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ORDERS OF INPUT/OUTPUT DIFFERENTIAL EQUATIONS AND
STATE-SPACE DIMENSIONS*

YUAN WANGi AND EDUARDO D. SONTAG

Abstract. This paper deals with the orders of input/output equations satisfied by nonlinear
systems. Such equations represent differential (or difference, in the discrete-time case) relations
between high-order derivatives (or shifts, respectively) of input and output signals. It is shown
that, under analyticity assumptions, there cannot exist equations of order less than the minimal
dimension of any observable realization; this generalizes the known situation in the classical linear
case. The results depend on new facts, themselves of considerable interest in control theory, regarding
universal inputs for observability in the discrete case, and observation spaces in both the discrete and
continuous cases. Included in the paper is also a new and simple self-contained proof of Sussmann’s
universal input theorem for continuous-time analytic systems.
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1. Introduction. Previous papers by the authors (see [40], [41]) studied various
relationships between realizability of continuous-time systems and the existence of
algebraic or analytic input/output differential equations. These are equations of the
form

(1) E (u(t),u’(t),u"(t),...,u(-l)(t),y(t),y’(t),y"(t),... ,y()(t)) 0

that relate inputs u(.) and outputs y(.). Such equations, and their discrete-time
analogues, are of interest in identification theory and arise also naturally in the "be-
havioral" approach to systems (see, e.g., [43]). They provide a natural generalization
of the autoregressive moving-average representations that appear in linear systems
theory, where E is linear (in that case, the Laplace transform of the equation leads
to the usual transfer function).

The papers [37], [40], [41] (see also [28] for analogous work in the discrete-time
case) dealt with the relationships between the existence of such equations and the
possibility of realizing the corresponding input/output (i/o) operator u(.) - y(.) by
a state-space system of the type

x’(t) f(x(t)) + G(x(t))u(t) y(t) h(x(t))

whose state x(t) evolves in an n-dimensional manifold. (Precise definitions are given
later; for the rest of the introduction we give an informal discussion. The main
assumption will be that all functions appearing are analytic.) While i/o equation
descriptions of type (1) are well suited to identification algorithms, state-space de-
scriptions of type (2) are often the basis of feedback design tools and are needed for
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ORDERS OF INPUT/OUTPUT EQUATIONS 1103

the statement and solution of control problems. Thus, it is of great interest to study
the possible relationships between the two kinds of descriptions.

A question that has not been sufficiently studied and was not addressed in [40],
[41] is that of comparing the order r of an i/o equation (1) to the minimal possible
dimension n of a realization (2). In discrete time, for the analogous equations

E e), ,(t- 0

and systems

(4) E: x(t + l) f(x(t),u(t)), y(t) h(x(t)), t O, 1,2

it was known for a long time (see [28]) that one may have r < n, even if the system
in (4) is minimal. It turns out, perhaps surprisingly, that this cannot happen in the
continuous-time case: we prove here that if there is a minimal realization of dimension
n, then no i/o equation can have order less than n. Moreover, we show that the result
holds true also for discrete-time systems that are reversible, that is, those for which
the controls induce one-to-one maps on the state space (the examples in [28] were not
reversible).

The results in [40], [41] depend on an important equality among observation
spaces. The latter are sets of functions on the state space that are obtained by per-
forming different kinds of "experiments" with the system and extracting infinitesimal
information from the observed data. The basic fact needed was established in [391,
and it related the space obtained by using piecewise constant controls (and derivatives
of the output function with respect to switching times between constant pieces) to
the space obtained when using differentiable inputs instead (and the corresponding
jet of derivatives of the output at time zero). The new results given in this paper
depend on new facts, themselves of considerable interest in control theory, regarding
subspaces obtained by the application of "generic" smooth inputs.

The results in this paper were announced and their proofs sketched in the confer-
ence paper [32] (and for discrete time in [42]). To be more precise, in [32] we derived
our results from an equality between observation spaces that is somewhat weaker than
the corresponding one proved here; namely, instead of the current Lemma 2.1, we only
had that die(x) djrj(x) for generic jets # and for generic states x. This is all that
is needed in order to establish the desired results on orders of i/o equations. However,
while this journal version was being written, Coron [5] showed that the equality can
be strengthened so that it holds for all (not merely generic) states (but still generic #).
Since it turns out that the stronger equality can in fact be obtained with essentially
the same proof as in [32], we now present the result directly in that form. (Since
we are only interested in analytic systems, we can use elementary facts from analytic
geoinetry to present a simpler approach to the problem than in [5]; in that reference
the techniques of proof are very different, as the focus is on applications to feedback
control problems for smooth systems. See also [31] for remarks on applications of
results of the type proved here to path planning and feedback.)

In the development of the new observation space results, we needed to extend
to discrete time the well-known and fundamental theorem by Sussmann on universal
inputs for distinguishability of continuous-time analytic systems. It turned out that
our proof also applies in continuous time. The theorem is obtained in a fairly direct
way from a stronger result, Lemma 2.1 in this work. The proof of Lemma 2.1 is very
elementary and intuitive, as it does not use anything more complicated than the fact
that every descending chain of sets defined by analytic equations stabilizes relative
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1104 YUAN WANG AND EDUARDO D. SONTAG

to any fixed compact. (The original proof of Sussmann’s theorem relies heavily on
the stratification theory of subanalytic sets, a considerably deeper set of tools. Thus
one contribution of this paper is to provide an alternative and simpler proof of that
important result.) In addition to its role in helping to derive the universal input
theorem and our main results, Lemma 2.1 also has its own independent interest, as it
provides relationships between observation spaces defined in different ways and, thus,
provides connections between several different notions of observability. We also note
the very recent work [33], where further results on universal inputs are presented;
these results show in particular the existence of inputs that are universal uniformly
over the class of all analytic systems.

Another set of results that arose naturally while studying the problems in this
paper, and which are included here, deals with the relationships among various al-
ternative notions of observability, especially those proposed in the context of tile
differential-algebraic approach to control theory. We are able to characterize, for in-
stance, the notion of observability proposed in [10], [9] in terms of more standard local
observability concepts.

1.1. Other related work. In addition to the references already mentioned,
work by many authors is related to the topic of i/o equations and realizability; see
for instance [6], [13], [37]. In particular, [7], [8] showed that one must add inequality
constraints to (1) in order to obtain a precise characterization of the behavior of a
state-space system, unless stronger algebraic conditions hold. In [26], [38], [4], local
i/o equations were derived under nondegeneracy rank conditions, for smooth systems,
under observability assumptions. The notions of observation space and algebra that
we employ were introduced for discrete-time systems in [28], and their analogous
continuous-time versions were given in [2], [3].

1.2. Outline of paper. In 2 we introduce continuous-time systems and a tech-
nicai result on observation spaces for generic jets. Certain special cases for which
stronger conclusions can be given, namely bilinear and rational systems, are also
studied there. In 3, we define universal inputs and relate their properties to tile
results on equality of observation spaces and to the orders of i/o equations. The fol-
lowing section has a proof of the main technical results stated in 2 and 3. After
this, 5 provides the discrete-time results. There are also two appendices with some
technical lemmas that are required by the proofs.

2. Observation spaces for continuous-time systems. In this section we first
discuss several natural ways of defining observation spaces for continuous-time systems
and then explore the relationships between the different definitions.

2.1. Observation spaces. Consider an analytic sstem

z’(t) go(z(t)) + g(cc(t))u,(t),2.

where for each t, z(t) 3/[, which is an analytic (second countable) manifold of
dimension rt, h 2t4 --, IR is an analytic function and go, 91,..., 9.rn are analytic
vector fields defined on Ad. Controls are measurable essentially bounded maps ’u

[0, T] ---, IRm defined on suitable intervals. In general, (t, z, u) denotes the state
trajectory of (5) corresponding to a control u and initial state z, defined at least for
small t.
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ORDERS OF INPUT/OUTPUT EQUATIONS 1105

In the special case in which 2t4 IR and the entries of the vector fields gi’s
(on the natural global coordinates) and of the function h are rational (with no real
poles), we call (5) a rational system. If, in addition, the entries of the gi’s and h are
polynomials, we call (5) a polynomial system.

For a given continuous-time system, let be the subspace of flmctions A/I
spanned by the Lie derivatives of h in the directions of g0, gl,..., gin, i.e.,

:= sp n a h" 0, 0

This is the observation space associated with (5) (see, e.g., [30, Rem. 5.4.2]) For each
x , let (x) denote the space obtained by evaluating the elements of at x.

For each a , we may consider its differential da, seen as a l-form. For each
x , we let d(x) be the space of covectors defined by

dY(x) {d(x) Y}.

We also let d be {d } as a space of 1-forms.
mA related construction is as follows. First let m, =1 endowed with

the box topology, for which a base of open sets consists of all sets of the form =1
where each Ui is an open set of N. A generic subset of’ is one that contains
a countable intersection of open dense sets. It can easily be shown that with the above
topology, N’ is a Baire space; thus, a generic subset is always dense.

Now for any (0, ,’" ") in ’, we define

d
(7) .(z,) t=oh((t,z,u))
for k 0, where is any C control with initial values ()(0) . The functions

i(z, ) can be expressedapplying repeatedly the chain ruleas polynomials in the

(, ) whose coecients are analytic functions (rational functions if
the system is rational) of z. Take the single-input case

f (x) + g(x), y= h(x)

(for simplicity of notation) as an example. The functions are

(x, ,) nh()+ Ponh(),
+,(x, ,) n}h(x) + Po (LLfh(x) + Lfn.h(x)) + "o

and so forth. For instance, for single-input single-output linear systems

we have,

x’=Ax + bu, y cx,

)l(X’ ) cAlx nL E Ii-lcAi-lb’
i=1

0, 1,....

For each fixed # I[{m’ let bru be the subspace of fllnctions from 3d to IF(

defined by

(8) span {b0(’, p), @1 (’, t), )2 (’,/t), ...}
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1106 YUAN WANG AND EDUARDO D. SONTAG

and let -,(x) be the space obtained by evaluating the elements of ’, at x for each
x E Yt4. Let dg, (x) be the space of covectors given by

d(x) {d#(x, #): E ,}
for each x A//. For instance, for linear systems, dCt (x, #) cA and

d,(x) span {c, cA, cA2, ...},

which is independent of # (and x). We also let dgC be {d#(., #): 9r}, seen as
a space of covector fields.

Clearly, for each #, is a subspace of , and therefore, for each x also d(x)
is a subspace of dgC(z). The main result in [39] says that

(9)

This equality is fundamental in establishing results linking realizability to the ex-
istence of i/o equations, in [40] and [41]. In intuitive but less rigorous terms, the
equality in (9) can be interpreted as follows. We consider the successive derivatives
y(O), y’(O), y"(O),.., expressed as functions of x(0) and u(0), u’(O), u"(O),.... For
particular controls u(t), the y(0), y’(O), y"(O),.., are just functions of x; taking the
span of all such functions, over all possible smooth controls, one obtains the right-
hand side of (9). On the.other hand, taking all possible piecewise-constant instead of
smooth controls and taking derivatives with respect to the times at which the controls
switch values, one obtains the space in the left-hand side of (9).

The following is a technical result for continuous-time systems, which will help in
deriving the desired facts about i/o equations.

LEMMA 2.1. Assume that (5) is an analytic system. Then there exists a generic
subset 142 of IR"’ such that

(10) jr(x)

and

(11) d(z)

for every x All and all
Remark 2.2. The above conclusions are also true if instead of the box topology

one uses the weak topology on ]R"’. This is the topology for which a basis of open
sets consists of all sets of the form rIi=1
and only finitely many of them are proper subsets of IR". Clearly, the weak topology
is coarser than the topology used before. With this topology, IR’ is again a Baire
space. We will remark at the end of the proof of Lemma 2.1 in 4 that the conclusions
of Lemma 2.1 also hold for the weak topology. Moreover, these conclusions can be
established as consequences of a more general result about convergent generating
series, that ensures there exists a generic subset 142 of IR"’ with the property that
these jets suffice for distinguishing all possible convergent generating series; more
details are given in [33].

Remark 2.3. The conclusions in Lemma 2.1 do not always hold for every
IR’’. Consider as an illustration the following bilinear system:

(12) x--x2, x2=x2+xu, y=x2.
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ORDERS OF INPUT/OUTPUT EQUATIONS 1107

For this system, .7" span {371,372}, thus, ’(z) 0 for all z - 0. But on the other
hand, we have

/)0 (37’ #) 372,. 1 (37’ #) 3?2 -- 371#0’

and in general, /J (z, #) P(37,#o, #1, #-2)+ zl#t-i where P is some poly-
nomial. Clearly, for every z (371, z2) for which Zl =/= 0, one can find a solution
recursively for the equations i(z,#) 0 for > 0. Hence, as long as zl - 0 and

z 0, there exists some jet # such that ,(z) 0, which is therefore different from
/’(z) when 371 0 and z2 0.

2.2. Algebraic formulation. In this section, we assume for simplicity that
A// IRn; we could work with more general manifolds but this would complicate
notation, and in any case we will only need to apply the results given here locally.
We say a function/ is a merornorphic function if/ , where p and q are analytic
functions defined on 3/1, and q 0. (Note that this global definition is different from
the local definition usually given’ see, e.g., [17]. It will be enough for our purposes.)
For each function a E , da is a covector field defined on Ad. If is a meromorphic
function defined on 2t4, then//dR is a well-defined 1-form on some open dense sub-
set of 3/l and any finite sum of such partially defined covector fields is defined on
common open dense set. Thus, we may introduce the subspace dc of the cotangent
space defined by

d$" "-span a {dR" a E $-}

where IR is the field of meromorphiK functions defined on 3/I. Similarly, one can

define, for each # IR"’, the space d by

d. ’-span Ia {dR" a }

Note that there are natural identifications dc d (R) IRa and

Since Ad IRn, we can identify elements of dr with vectors

of meromorphic functions defined on A//. Thedimension of d over IR is the size of
the largest matrix that can be formed out of such vectors and has full rank, i.e.,
has a minor that is not zero as a function. That is, dimn%, d$" is the same as

Inaxz4 dim d$’(3?), a similar argument can be made for each d)r,(3?); together
with Lemma 2.1, we can then conclude the following cor211ary.

COROLLARY 2.4. For any analytic system, doP,, d.P for all # in a generic set
oflR’ ,

Yet another object is obtained if one instead views the elements

as rational functions (in particular polynomials), on the formal variables U- {Uj},
whose coefficients are functions of 3?, as opposed to seeing them as functions of 3? for
each numerical choice Ui #i. We proceed as follows. Let

K-IR({Uij" l_<i_<rn, j>_0})
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1108 YUAN WANG AND EDUARDO D. SONTAG

be the field obtained by adjoining the indeterminates Uij to IR, and let

be the field obtained by adjoining the indeterminates Uii to lRx. We then let be
defined as the subspace of Kx spanned by the functions i over the field K, i.e.,

’=spanK{i" i_>0}.

Thus, " consists of finite linear combinations qi(U),i(x, U), where the qi(.) are
rational functions on the variables {Uii}. Such a linear combination can be seen. as
a rational function on the {Uii} whose coefficients are meromorphic functions of z

(and hence also meromorphic fllnctions) and, thus, elements of Kx. The differentials
(with respect to z) of elements of K are viewed as rational functions in {Ui }, whose
coefficients are (in general, partially defined) covector fields. Finally we define

d’ := span

Then Lemma 2.1 implies the following corollary.
COROLLARY 2.5. For any analytic system, dim d9c -dimgx dg.

Pro@ Clearly dimK dg <_ dim d9r. Conversely, dim dg max dimR, dgC,.
The desired conclusion then follows from Corollary 2.4.

2.3. Bilinear and rational systems. Now consider the bilinear system

’m

x Aox + E uiAix,
i=1

y CX

where A0, AI,..., A, are n x n matrices and c is an 1 x n matrix. For each multi-index
ii...i, where 0 _< ij <_ m for each j >_ 0,

L,L L,, h(x) cAi,,,Ai,_ Ai x.

Note that 2i (as defined in (7)) is also linear in x for each i; for instance, in the
single-input case (for simplicity of notation),

.(x, #o, # c(Ao + PoA)x + #cAx.
Thus, for the bilinear case, we have the following corollary.

COROLLARY 2.6. For a bilinear system,

(14) Y=Y# and d9c=dgr"

for every tt in a generic subset of IR"’.
Remark 2.7. We would like to point out that this corollary does not hold in

general. The following simple example shows that for a general nonlinear system,
and 9c (respectively, d5c and d/,) may not be the same for any p, even though tile

two spaces d5c and dC are the same.
Example 2.8. Consider the system

x3 x2
X + , y--X.
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ORDERS OF INPUT/OUTPUT EQUATIONS 1109

It is easy to see that

y= x, y x3 + x2u,
y" 3x5 + 5x4u + 2x3u2 + x2u,

and in general, y(k) (2k 1)!!x2k+1 + p(u, u,..., u(-2), x) + x2u(-1), where p
is a polynomial in x of degree less than or equal to 2k. It can be seen that

jr span 1 {x, x2, X3,... }
However, 2 u for any for the following reason. Assume that

k

x2 aii(x, )
i=0

for some k and some a0, a,..., a . Then a 0 for 2, otherwise the degree
of x in the left-hand side would be higher than 3. Thus the above equation becomes

x aox + a (x + XPo),
which is impossible. This shows that for any p even though, in this case,
d d, span {dx} for all p.

In this example, it is also true that d d for any p. This can be shown
as follows. If d d, then dx 2xdx d. From here it would follow that
x2 a(x,,) + 2(x,p) +’.. + at(x,,) + c for some elements a e and some
constant c . But it can be seen from the above argument that this is impossible.

Assume now that (5) is a rational system. Define A (A,, respectively) as the
-algebra generated by the elements of (,, repectively). Then we define the
observation field Q (Q,, respectively) as the quotient field of A (A,, respectively).
For a field extension Q of , we use trdegQ to denote the transcendence degree of
Q over . Then we have the following conclusion for rational systems, in analogy to
the above conclusion about bilinear systems.

COROLLARY 2.9. For a rational system,

trdegQ trdeg

for each # in a generic subset of ]R"’.

3. Observability and universal inputs in continuous time. Consider an

analytic system (5). Fix any two states p, q E A and take an input u. We say
p and q are distinguished by u, denoted by p
(considered as functions defined on the common domain of (., p, u) and (., q, u));
otherwise we say p and q cannot be distinguished by u, denoted by p , q. If p and
q cannot be distinguished by any input u, then we say p and q are indistinguishable
denoted by p q. If for any two states, p q implies p q, then we say that system
(5) is observable. (See [30, Chap. 5].)

An input u is called a universal (distinguishing) input for system (5) if every
distinguishable pair can be distinguished by u. The existence of universal inputs was
first studied in [15] for bilinear systems, in [27] for analytic systems with compact
state spaces, and for arbitrary analytic systems in [35] for the continuous case. In
this work, we will provide a different and simpler proof of the general result in [35].
(Also, we later give a discrete-time version.) We now state the result to be proved.
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1110 YUAN WANG AND EDUARDO D. SONTAG

For each T > 0, we consider Cool0, T] endowed with the Whitney topology, that
is, the topology for which a neighborhood base for each function u(.) E Cool0, T]
consists of the sets of the following form:

v C [0, T] max
o<<_, re{0, T]

(t) _< a}
for some k >_ 0 and some 5 > 0. This is well known to be a Baire space (see [14]).
By a generic subset of Coo [0, T] we mean a subset of Coo [0, T] containing a countable
intersection of open dense sets.

THEOREM 3.1 (Sussmann’s universal input theorem). For any analytic system
(5), and any fized T > O, the set of universal inputs is a generic subset of Cool0, T].

PROPOSITION 3.2. There is always an analytic universal input for any analytic
system.

We will provide proofs of Theorem 3.1 and Proposition 3.2 in 4.1.
Consider the following more general class of systems:

(15) x’(t) f(x(t), u(t)), y(t) h(x(t))

where for each t, z(t) Ad, which is an analytic manifold of dimension rt, h 3// IR
is an analytic function and f A/[ xlR" TAd is analytic and f(z, u) TxYM for each
(z, u), so in particular, f(., ’u) is an analytic vector field for each u IR". Controls are
measurable essentially bounded maps: u: [0, T] ---, IR", for some T T, > 0. We
apply the same definitions of distinguishability, observability, and universal inputs as
for system (5) to system (15). One can then generalize the conclusion of Theorem 3.1
to systems of type (15) by means of the following argument. We consider the following
system:

x’(t) f(x(t) z(t)) z’(t) v(t)(16) (t) h(x(t)),

where v is now a new control. By Proposition 5.1.11 in [30], one knows that if (Zl, Z2)
is a distinguishable pair for (15), then z,z2 can be distinguished by a differentiable

(in fact, an analytic) control u. It then follows that for (16), the pair ({, ), where
{ (Zl, u(0)) and .( (z2, u(0)), is distinguished by v(t) u’(t). On the other
hand, if for (16) the pair ((oct,z), (z2, z)) is distinguished by v, then for (15) (z,z2)
is distinguished by the control

z + v(s) ds.

Therefore, (z,z) is a distinguishable pair of (15) if and only if there exists some
z IR such that ((z,z), (z,z)) is a distinguishable pair for (16) for some z.

Applying Theorem 3.1 to system (16), we proved the following conclusion.
COROLLARY 3.3. The universal inputs for system (15) form a generic subset of

C[0, T], for any T > O.

3.1. Other notions of observability. In what follows, we study relationships
among several alternative notions of "observability" that have been proposed by var-

ious authors.
Take an open subset b/of A/[ and any two points p, q G b/. If for every input ’u,

h(99(t, p, )) h(p(t, q, u)) for each t for which (T, p, ,) and 99(T, q, u) are both
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ORDERS OF INPUT/OUTPUT EQUATIONS 1111

defined and in/d for all 0 <_ t _< T, then we say that p and q are hi-indistinguishable
(see, e.g., [29]).

Fix a point p E Ad. If for every neighborhood b/p there is a neighborhood Vp c
such that for any q E Vp the condition that q and p are b/p-indistinguishable implies
p q, then we say the system (5) is locally observable at p. If (5) is locally observable
at every point p, then we say (5) is locally observable. If there is an open dense set
b/ c Ad such that (5) is locally observable at every point p of b/, then we say (5) is
generically locally observable. See [29] for details on local observability and related
concepts such as the slightly different definition in [26]. The following fact is an
immediate consequence of Lemma 2.10 and facts (2.4) and (2.8) in [29].

PROPOSITION 3.4. An analytic system (5) is generically locally observable if and
only if maxx dim d’(z) n.

PROPOSITION 3.5. Let All IRn and let (5) be an analytic system. Then the
following are equivalent:

(1) The system is generically locally observable.

(2) dimKx d n.

(3) dim d- n.

Proof. The maximum dimension of dPr(x) is the same as the dimx d)c. This
shows that (1) and (3) are equivalent; (2) is equivalent to (3) by Corollary 2.5.

For a polynomial system, the pi(z, U)’s (as defined in (13)) are polynomial func-
tions of both and U. We say that a polynomial system is weakly algebraically
observable if each coordinate z is algebraically over the field K({p >_ 0})
(= IR({Ui,, 1,..., m; j, k > 0})). It follows that E is weakly algebraically
observable if and only if dim/(x) d n, where K(z) is the field of rational functions
over K. (This is proved as follows: The dimension condition is equivalent, by [18,
Thm. III of III.7], to the property that the transcendence degree of K0 K(-{.
> 0}) over K should be equal to n. On the other hand, we have the inclusions
K

_
Ko

_
K(z), so trdeg/K0 + trdegoK(x n. Thus the dimension is n if and

only if trdegKoK(X 0, i.e., if and only if K(z) is algebraic over K0.) By Proposition
3.5, we have the following corollary.

COROLLARY 3.6. A polynomial system is weakly algebraically observable if and
only if the system is generically locally observable.

The notion of weakly algebraic observability used here was called "weak observ-
ability" in [28]. The same notion was used in [10] and extended to cover implicit
systems as well.

3.2. Orders of i/o equations in continuous-time case.

3.2.1. State-space systems. We say that a state-space system E admits an

i/o equation such as

(17) A(u(t), u’(t), u(-)(t), y(t), y’(t) y()(t))- O,

where A is a nonzero analytic function from IR’r x IR+ to IR, if (17) holds for every
initial state x, every (J i/o pair (u, y) of (5), and all t such that y(t) is defined. The
order of an equation (17) is defined to be the highest r _< k such that

0
A(#0, #k-X, /0, /21,

is not a zero function.
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1112 YUAN WANG AND EDUARDO D. SONTAG

For a given system E, we define 5(E) to be the lowest possible order of an i/o
equation that E admits. In the case that there is no such i/o equation, (E) is defined
to be

THEOREM 3.7. Assume E is an n-dimensional analytic system defined by (5).
If E is generically locally observable, then 5(E) >_ n. If, in addition, E is a rational
system, then 5(E) n.

Proof. Let 5/ C_ 3// be an open subset diffeomorphic to IR. We consider the
restriction of E to /d. This system is still generically locally observable, and an

equation for E is also an equation for the restriction. So without loss of generality,
we assume from now on that A//= IR.

Assume that 5(E) k < oc and E admits i/o equation (17) of order k. For each
integer > 0, let

0
A o, A ft ftk -1, l/O l/1, l/k

Claim. There exists an i, such that Ai is not an i/o equation of E.
We prove the claim as follows. Assume that Ai is an i/o equation of E for every

i. Then for any fixed i/o pair (u, y) and any fixed t, it holds that

A(u(t), u(-)(t), y(t), y()(t)) 0

for all i. Thus, as a function of for these fixed values u(t), y(-)(t), all
derivatives of

(18) A(u(t),

evaluated at , y()(t) vanish. It then follows from the analyticity of A that (18)
vanishes for all values of . Let be such that the function

(ft0, #-, "0, "k_) := A(#o,..., #-, l/o,..., l/_, ’)

is not a zero function. Clearly it holds that

(19) (u(t), u(k-1)(t), y(t), y(k-1)(t)) 0

for all i/o pairs of E. If one can show that does not depend on #-1’ then one

concludes that A 0 is an i/o equation for E. For this, we proceed as follows. First
of all, (19) holds for all i/o pairs of (u, y) if and only if the following holds:

(ft0’ ftk--l’ 2/)0(X’ ft)’ "’’’/--1(X’ ft)) 0

for all z E 34 and all ft. Note here that i defined by (7) does not depend on ftj for
j >_ i. It follows that for any #k-l’

"/(ft0’’’’ ’ftk--2’ #k--l’ )0 (x’ ft)’’’’’k--l(X’ ft))---0

for all x and all ft. Finally, pick #k-1 such that

2(ft0’ ftk--2’ l/0, l/k_1 2(ft0, ftk-2’ fitk-l’ l/O’ l/k-l’ k)

is not azero function. Then A- 0 is ani/o equation of order k-1 for E. This
contradicts the assumption that 5(E) k. The claim is thus proved.
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ORDERS OF INPUT/OUTPUT EQUATIONS 1113

Now let r _> 1 be the snallest number for which A,r 0 is not an i/o equation
for E. Replace A in (17) by A,r-1. Evaluating (17) at t 0, the equation implies the
identity

0.

Since A 0 is not an i/o equation of , it follows that there exists some
such that

(21) A(Po, ...,P_,o(x, Iz),..., (x, ,)) # O,

as a function of x, and hence, by analyticity, the complement of

is an open dense subset of *.
Combining (20) and (21), one sees, for each B, that d(., H) is a linear

k k--1
combination of d&0 (., H), d_ (., ) over ,. Thus dff, dY** where, for

each i, dye, is the subspace of dY, spanned by dg0 (., ), d’&i (., ), d (., H).
Differentiating (17) with respect to time, one sees that for any > 1 it holds that

A(u(t),..., u(-)(t), V(t), ,()(t))v(+’i)(t)
Ai(u(t), ...,u(+i-)(t), ...,y(t), y(+i-1)(t))

for every i/o pair (u, y) of E, where Ai is some analytic function. Thus, by induction,

one can show that dfft+i d for all p B. It then follows that dimd
for all p B, where B C’ is defined by B B x x m x....

On the other hand, by Corollary 2.4 and Proposition 3.5, one knows that dim:,d
dim, dff ’n for all p in a dense (in fact, even in a generic) subset of

Thereibre, E cannot admit any i/o equation of order lower than n.
If E is a rational system, then an easy elimination argument (based on the fact

that any set of n + 1 rational functions in n variables must be algebraically dependent;
see [40] for details) shows that it admits at least one i/o equation of order n; therefore,

3.2.2. i/o operators. Next we consider i/o equations for i/o operators rather
than for state-space systems. By an i/o operator we mean an i/o map given by a

convergent generating series. For a detailed definition of i/o operators, we refer the
reader to [41]. We say an i/o operator F satisfies an i/o equation (17) if every C i/o
pair (, )of F satisfies (17).

For any given operator F, we define (F) to be the lowest possible order of an

i/o equation for F. Again, in the case when there is no i/o equation for F, 8(F) is
defined to be +.

An operator F is said to be realized by an initialized analytic system

(M, h)

if every i/o pair (u, y) of F satisfies the equations

z’(t) 9o(z(t))u(t) + gi(z(t))u,i(t), z(O) zo,
i=1

9(t)- h(z(t))
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1114 YUAN WANG AND EDUARDO D. SONTAG

for t small enough.
Let A(F) be the Lie rank of F, as defined in [11], [19], or [26]. It is well known

that F is realizable if and only if A(F) < oe, and the dimension of any canonical
realization for F is &(F); cf. [11] and [34]. Here, by a canonical realization we mean
a realization by an accessible and generically locally observable system.

PROPOSITION 3.8. Assume that F is an i/o operator. Then:
_<

(b) if there exists a rational canonical realization for F, then/(F) 5(F).
Proof. It was shown in [41] that if 5(F) < oc, then A(F) < oc. Thus we may

assume that A(F) < oc, and in this case, one knows that F is realizable by some
canonical system E (3/[, x0, {go, gl,..., g,}, h).

By Remark 4.2 and Lemma 4.3 in [41], one knows that F admits i/o equation
(17) if and only if (17) holds at any point t at which u(-l)(t) exists. Combining this
fact with the accessibility of the system, one sees that F admits i/o equation (17) if
and only if (20) holds for E for all x in an open subset 3/of Ad and for all #. On
the other hand, it can be seen that (20) holds for all x E Af and all # for system E
if and only if (17) is an i/o equation for E as a system restricted to A/’. Applying
Theorem 3.7, we obtain the desired conclusion.

4. Proof of Lemma 2.1. In this section, we will prove Lemrna 2.1. We will
show first that there exists a generic subset IN1 of IR"’ so that

for all z and # E W1 and then that there is a generic subset W. of IR’ so that

(23) d() dUt,(x

for all z and all It ]A2. Then we just let IN- ]1 )/]2.
Proof of first part (equation (22)). For system (5), let

u 0}.

To prove (22), we consider, for each subset A/" of the open subset A//\ B, the set

g/.- # 0, w
where (z, #)- (%(z, t), 1 (z, #),...).

To prove the desired conclusion, it is enough to show that g is open dense
whenever iV is a compact subset of 2t4 \ B (since 3d \ B can be written as a countable
union of such subsets). In the following we let Af be a fixed compact subset of 3/I \ B,
and we just write g instead of g. To show that g is dense, we need the following
fact.

Let r > 1 be an integer. For each fixed vector
we say that #- (#1,#1,’") IR’’ is an extension of if #i . for each

LEMMA 4.1. Let zo Ad and let u be a fized vector in lR". If (zo, lt) 0

for every extension # of u, then z 13.
The proof of the above lemma will be given in Appendix A. We now return to

show that g is dense. Take any open subset 5/of IR’’; without loss of generality,
we may assume that 5/- No x 5/1 x x 5/t x ..., where each 5/i is an open subset of
IR". For each integer r > 0, let 5/ -1YI,z=0 L/i. For each define
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ORDERS OF INPUT/OUTPUT EQUATIONS 1115

where .,.(x, #r) (’%(x, #), 1 (x, #), /)r--1 (X’ [.t)) [Or any extension of .
Note that ,r is well defined because (, g.) does not depend on for j i. For
each finite jet , B is an analytic subset of , that is, a set defined by analytic
equalities. As a consequence of the Weierstrass preparation theorem (in the form
given for instance in [17, Thin. 2.7, Cor. 3]), one knows that analytic subsets of a
compact set satisfy a descending chain condition. That is, if z
are analytic subsets of a conpact set, then there exists some r > 0 such that
for all j k r. From here it follows immediately that there is a minimal element
of the family {B} in the sense that whenever C B. Assume now that
P N provides such a minimal element.

Claim. .
Assume that the above claim is not true. Then there exists some 0 such

that .,.(0, P) 0. Pick such an x0. By Lemma 4.1, there exists some extension of
P such that (x0, ) # 0, so there exists some > r such that t (0, ) 0. Write

l (0’ 1’ Pr--l’ r, 1--1) ml.

Note that (P0, P, P.,--) r by construction. For these fixed P0,
and 0, the functiSn t(0, ) does not depend on for j k and is analytic in

(, ,.+, z-)" Since it does not vanish at (.., 1--1 )’ there is also some

(r’ r+l’ /--1 ’r X +1 X X --1

such that, for (0, ,;-1, , -1)’ (z0, ) 0 for any extension

1) of , and hence, (z0, ) 0. So z0 B B. Also, obviously B B, since
is an extension of . This contradicts the minimality of B. So we proved that
.(z, ) 0 for all z , as claimed.
Take any extension lz of ’ to an infinite jet. Then (z, ) 0 for all

that is, is not empty for any open subset of ’’. Since was arbitrary,
one concludes that is dense.

To prove the openness of , let

By the compactness of, is open. Let . x ’. Then g; is open. Since

.= , it follows that is open.
oof ofo prt (qto (a)). Cay d,(’) d() for n

nd fo h, ’, d,() d(’ fd oy f

(4)

We now let

ker d(z) ker d$C(z).

s {(, ) T. , k a()}.

Then T.M\B is open. Let tP(oc, v, iz) (% (a:, v, #), (z, v, #),...), where .,; (a, v,

#) d’p(z, #)v. To prove the desired conclusion, it is enough to show that there

exists a generic subset /V of IRm’ such that for any # E l/V, (z, v, it) - 0 for all

(z, v) /3. For this, it is enough to show that for any compact subset A/" of Tgt4 \ 13,
the set

g { m,. (, , ) 0, V (z, ) At)
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1116 YUAN WANG AND EDUARDO D. SONTAG

is open dense. We now fix a compact subset N" of T34 \ B and write instead of
Similar to the prooof the first part, we need the following conclusion to prove the
density property of . The proof of the conclusion will again be provided in Appendix
A.

LEMMA 4.2. For any given fized point (z, v) E T./M, if (z, v, #) 0 for all
eztensions # of/].r, for some/] IR", then (z, v) E 13.

To show the density of , we take any open subset b/of IR’’. Again, without
loss of generality, we can assume that N b/0 x b/1 x x b/z x ..-, where each b/,i is an
open subset of IR". Using the same notions for # and b/ as used before, we define

where ,,.(z, #’r) (0(z, v, #), 1 (z, v, #), r-1 (z, v, #)) for any extension

of #. For each finite jet u, B is an analytic subset of A/(with the obvious analytic
manifold structure on the tangent bundles). Using the same argument as before, one

knows that there exists a minimal element of the family {B}. Let /] E 5/s be such
that B is a minimal element.

Claim. s(x, v,/]) 0 for all (x, v) N’.
Assume that the claim is not true. Then there exists some (x0, v0) A/such

that (x0, v0, /]) 0. By Lemma 4.2, there exists some extension # of/] such that

(x0, v0, #) 0. This means there exists some >_ s such that (x0, v0, #) =A 0. By
analyticity of t, one knows that there exists some

(s’ /s+l’ //--1 b/s X 4/s+l X X bll_l

such that, for /2 (/]0, /Is-i, ts, fitl-1), i(xo, vO, t) O. So (x0, v0)
B, \ B. Also, obviously B

_
B,, since is an extension of/]. This contradicts the

minimality of B. So we proved that (x, v,/]) -- 0 for all (x, v) 3/. Noting then
that for any extension tz of/], (x, v, #) =A 0 for any (x, v) E A/, we conclude that
G5/ 0. This proves the density of G.

To prove the openness of , we again let

0,

By compactness of Af, r is open. Let Gr G x IRm’. Then r is open. Since

Ur=l ’r, it follows that O is open. The proof of Lemma 2.1 is then complete.
Fnally, we remark that also with respect to the weak topology on IR"’, j

and @ are still open and dense. Density is obvious, as they are dense with respect

to a stronger topology. The openness of Gj and Gj follows from the compactness of

A/and A/. Thus, the conclusions of Lemma 2.1 also hold with respect to the weak
topology on IR"’.

4.1. Proof of Theorem 3.1. In this section, we provide a proof for Theo-
rem 3.1.

To study the observability for system (5), we consider the system

{’
i=1
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ORDERS OF INPUT/OUTPUT EQUATIONS 1117

where _
x AA xAA i(()= 0<i<rn,

and [() h(z) -h(z). Clearly, z @ z for system (5) if and only if 7, 0 for system
(25). Thus, to prove Theorem 3.1, it is enough to establish the following conclusion.

PROPOSITION 4.3. Assume that for an analytic system (5), the i/o map ind’uced
by the zero initial state is a zero map, that is, h (t, O, t) 0 for all t and all u.
Then for any T > O, the set

is a generic subset of C[0, T].
Proof. Let B’- {z" z 0}o ThenA4\Bis an open subset of Ad. To prove

Proposition 4.3, it is enough to show that for every compact subset 32 of A/I \ B the
set

w={uC[0, T]’ :cTc0forall zA/’}

is an open dense subset of C[0, T].
Note that for u Cc, z . 0 if’b,i(z, #) 0 for some i, where # (I0, #1, ")

IR with # -u()(0), and . is as defined in (7) for each i. Also, by Theorem 3-1.5
in [19], one knows that for z A/l, if $-(z) 0, then :c B. This means that for each
z iV, c(z) - 0. Thus, by Lemma 2.1, there exists a dense subset of IR"’ such
that (z, #) =/- 0 for all A/and all # .

To complete the proof of Proposition 4.3, we need to show that (R); is an ()pen

dense subset of C[0, T].
Take & C[0, T], and let b/be a neighborhood of &. Without loss of generality

when showing the density of 5,, we may assume that

b/- {w C[O, T]" max w(i)(t)- &(i)(t)l < , t [0, T]}0<i<k

for some integer k >_ 0 and some 6 > 0.
Let /2 (/2o, #,...), where #: &(i)(0), and let W be the open subset of

IW’ defined by

As W0 0, there exists some u e IA2 such that (z, u) =/= 0 for all z G A/’. By
compactness of A/’, there exists some r > 0 such that

(26) ,,.(x, ) 0, for any x 32.

Without loss of generality, one can always assmne that r > k.
r-i tZNow let c0(t)’-c(t)- Ei=0 "i Note then that Z0

(i).. (0) 0 for all 0 _< <

Finally, we define

r-1

t.-Zo(t)+
i=0

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1118 YUAN WANG AND EDUARDO D. SONTAG

Then, for 0 <_ <_ k and 0 _< t _< T, we have

< (e-Te < 5.

j=0
j

Thus, w E b/.
On the other hand, (26) implies that for every z E iV’, there exists some <_ r- 1,

such that

d
0.

dti t=0

From here it follows that z o 0 for every z A/’, that is, cv Ov. This proves that
(5 is dense.

We then conclude the proof of Proposition 4.3 by noting that the openness of
follows from the compactness of JV’.

Remark 4.4. Note that the above proof only depends on the first half of Lemma 2.1,
i.e., formula (22), and the proof of (22) is fairly straightforward (though it calls upon
some notions and elementary results from the theory for generating series).

Proof of Proposition 3.2. As indicated in the beginning of this section, it is enough
to show the following:

Assume that for an analytic system (5), the i/o inap induced by the
zero initial state is a zero map, that is, ]t o 99(t, O, u) 0 for all t and
all u. Then there exists some analytic input it such that z ,, 0 for
all z 0.

Proof. Consider the following open subset of IR’"
Z,,/0 X Ait’l XZ4f2 X

where 5/i (-1, 1) for all >_ 0. By Lemma 2.1, there is at least one jet # in b/such

that 9r,(x)= Y(z), from which it follows that

0, w 0.

Now let

Pi ti"
i!

i=0

Then u is an analytic function and u()(0) #{. By (27), one knows that z A 0 for
all x 75 O. ]

5. Main results for discrete-time systems. In this section, we discuss our
inain results for discrete-time systems.

5.1. Basic definitions for discrete-time systems. Ve consider analytic sys-
tems as in (4), where for each t, x(t) 24, an analytic manifold, and u(t) IKm.
We assume that h :/ IRp and f 3/l x IR A4 are analytic. If 2Vl IR and
the entries of f and h are rational functions with no (real) poles, then we call (4) a
rational system. A system E will be called reversible if f(., u) is one-to-one, for each
fixed u E IR". (Reversible systems are a more general class than the systems usually
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ORDERS OF INPUT/OUTPUT EQUATIONS 1119

called invertible in the discrete-time controllability literature, for which one inakes
the stronger requirement that f(., u) is a diffeomorphism of td, for each u. Invertible
systems arise naturally through the sampling of continuous-time systems in digital
control, by integrating flows over a sampling period; their controllability properties
were studied in, among other papers, [20], [12], [21], [24], [22], [23], [1].)

For each control sequence co E IR", we define fo 4 ---, 2kl inductively by
f(x) x for the empty sequence e and f"(z) f(f"(x), u). We also let h :=
h o f. For # (#0, #1,’" ") E lRm’, we let HP(x):= (h(x), h(x), hP"(x),...).

Two states p and q are said to be distinguished by # IR"’, denoted by p 7c q,
if H"(p) H-’(q). A discrete-time system is said to be observable if any two distinct
states p and q can be distinguished by some I. See [27] for a detailed introduction to
observability and related concepts and, in particular, [25] for results on observability
of discrete-time systems.

For an analytic system, we define the observation space of E as tile following
subspace of the space of analytic functions defined on 2M:

span a {h co IR", r _> 0}.

This space plays an important role in studying observability of discrete-time systems;
see, e.g., [28] and [27]. See also [16] for related algebraic structures.

Associated with the above space, for each z Ad we let d)C(z) be the subspace
of tile cotangent space at x defined by

dY(z) {dcx(z) c $’}.

In analogy to tile continuous-time case, we define, for each # (#0, #,’" ") E
IR"’, tile following subspace )c, of analytic functions:

span {h, h’0, h"0l,...}.

For each # IR"’a and each z . 24, we also consider

dY(z) {d(: c

Clearly, }--u * and d)r(z) y, d/u(z for each z. Here we will need the
following result.

LEMMA 5.1. Assume that (4) is reversible a’nd observable. Then there ezists a

generic subset of’ such that for each p W,

d$C(z) d(z) IR,
for all x in an open dense subset of

The proof will be given later; it will rely on a result about universal inputs for
discrete-time systems that is presented in the next section.

Assume now that 3//= IR’. Still using the notation used in 2.2, we introduce

d$c’= span{da" a’}, d/, := span{da" aEY,}.

From the lemma and using an argument analogous to that used in proving Corol-
lary 2.4, we have the following corollary.

COROllARY 5.2. For an analytic, reversible, and observable ,system, d’ -d
for all # in a generic set of IR"’.
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1120 YUAN WANG AND EDUARDO D. SONTAG

5.2. Observability and universal inputs. An input sequence is said to be a
universal input of a discrete-time system E if it distinguishes every distinguishable
pair of E.

THEOREM 5.3. Assume that (4) is analytic, reversible, and observable. Then the
universal inputs of (4) form a generic subset of IR’.

Proof. First of all, we let

By observability, every pair (x, z) (M M) is a distinguishable pair of (4). For
each. e, we let A(x, z, .) h’(x)- h’(z), and we also let Ao(x, z) h(x, z).
For each (o, 1," "), we define

,) ,0), z,

To prove the desired conclusion, it is enough to show that for each compact subset
of (M x M) D, the set defined by

is an open dense subset of m,.
For each open subset U of ’ given by U0

x U x ..., consider, for each

i=o Ui, the subset B, of defined by

.={(x,z) e" a(,,,)-0},

where A,.(x, z, ) (A0(x, z), A(x, z, w0), k,(x, z, )). Using the same argu-
ment as that employed in the proof of Lemma 2.1, we know that there exists a minimal
element Bo of the family {Bo}. Suppose > U. We next show that distinguishes
every pair (x, z) . Assume that there would exist a pair (x0, z0) such that
x0 z0. Since (4) is reversible, x z,, where x f’(xo) and z, f’(zo). By
observability of (4), one knows that there exists some * such that x z.
Let - # (concatenation of sequences); then it ibllows that A+(x0, z0, o#) 0.
By the analyticity of A.+ when fixing x0, z0 and p, one knows that there exists
some U x x U,+_ such that A+(x0, z0, ) 0. This implies that
(x0, z0) Bo Bg,, which, in turn, implies that Bo is a proper subset of B,, contra-
dicting the assumed minimality of B. Thus, we showed that A(x, z, 0) 0 for any
(x, z) . Clearly, any extension p of in U is an element of . This shows that

U for any open subset U of m,. The density of is thus proved.
Again as in the proof of Lemma 2.1 for the continuous case, G is open since

is compact. U
In the statement of Theorem 5.3, we assumed more than we did in its continuous

counterpart, Theorem 3.1 (and also concluded slightly less). One 0f the extra condi-
tions is observability. We needed to impose this because the counterpart of Lemma 4.1
is not available in the discrete-time case. The discrete case analogy would be that
any distinguishable pair is again carried to a distinguishable pair by the flow of the
system, no matter which input is applied. Unfortunately, this not true in general. The
following example, suggested by F. Albertini, shows that distinguishable pairs can be
carried to indistinguishable pairs. (Note that this can never happen with analytic
continuous-time systems.)

Example 5.4. Consider the system

(29) x(t + 1) x(t) + 1, y(t) h(x(t)),
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ORDERS OF INPUT/OUTPUT EQUATIONS 1121

where h(z) is defined by

si,.x if x-/=0
,xj 1 if x 0.

Clearly the system is analytic and reversible. However, the distinguishable pair (0, 1)
is carried to an indistinguishable pair after t 1.

Proof of Lemma 5.1. To obtain the desired conclusion, it is enough to show that
(28) holds in an open dense subset of 2bt for every universal input # (since universal
inputs themselves form a generic subset).

Fix any universal input #. By observability, one knows that H(., #) is a one-to-one
map. Let k maxp dim (p). It is sufficient to show that k n. But this is an iln-
mediate consequence of Lemma B.1 (see Appendix B), applied to {h, hu, hUUl,...}
seen as a family of maps.

5.2.1. Orders of i/o equations. We say that the discrete-time system (4) ad-
mits the i/o equation such as that if (3) holds for all input/output pairs of (4) (for
t _> r and any possible initial state z(0)). The order of the equation is r if

is not a zero function. For any given system E, we let 5(E) be the lowest possible
order of an i/o equation that E admits. If there is no such equation, 6(E) is defined
to be ec. Following the same outline as in the proof of Theorem 3.7 but now using
Lemma 5.1, we conclude as follows.

THEOREM 5.5. Let E be an n-dimensional analytic system. Assume, further,
that E is reversible and observable. Then 5(E) >_ n. If, in addition, E is a rational
system, then 5 E n.

Remark 5.6. The result in Lemma 5.1 is false if the assumption of reversability
is dropped, as discussed in [28]. As a consequence of this, the above conclusions may
be false without the invertibility assumption. To illustrate this, consider the following
system of dimension 3:

x(t + l) t(t) x.(t + l) x3(t)
xa(t + 1) x3(t)xl(t) + x (t) Jr- x.(t)u(t)
(t) xa(t).

This is an observable polynomial system. However, it admits an equation of order 2"

y(t) y(t- 1)u(t- 2) + y(t- 2)u(t- 1) + u(t- 2).

Note that this system is not reversible.

Appendix A. Proofs of two lemmas. In this appendix, we will prove Lem-
mas 4.1 and 4.2. For this, we need to recall some basic definitions and properties of i/o
operators defined by convergent generating series. For a detailed study of generating
series and i/o operators, we refer the reader to [41].

Let m be a fixed integer and I {0, 1, m}. For any integer k > 1, we define
I to be the set of all sequences ii....i, where i I for each s. We use I to
denote the set whose only element is the empty sequence . Let I* >0 I’
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1122 YUAN WANG AND EDUARDO D. SONTAG

A generating series

is a formal power series in the noncommutative variables r0, rl,..., r, for some fixed
number m, where we use the notation rh ’]i17]i2... 7]i for each multiindex
ili2.., it. The coefficients (c, rh} are assumed to be real.

We shall say that a power series c is convergent if there exist K, M >_ 0 such that

(30) I(c, 7}1 <_ KMkk! for each E Ik and each k >_ 0.

For any fixed real number T > 0, let /AT be the set of all essentially bounded
measurable functions

[0,

endowed with the L norm. We write [lull1 for max{lluil[1 ", 1 <_ <_ m} and [lull
for max{llui[l ", 1 <_ < m} where ui is the ith component of u and Iluill is the L
norm of ui, Iluill is the L norm of u,:. For each u E/AT and each It, we define
inductively the functions

by

f0
where V$ 1 and ui is the ith coordinate of u(t) for 1, 2,..., m and u0(t) 1.

For each formal power series c in %,,r],...,’r/,, we define a formal operator on

/AT in the following way"

(31)

If the series is convergent and (30) holds, then it is known that for any

r < (II II (M, +
the series (31) converges uniformly and absolutely for all t [0, T]. Let

YT {u e LZ" IlullT < (Aim + M)-}.

We refer the reader to [41] for the proof of the following lemmas.
LEMMA A.1. Assume that c is a convergent power series. Then the operator

is continuous with respect to the L norm in VT and the CO norm in C[0, T].
LEMMA A.2. Suppose c is a convergent series. Then F[u] is analytic if u VT

is analytic.
For each convergent series c, we let, for each # E IR"’ and each integer >_ 0,

d
(32) c(#) - t=o
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ORDERS OF INPUT/OUTPUT EQUATIONS 1123

where u is any smooth input with u(0(0) #. Note that c(#) is a polynomial in #
and c.i(#) doesn’t depend on #j for j >_ i.

By Lemma 2.1 in [39], one knows that for a convergent series c, Fc[u] 0 for
every piecewise constant input u if and only if c 0. On the other hand, it is not
hard to see that for each piecewise constant function u, there exists a sequence {uj }
of analytic functions such that Ilujll < Ilull and uj --, u as j -+ ec in the L1 norm.
By Lemma A.2, one concludes that Fc[u] 0 for every analytic input u if and only
if c 0. Since F[’u] is analytic if u is analytic, it then follows from (32) that for an
analytic u with u(i)(O) #, F[u] 0 if and only if ci(#) 0 for all >_ 0. Thus we
conclude that c 0 if and only if ci(#) 0 for all # and all i. To prove the desired
conclusions, we need the following well-known fact.

LEMMA A.3. Assume that f is a continuous function defined on [0, to] for some

to > O. Then for any given integer r and any vector (wo, wl, ...,wr), there exists a

Loo-bounded sequence of analytic functions fj defined on [0, to] such that f!i) (0) w
for all < r and fj converges to f in the L1 norm.

Proof. For the given vector, let

f(t) f(t)- witi
i=0

Without loss of generality, one may assume that f(0) 0. Otherwise, one can always
choose a L-bounded sequence of continuous functions fj converging to f in the L
norm and such that fj(O) 0. Now one may apply Lemma 4.3 in [41] to f to conclude
that there exists a sequence fj converging to " uniformly (hence also in L norm) with

the property that !i)(0) 0 for all < r. Then the functions

fj (t) := fj (t) /
i!

i--0

give the desired sequence.
Combining the above conclusion and Lemma A.1, one proves the following.
LEMMA A.4. Assume that c is a convergent series and that r is an integer. Let

#’ be a given vector in IR". If for every eztension # of #’, ci(#) 0 for all i, then

Proof of Lemma 4.1. For analytic system (5) and for each x A//, we define a
generating series by letting

(33) c’, 7 li 7,, Lg,, LgLg,, h(x).

By Lemma 4.2 in [36], such a series is always convergent, and it follows from Theo-
rem 3-1.5 in [19] that for any # IRm’,

(34)

where

d
c(x, #) t:oFc[U](t).

The conclusion of Lemma 4.1 then follows from Lemma A.4.
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1124 YUAN WANG AND EDUARDO D. SONTAG

Proof of Lemma 4.2. For analytic system (5), instead of considering the series
defined by (33), we consider, for each (x, v) E TAd, the series defined by

(35) (d(x, v), r]il]i ri,r dLg.. .Lg.2Lglh(x)v.

Claim. For each (z, v), the series d(x, v) is a convergent series.
First of all, by Lemma 4.2 in [36], there is some constant M0 > 0 such that for

9o(z), 91(x),..., g,(z), v Tx.A4, there exists some M0 > 0 such that

(36) IdL,,Lg,. ...Lg,rh(x)v ILL,Lg,. ...Lg,h(x)v < M+(r + 1)!.

It is then not hard to see that there exist some constants K and M > M0 such that

IdLg{ Lg,, Lg,,.h(x)v <

for all r > 0. Therefore d(x, v) is a convergent series for each pair (x, v).
For each smooth input u with u(’i) (0) #i, let

d
d (z, v,

t=0

Then it follows frorn (34) that

dbi(x, #) dci(x, #),

from which it follows that

dg),:(x, #)v di(x, v, #).

Applying Lemma A.4 to the series d(x, #), one obtains the desired conclusion of
Lemma 4.2.

Appendix B. A simple consequence of the rank theorem The next result
is a simple and well-known consequence of the rank theorem; we include its proof as

it seens difficult to find a precise reference. (We provide a somewhat stronger form
than needed, which applies in more generality, including to nonobservable systelns.)

LEMMA A.5. Assume that 7-/ {hx :Z IR,k A} is a family of continu-

ously differentiable real-valued functions on an n-dimensional differentiable manifold
Z, parameterized by a set A. Then there exists an open dense subset Zo c_ Z with the
Jbllowing property. For each zo Zo there exist an integer r r(zo), an open neigh-
borhood V of zo in Zo, and parameter values ;,..., , so that, for each parameter

where hx x,(z) .= (hx(z),...,hx..(z)) and Fx is some C function from some

neighborhoodbl of hx x., (V) to IR. Moreover, the rank of the differential of hx x (z)
is r at all z V (so the nonempty fibers h-xt x(q) intersect V at sub’rnanifolds of
dimension n- r). In particular, if it is known that z - (hx(z), A E A) is one-to-one
on any open subset of Z, then r(zo) n for some zo Zo.

Proof. Consider for any s and any A,..., A the rank px x (z) of the differential
of hx x at z, and let p(z) be the maximum possible value of this rank over all s
and A,...,/k.. A point z is regular if p(z) is constant in a neighborhood of z. The

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ORDERS OF INPUT/OUTPUT EQUATIONS 1125

regular points form an open set by definition, and it is an easy exercise to show, by
induction on n, n 1,..., 1 that the set Z0 of such points is also dense. Now pick any
z0 in Z0, and let p(0) r. By definition of p, there are parameters A1,..., A so that

Pal a,.(z) r for all z in some neighborhood of z0. By the rank theorem, there are
local changes of coordinates in Z so that, in some neighborhood V of zo, ha.i. (z) zi
for 1,..., r, and without loss of generality one may assume that pal a. (z) r
for all z in this same V. Now pick any ) E A. Let f ha. If it were the case that
f(z) is nonzero for some z E V and somej > r then the map ha ,aa wouldOzj
have rank r + 1 at z, contradicting the choice of V. It follows that ha depends only
on z,..., z on this neighborhood, as desired.

Remark A.6. Observe that, when dealing with analytic mappings and Z con-

nected, the rank is constant on regular points, and one could pick the elements
A1,..., A globally on an open dense set. Also, in general this argument shows that
locally there are always n control sequences that (locally) distinguish states, even in
the nonanalytic case.
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