time observable system, then

1. (A,C) is an observable pair, and

2. AN has no eigenvalues on IR+.

Proof. Let x be an eigenvector of AN corresponding to an eigenvalue λ ∈ IR+. Then x ∈ N , so
Cie

tAx ≡ 0 for all i 6∈ J . Let
J0 := {j ∈ J : Cje

tAx 6≡ 0}.
Then for all j ∈ J0, ξ = x, η = 2x, satisfy

Cje
tAξ = eλtCjx, and (7)

Cje
tAη = 2eλtCjx. (8)

Clearly the signs of (7) and (8) are always the same, and x can be scaled so that both functions
are outside the linear window [−1, 1] for all t, contradicting observability.

In the particular case in which J = {1, . . . , p}, N = IRn, so A = AN . Thus:
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Corollary 4.1 If Σ = (A,B,C)os is a continuous-time observable system and A ≡ 0, then A has
no eigenvalues on IR+.

The above conditions are not in general sufficient for observability in the multiple output case.

Example 4.2 Let Σ = (A,B,C)os where

A =

 2 1 1
0 1 2
0 0 −1

 , B =

 1
0
0

 ,

y1(t) = σ(x1), and y2(t) = σ(x2). We next check that Σ satisfies the necessary conditions of
Theorem 1. The pair (A,C) is an observable pair. The second row of A is 0 so J = {2} and
N = {(x1, x2, x3)

′ ∈ IR3 : x1 = 0, x2 = −x3}. The restriction of A to N is AN = −I, which has
no eigenvalues on IR+. But this system is not observable. Indeed, the states ξ = (1, 2, 1)′ and
η = (1, 1, 2)′ are indistinguishable. To see this, note that K2(t) ≡ 0. The first component of the
output is

y1(t) = σ
(
4e2t − 3et +

∫ t

0
K1(t− s)u(s)ds

)
,

for both ξ and η. The second component is y2(t) = σ(3et + e−t) for the initial state ξ and
y2(t) = σ(3et + 2e−t) for η. In both cases, y2(t) ≡ 1.

Remark 4.3 Let M =
⋂
i∈J O(A,Ci) and let AM be the operator induced by A on the quotient

space IRn/M . Then Lemma 3.3 is equivalent to saying that if (A,C) is an observable pair, and AM

has no eigenvalues on IR+, then property Q holds.
To see this let (

ÃJ 0
A1 A2

) (
C̃J 0

)
be the Kalman decomposition for the pair (A,CJ) where CJ consists of just the rows of C indexed
by J . Let r be the dimension of the observable component ÃJ . In this new basis, M is the subspace
of states whose first r components are zero. Then A2 = AM (the restriction of A to M) and ÃJ

is a matrix representation for AM . Note that statements 2 and 3 in Proposition 2.6 are equivalent
even in the case of arbitrary p. That is, AM has no eigenvalues on IR+ if and only if CJ(sI −A)−1

has no poles on IR+. 2

The next Theorem, giving sufficient conditions for observability, follows directly from the pre-
ceeding Remark and Lemma 3.3.

Theorem 2 The system Σ = (A,B,C)os is observable if

1. (A,C) is an observable pair, and

2. AM has no eigenvalues on IR+.
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Notice the subtle, but real difference between the conditions of Theorem 2 and those of The-
orem 1. Recall N =

⋂
i∈I O(A,Ci), so if we assume (A,C) is an observable pair, then N ∩M =

{0}. Also, N and M are both A-invariant subspaces. Thus N can be naturally identified with
(N + M)/M , so the eigenvalues of AN are included among those of AM . Equivalently, in matrix
theoretic terms, there is a basis for IRn in which A has the form AM 0 ∗

0 AN ∗
0 0 ∗

 .

Then (
AN ∗
0 ∗

)
is a matrix representation for AM , from which it is obvious that

σ(AM) ⊇ σ(AN). (9)

Observe that for the special case p = 1, the inclusion (9) is trivial. In fact, for p = 1, AM = AN .
Indeed, if I = {1} (A 6≡ 0), then M = IRn and N = {0} so AM = AN = 0. If instead J = {1}
(A ≡ 0), then M = {0} and N = IRn so AM = AN = A.

Thus, this sufficient condition is stronger than the necessary conditions in Theorem 1 which
stated that if Σ is observable, then (A,C) is an observable pair and σ(AN)∩IR+ = ∅. The conditions
are the same when p = 1. The following is an example of an observable output-saturated system
which does not satisfy the stated sufficient conditions.

Example 4.4 Let Σ be an output-saturated system with associated triple

A =


2 0 0 0
0 3 −1 0
0 1 3 0
0 0 0 1

 , B =


0
0
0
1

 ,

C =

(
1 1 0 0
1 0 0 1

)
.

(This triple is observable.) Then J = {1}, and the poles of C1(sI−A)−1 are: 2, 3+ i, 3− i. Thus,
C1(sI−A)−1 has a pole on IR+, so the sufficient conditions of Lemma 3.3 (and hence of Theorem 2)
are not satisfied. However, property Q still holds. Note that NJ = {(x1, x2, x3, x4)

′ : x1 = x4 = 0}
and

CetA =

(
e2t e3t cos t −e3t sin t 0
e2t 0 0 et

)
.

Now take any ξ = (a, b, c, d)′ ∈ IR4, v = (0, v1, v2, 0)′ ∈ N , v 6= 0. If b 6= 0 or c 6= 0, then

C1e
tAξ = ae2t + be3t cos t− ce3t sin t

= e3t(ae−t + b cos t− c sin t).
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In this case, applying Lemma 2.5, inft>0 |C1e
tAξ| = 0. Otherwise, if b = c = 0,

C1e
tA(ξ + v) = ae2t + v1e

3t cos t− v2e
3t sin t

= e3t(ae−t + v1 cos t− v2 sin t).

Since v 6= 0, at least one of v1, v2 is not zero, so again applying Lemma 2.5, inft>0 |C1e
tA(ξ+v)| = 0.

5 Corollaries: One and Two Outputs

5.1 The single output case

In the case of a single output system, AM = AN . In fact, if A 6≡ 0, then AM = AN = 0, and if
A ≡ 0, then AM = AN = A. Thus, Theorems 1 and 2 may be combined into the following result.
Note that under the assumption that (A,C) is an observable pair, A 6≡ 0 and B 6= 0 are equivalent,
so condition 1 is equivalent to A 6≡ 0.

Theorem 3 Let Σ = (A,B,C)os be a single output continuous-time output-saturated system. Then
Σ is observable if and only if (A,C) is an observable pair, and either

1. B 6= 0, or

2. A has no eigenvalues on IR+ := {λ ∈ IR, λ ≥ 0}.

An easy corollary is the following.

Corollary 5.1 The single output system Σ = (A,B,C)os is observable if (A,C) is an observable
pair and rank [sI − A,B] = n for all s ∈ IR+.

Since stabilizability of the pair (A,B) is a particular case of the rank condition in the corollary, we
see that observability plus stabilizability of the triple (A,B,C) is sufficient for observability of the
output-saturated system (A,B,C)os.

5.2 The case of two outputs

If J consists of only one element (that is, only one row of the Markov sequence is zero), we have
necessary and sufficient conditions for Q(J) to hold which depend only on certain eigenvalues
of A. This theorem suffices to characterize observability for output-saturated systems with two
outputs. Assuming (A,C) is an observable pair, which is a necessary condition for observability,
there are three cases. Either both rows of the Markov sequence are nonzero, so that the system is
automatically observable, both rows are zero, so that Q is equivalent to A having no eigenvalues
on IR+, or exactly one row of the Markov sequence is zero, in which case the following proposition
applies.

We first give some definitions, as the results are more general than what we actually need. Let
N ⊂ IRn be any A-invariant subspace, N 6= {0}, and N

⋂O(A,C) = {0}. That is, N is some
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subspace of states which are distinguishable from 0 for the linear system (A,B,C). Let Ã be
defined as in the Kalman observability decomposition for the pair (A,C) (see equation (3)). We
denote the set of eigenvalues of the matrix Ã by σ(Ã). For the purposes of the next proposition,
we will understand Q to be the property that, with respect to such a space N ,

For all ξ, and for all nonzero v ∈ N,
σ(CetAξ) 6≡ σ(CetAξ + CetAv).

Proposition 5.2 Assume p = 1. Let AN be the restriction of A to N , and let

λ̃ := max{λ ∈ IR+, λ ∈ σ(Ã)}

(λ̃ := −∞ if this set is empty). Property Q holds if and only if

1. σ(AN)
⋂

IR+ = ∅, and

2. (λ̃I − AN) is Hurwitz.

Proof. Assume Q holds. The necessity of condition 1 follows from Theorem 1. Next we prove that
condition 2 holds. Suppose otherwise that Ã has an eigenvalue λ ∈ IR+ and AN has an eigenvalue
µ with Re(µ) = α ≤ λ. Since λ ∈ IR+ is an eigenvalue of Ã, there is an x = (x̃′, 0)′ so that x̃ is an
eigenvector of Ã. Since (Ã, C̃) is an observable pair, C̃x̃ 6= 0. Without loss of generality, assume
C̃x̃ > 0. (If not, choose −x̃.)

Let v ∈ N be an eigenvector of A corresponding to µ. The function |Ce(µ−λ)tv| is bounded. Let
M be an upper bound, which we may take to be greater than 1. Choose ξ as follows. Let

r > (2M)/(C̃x̃),

and ξ = rx. Then
CetAξ = eλt(C̃rx̃) > 2M > 2

for all t, and

CetAξ + CetAv = eλt
(
rC̃x̃ + Ce(µ−λ)tv

)
> eλt(2M −M) = Meλt ≥M > 1

for all t, contradicting Q .
Now we assume that the two conditions hold and prove that Q must hold. Given any x ∈

IRn, and v 6= 0, v ∈ N , it suffices to show that CetAv 6≡ 0 and either inft>0 |CetAx| = 0 or
inft>0 |CetA(x + v)| = 0. By assumption, N

⋂O(A,C) = {0}, so CetAv 6≡ 0 for all such nonzero
v ∈ N . If inft>0 |CetAx| = 0 then we are done. Now suppose inft>0 |CetAx| 6= 0. Then by
Proposition 2.6, Ã must have an eigenvalue λ ∈ IR+. Since N 6= {0}, AN has at least one eigenvalue.
By assumption, Re(µ) > λ̃ for all such µ ∈ σ(AN). Condition 1 states σ(AN)

⋂
IR+ = ∅, so any

such µ has nonzero imaginary part.
Any exponent, µ, of CetAv for v ∈ N satisfies Re(µ) > λ̃. Suppose first that µ is not an

exponent of CetA(x + v). This can happen only if the terms of CetAv having µ as an exponent

12



are exactly cancelled by similar terms in CetAx. In that case, CetAx has µ as an exponent. But
then f(t) = CetAx is a Bohl function with E(f)

⋂
IR+ = ∅. As in the proof of Proposition 2.6,

either E(f) ⊆ C \ C+, in which case CetAx→ 0 as t→∞, or E(f) ⊆ C+ \ IR+ and we may apply
Lemma 2.5. In either case, inft>0 |CetAx| = 0, a contradiction. Thus µ must be an exponent of
CetA(x + v) which implies, exactly as we argued above, that inft>0 |CetA(x + v)| = 0, and Q holds.

The following Theorem is simply a corollary of 5.2. For each j ∈ J , let Ãj be defined by the
observability decomposition for (A,Cj):(

Ãj 0

Aj
1 Aj

2

) (
C̃j 0

)
. (10)

Theorem 4 If Σ = (A,B,C)os is a continuous-time output-saturated system and J = {j}, then Σ
is observable if and only if

1. (A,C) is an observable pair,

2. σ(AN) ∩ IR+ = ∅, and

3. (λ̃I − AN) is Hurwitz, where λ̃ := max{λ ∈ IR+, λ ∈ σ(Ãj)}.
Proof. Use N = NJ and C = Cj in 5.2.

In the single output case this Theorem reduces to the following. A single output system Σ =
(A,B,C)os with A ≡ 0 is observable if and only if (A,C) is an observable pair and σ(A) ∩ IR+ =
∅. Lemmas 3.3 and 3.1 together add the fact that if A 6≡ 0 then observability is equivalent to
observability of the pair (A,C). This yields another proof of Theorem 3.

We now use Theorem 4 to present a complete characterization of observability for the case
p = 2.

Proposition 5.3 Suppose Σ = (A,B,C)os is a continuous-time output-saturated system with
p = 2. Assume (A,C) is an observable pair.

1. If |I(A)| = 0, Σ is observable if and only if A has no eigenvalues on IR+.

2. If |I(A)| = 1, Σ is observable if and only if AN has no eigenvalues on IR+ and (λ̃I − AN) is
Hurwitz.

3. If |I(A)| = 2, then Σ is observable.

Proof. 1. In this case, J = {1, . . . , p}, so M = {0}, N = IRn and so AM = AN = A. Thus, Theo-
rems 1 and 2 imply that A having no eigenvalues on IR+ is necessary and sufficient for observability.

2. This is exactly Theorem 4.
3. If both rows of the Markov sequence are nonzero, then M = IRn, N = {0} and so AM =

AN = 0. Once again the necessary conditions of Theorem 1 are identical to the sufficient conditions
of Theorem 2 and in this case the conditions are trivially satisfied. So certainly Σ = (A,B,C)os is
observable.

As an illustration, applying this result to the system in Example 4.2, we obtain that (λ̃I −AN)
is not Hurwitz, and so (using statement 2) the system is not observable.
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6 Observability for the general multiple output case

In this section, we will generalize Theorem 4. We will look at a rational matrix W (s), defined
below, which is closely related to the matrix λ̃I −AN which was used in the previous case. Recall
J is the set of the k indices of the zero rows of A and for each j ∈ J , Ãj and C̃j are defined
by the observability decomposition for (A,Cj). Note that if we let vj(s) = Cj(sI − A)−1 and
ṽj(s) = C̃j(sI − Ãj)

−1, then for some constant matrix Tj,

vj(s) = [ ṽj(s) 0 ]Tj.

Thus, vj(s) and ṽj(s) have the same poles (seen as functions: C → Cn and C → Cr respectively,
where r is the size of Ãj). But the poles of ṽj(s) are exactly the eigenvalues of Ãj, because the

triple (Ãj, I, C̃j) is canonical, for all j. Thus the exponents of C̃je
tÃj , coincide with the eigenvalues

of Ãj, which are exactly the poles of vj(s). For each j ∈ J , define

λ̃j := max{λ ∈ IR+, λ ∈ σ(Ãj)} = max{λ ∈ IR+, λ pole of vj(s)}
Aj := (λ̃jI − A)|N

CN
j := Cj|N .

If vj(s) has no poles on IR+, we define λ̃j to be −∞. Then, reordering the rows of C if necessary
so that J = {1, . . . , k}, let

W (s) :=


CN

1 (sI − A1)
−1

...
CN
k (sI − Ak)

−1

 .

Theorem 5 Let Σ be the output-saturated system ẋ = Ax + Bu, y = σ(Cx), with (A,C) an
observable pair. Then Σ is observable if

1. σ(AN)
⋂

IR+ = ∅, and

2. for each nonzero v ∈ N ,

some component of W (s)v has a pole with negative real part. (11)

Note that if there is a j so that λ̃j = −∞ and W (s)jv 6≡ 0 for some v, then the poles of W (s)jv
all have negative real part, and (11) is satisfied for that v.
Proof. The output-saturated system is observable if and only if Q holds (Lemma 3.1). Thus, it is
enough to show that the given conditions are sufficient for property Q .

We basically follow the same argument as in the proof of Proposition 5.2. Recall that if N = {0},
then Q holds automatically, so we may assume there exists some nonzero v ∈ N . For any such
nonzero v ∈ N and any ξ, we must find a j ∈ J so that

σ(Cje
tAξ) 6≡ σ(Cje

tAξ + Cje
tAv).
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Choose a row of W (s)v which has a nice pole. For that row j, some nonreal pole of CN
j (sI−AN)−1v

has real part greater than all possible real poles of Cj(sI − A)−1. First note that this implies
Cje

tAv 6≡ 0, since CN
j (sI − AN)−1v has some nonzero pole. So Cje

tAξ 6= Cje
tA(ξ + v). Thus, it

suffices to show that either

inf
t
|Cje

tAξ| = 0, or

inf
t
|Cje

tA(ξ + v)| = 0.

If inft |Cje
tAξ| = 0, then Q clearly holds. Otherwise, suppose inft |Cje

tAξ| 6= 0. Then λ̃j > 0, but
Cje

tAv has a nonreal exponent with real part strictly greater than λ̃j. Thus, just as we argued in
the proof of Proposition 5.2, the dominating exponents in Cje

tA(ξ+v) are not on IR+, so Lemma 2.5
implies that inft |Cje

tA(ξ + v)| = 0, and Q holds.

This Theorem is an improvement over the sufficient conditions of Theorem 2. Example 4.4
is an observable system which was not included in the sufficient conditions of Theorem 2, but is
included in the conditions of this Theorem. If IR4 = {(x1, x2, x3, x4)

′}, then in that example, N is
just the x2 − x3 plane, so σ(AN) = {3 ± i}, and σ(AN) ∩ IR+ = ∅. The pair (A,C) is already in
the decomposition form, so it is easy to see that σ(Ã1) = {2, 3± i} and λ̃1 = 2. Then

Aj =

(
−1 −1

1 −1

)

CN
1 =

(
1
0

)

W (s) =
1

s2 + 2s + 2

(
s + 1
−1

)
.

The poles of W (s) are−1±i, which both have negative real part. In this case there is no v = (v1, v2)
′

(nonzero) for which
(s + 1)v1 − v2

cancels out either of the poles of W (s). That is, for every nonzero v ∈ N , W (s)v has a pole with
negative real part. In the case of 2 outputs, the conditions of this Theorem are also necessary, as
they are equivalent to the conditions in Theorem 4.

7 Small input observability

In this section, we investigate the observability of a class of output-saturated systems for which the
inputs are restricted to be bounded. Unlike the case for linear systems, observability of an output-
saturated system is intimately related to controllability. Thus, it is natural to ask what additional
conditions are required for observability if controllability is restricted. We first give some general
characterizations of observability for this class of bounded-input output-saturated systems. In the
case in which the pair (A,B) is already known to be stabilizable we will be able to provide an
explicit criterion for observability.
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We will use the following notations for a (single output) bounded-input output-saturated system
defined by the triple (A,B,C):

Σios : ẋ = Ax + Bu

y = Cx

z = σ(y)

and ‖u‖∞ := supt≥0 |u(t)| ≤ 1. (This restriction could be replaced by u(t) ∈ U , where U ⊆ IRm is
any bounded, convex set which contains the origin of IRm in its interior. One could even dispose of
the convexity condition using the bang-bang principle.) If u(·) is a measurable function satisfying
‖u‖∞ ≤ 1, we will simply say that u is a small input (or “small control”).

The following lemma gives a characterization of observability for single output, continuous-
time output-saturated systems with bounded inputs. The term small-input “less-than-1” output
controllable means that for any initial state, the output of the linear system can be controlled to
inside the interval (−1, 1) using small inputs. This is the same as saying that the state of the
system can be controlled to a band around kerC using small inputs.

Lemma 7.1 The bounded-input output-saturated system Σios := (A,B,C)ios is observable if and
only if (A,C) is an observable pair and (A,B,C) is small-input “less-than-1” output controllable.

Proof. For the necessity, suppose the conclusion does not hold. Then there is some x0 so that the
output, if starting from the initial state x0, can not be controlled to (−1, 1). That is, for any small
control u of any length t,

|yu(t, x0)| =
∣∣∣∣CeAtx0 +

∫ t

0
CeA(t−s)Bu(s)ds

∣∣∣∣ ≥ 1.

Then the same is true of αx0 for any α > 1. Otherwise there would exist an admissible control
such that ∣∣∣∣CeAtαx0 +

∫ t

0
CeA(t−s)Bu(s)ds

∣∣∣∣ < 1.

But then, ∣∣∣∣∣CeAtx0 +
∫ t

0
CeA(t−s)B

u(s)

α
ds

∣∣∣∣∣ < 1

α
< 1,

and the input is still admissible, contradicting our assumption. Thus, the entire line segment from
x0 to 2x0 has the property that for any initial state in that line segment, there is no control which
can force the output inside the “linear window” |Cx| < 1. It follows by continuity of y(t, αx0) on t
and α that sign (y(t, αx0)) is independent of α. That is, for all initial states in that line segment,
the outputs are on the same side of the hyperplane ker C. (We may assume C 6= 0; otherwise the
system is not observable.) Thus any two points x1

0, x
2
0 on the segment are indistinguishable since

σ
(
Cφ(0, t, x1

0, u)
)

= σ
(
Cφ(0, t, x2

0, u)
)

for any u, t, where φ(0, t, x0, u) denotes the state of the system after time t starting at initial state
x0 and applying the control u.
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For the sufficiency, we simply note that given any two states x, z, we can control the output
corresponding to one of them (say x) to a point inside (−1, 1) at some time t. By observability of
the pair (A,C), at some time t ± δ, for δ small enough, the outputs for the two initial states will
be different and by continuity, the output for the initial state x will still be inside the interval.

The next lemma uses Lemma 7.1 to prove a characterization of observability which is indepen-
dent of the control u.

Lemma 7.2 The system Σios is observable if and only if (A,C) is an observable pair and

∀x0 ∈ IRn, ∃T ≥ 0, |CeTAx0| < 1 +
∫ T

0
|CetAB|1dt, (12)

where the norm | · |1 is the sum of the absolute values of the components of the vector.

Proof. Using Lemma 7.1, it is enough to show that (12) is equivalent to saying that for every
x0 ∈ IRn, there exists τ ≥ 0 and an input function u such that, |yu(τ, x0)| < 1.

First assume that Cx0 > 0. In this case, observability implies that there exists a u and a τ such
that

yu(τ, x0) = CeτAx0 +
∫ τ

0
Ce(τ−t)ABu(t)dt < 1.

Let û(t) = −sign (Ce(τ−t)AB), where the sign function is applied componentwise. After a change
of variables in the integral, we get

yû(τ, x0) = CeτAx0 −
∫ τ

0
|CetAB|1dt.

Since ‖u(t)‖∞ < 1, it follows that

−|CetAB|1 ≤ CetABu(τ − t)

for all t, so
yû(t, x0) ≤ yu(t, x0),

for all t > 0. Thus, yû(τ, x0) < 1. Also, yû(0, x0) > 0, so by continuity, there exists a T ∈ [0, τ ] so
that

0 < yû(T, x0) < 1.

In particular, CeTAx0 > 0 so CeTAx0 = |CeTAx0|. Thus,

|CeTAx0| < 1 +
∫ T

0
|CetAB|1dt.

In the case Cx0 < 0 a similar argument (starting with yu(τ, x0) and applying now û(t) =
sign (Ce(τ−t)AB)) proves the result.

Condition (12) is also sufficient. If Cx0 > 0, it amounts to saying that there exists a T and a
control, namely û(t) = −sign (Ce(T−t)AB), so that

yû(T, x0) ≤ |CetAx0| −
∫ T

0
|CetAB|1dt < 1.
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Since yû(0, x0) > 0, there must be a τ ∈ [0, T ] so that

0 < yû(τ, x0) < 1.

If instead Cx0 < 0, we use û(t) = sign (Ce(T−t)AB) and the argument is similar.

An explicit criterion for the observability of Σios can be given if we assume that (A,B) is
stabilizable. Let IR++ := {λ ∈ IR|λ > 0}. Recall that E(A) is the set of dominating eigenvalues of
A as defined in Section 2.

Theorem 6 Let (A,B) be stabilizable. Then Σios is observable if and only if (A,C) is an observable
pair and E(A) ∩ IR++ = ∅.

For the proof we will need the following auxiliary results.

Lemma 7.3 If p = 1, (A,C) is an observable pair, and (12) holds, then

E(A) ∩ IR++ = ∅.

Proof. Assume that there exists λ ∈ E(A)∩IR++. Let the index of λ be k. Since (A,C) is observable,
A′ is cyclic which implies that A is also cyclic. Thus there is a vector b so that (A, b) is a controllable
pair. Then E(A) = E(CetAb) and there is a term in the function CetAb which has exponent λ with
index k. If we let x0 := b, then CetAx0 contains nontrivially the term tk−1eλt. So

CeTAx0 = T k−1eλT (α + o(1)) T →∞

for some α 6= 0. Without loss of generality we assume that α > 0. Otherwise we replace x0 by
−x0. Note that we can make α arbitrarily large by choosing |x0| large. On the other hand, the
dominating term of CetAB has exponent at most equal to λ with index k, so∫ T

0
|CetAB|1dt ≤ βT k−1eλT

for some β. Hence, by a suitable choice of x0 we can achieve that condition (12) is not satisfied for
any T > 0.

Lemma 7.4 Suppose p = 1, (A,B) is stabilizable, and (A,C) is observable. If Re(λ) ≥ 0 for all
eigenvalues in E(A), then

E(A) ⊆ E(CetAB).

Proof. Let λ be an eigenvalue ∈ E(A) with multiplicity k. If we perform a Kalman controllability
decomposition on the triple (A,B,C), we can easily see by stabilizability that λ is an eigenvalue of
A1 (with the same multiplicity), where (A1, B1, C1) is a canonical triple. The poles of the transfer
function for (A1, B1, C1) (which are the same as the exponents of CetAB) are exactly equal to the
eigenvalues of A1, with the same multiplicities, by Remark 2.4. Hence λ ∈ E(CetAB) with the same
multiplicity k.
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Lemma 7.5 Let f be an almost periodic function which is not identically zero. Then there exist
γ > 0 and ` > 0 such that for all t0 ∈ IR,∫ t0+`

t0
|f(t)|dt ≥ γ.

Proof. Let α := supt∈IR |f(t)|. We will first prove that for every t0, there exists a t1 in the interval
[t0, t0 + `] so that

|f(t1)| > α/2.

There is a T0 so that

|f(T0)| >
3α

4
. (13)

Since f is almost periodic, there is an ` such that every interval of length ` contains an α/4-almost
period. In particular, for every t0, the interval

[T0 − t0 − `, T0 − t0]

contains an α/4-almost period. Call it τ := τ(t0). By the definition of almost periodic,

|f(T0)− f(T0 − τ)| ≤ α/4. (14)

From (13) and (14) it follows that
|f(t1)| > α/2,

where t1 = T0 − τ , so
t1 ∈ [t0, t0 + `].

Since f is almost periodic, it is uniformly continuous. So, in fact, there exists a positive number
δ such that for each t0 ∈ IR, there is a t1 in [t0, t0 + `] so that for all t in a neighborhood of t1

(t1 − δ < t < t1 + δ)
|f(t)| ≥ α/3.

Without loss of generality, ` > δ (otherwise we increase `), so∫ t0+`

t0
|f(t)|dt > `α/3 ≥ δα/3 =: γ

for all t0.

Lemma 7.6 Assume that E(A) ∩ IR++ = ∅. If E(A) ⊆ E(CetAB), then (12) holds.

Proof. Let the common index of the eigenvalues in E(A) be k. Since λ ∈ E(CetAB) with index k,
we can write

CetAB = tk−1eαt(f(t) + o(1)) t→∞, (15)

where α is the real part of the eigenvalues in E(A) and f is an almost periodic function, not
identically equal to 0.
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Let ` and γ be as in Lemma 7.5, pick any T > `, and denote T0 := T − `. Then∫ T

0
|CetAB|1dt ≥

∫ T

T0

|CetAB|1dt (16)

Next we replace CetAB with its expression given in (15) and factor out a lower bound for the
polynomial and exponential terms. Notice that the integral of the convergent term is still o(1)
because the length of the integration interval remains constant as T →∞. That is, (16) is

≥
∫ T

T0

tk−1eαt(|f(t)|+ o(1))dt

≥ T k−1
0 eαT0(

∫ T

T0

|f(t)|dt + o(1)) as T →∞. (17)

The interval (T0, T ) is of length `, so we may apply Lemma 7.5 and∫ T

T0

|f(t)|dt ≥ γ. (18)

Now we show that there is a constant β > 0 so that

T k−1
0 ≥ βT k−1

for T large enough. If T ≥ 2`, then ` ≤ T/2 so

T0 = T − `

≥ T − T

2
=

T

2
.

Thus, if β := 2−k (remember, k is fixed),

T k−1
0 ≥ βT k−1. (19)

Also for the term eαT0 ,

eαT0 = eα(T−`)

= eαT e−α`

= eαTC (20)

for some constant C > 0.
Using (18), (19) and (20), we see that (17) is

≥ βCT k−1eαT (γ + o(1))

= T k−1eαT (ρ + o(1))

for some ρ > 0 and T sufficiently large.
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On the other hand,
CeTAx0 = T k−1eαT (g(T ) + o(1))

where, depending on x0, either g(t) ≡ 0, or g(t) is almost periodic. If g(t) is almost periodic, then
CetAx0 is a Bohl function with dominating exponents all in C+ \ IR++. Then Lemma 2.5 implies
that CeTAx0 has an infinite sequence of zeros {tk} with tk → ∞. In either case, there is a T as
large as necessary so that

g(T ) = 0.

In particular, we may choose a T > 2` so that

|CeTAx0| = T k−1eαT |o(1)|
< T k−1eαT (ρ + o(1))

< 1 +
∫ T

0
|CetAB|1dt.

In other words, we may choose T so that (12) holds.

We may now prove Theorem 6.
Proof. (Theorem 6) First assume that there exists λ ∈ E(A)∩ IR++. Then Lemma 7.3 proves that
(12) is not satisfied and so Σios is not observable.

Next we prove the converse. If Re(λ) ≤ 0 for all λ ∈ σ(A), then there exists an admissible
control function u such that x(t) → 0 as t → ∞. (See [6].) In this case, it is obvious that for any
x0 there is a control u and a time T such that |yu(T, x0)| < 1 so Lemma 7.1 implies observability.

Assume now that E(A) ∩ IR++ = ∅ and Re(λ) > 0 for λ ∈ E(A). Then Lemma 7.4 implies
that the conditions of 7.6 are satisfied, and then Lemma 7.6 implies that (12) holds. Hence Σios is
observable.
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